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ON HYPERSURFACES OF LIE GROUPS

BY

JAIME B. RIPOLL

O. Introduction. In his work on the theory of surfaces Gauss introduced
what is called today the (normal) Gauss map of an orientable hypersurface in
Euclidean space E".
Considering En as a commutative Lie group, the Gauss map is just the

translation of the normal vector of the hypersurfaces at any point to the
identity. Reasoning this way, we can also consider such a map in an
orientable hypersurface of an arbitrary Lie group. In this work, we use this
map to obtain some results on the geometry and topology of a hypersurface
in a Lie group which apply, in particular, to S3 and En. To state the results,
let us consider a Lie group G with a left invariant metric, an orientable
hypersurface M of G, and a map 3’: M F, F being the Lie algebra of G,
which (left) translate the normal vector of M at any point to the identity
of G.
As in Euclidean spaces, the tangent space of M at any point can be

identified, up to a left translation, with the tangent space of the unit sphere
of the Lie algebra of G. Therefore, the derivative of 3’ can be considered a
tensor on TM. Its determinant, say K, in En coincides with the Gauss-
Kronecker curvature of M (that is, the determinant of the 2nd fundamental
form of M), which is the intrinsic curvature of M when n 3. In S3, we
prove that K is also the intrinsic curvature of M (5). In general, the
derivative of 3’ is the sum of the shape operator of M plus a tensor,
depending essentially on G, which we call here the invariant shape operator
of M (Definition 2 and Proposition 3). We will say that a point x M is
degenerate if d3"(x ) O.
We prove that ifM is compact and has no degenerate points, then either M is

homeomorphic to a sphere or K is zero in a non denumerable subset of M
(Theorem 7).
When G is commutative, we have that x is degenerate if and only if x is

totally geodesic. In general, if x is degenerate then the translation of Tx(M)
to the identity is a Lie subalgebra of codimension 1 (Proposition 10). It
follows, in particular, that if G has finite center and the metric is bi-invariant,
then M has no degenerate points.
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A classical result due to Hadamard says that a compact hypersurface of E
with K > 0 is a convex hypersurface ([6]). Chern-Lashof obtained the same
conclusion, in E3, assuming just K > 0, and constructed an example of a
compact hypersurface of E, n > 4, with K > 0 which is not even homeo-
morphic to a sphere ([1]). It follows from Theorem 7 that ifM c E compact
has no totally geodesic points and K > O, then either M is homeomorphic to a
sphere or the set in which K 0 is non denumerable. Theorem 7 also implies
that if a compact dimension 2 Riemannian manifold M can be isometrically
immersed in S3, then either M is diffeomorphic to S2 or M has a non
denumerable set offlat points.
We obtain a generalization of the Gauss-Bonnet formula: ifM is compact

and of even dimension, then

fMg Cn_lX(M) (Theorem 8).

Considering the case in which G is provided with a bi-invariant metric, we
obtain a partial generalization of Hadamard’s Theorem: if the shape operator
of M is positive definite, then M is diffeomorphic to a sphere (Theorem 9).
Contrary to what happens in Euclidean spaces, there are cases in which , is
a diffeomorphism but M is not embedded (Remark of 19. 9).

In [5], Sebastiani defines the map T for submanifolds of Lie groups of
arbitrary codimension, and some of the above results are generalized. Using
the curvature K defined as above, instead of the Lilgschitz-Killing curvature,
he generalizes a classical result due to R. Langevin ([2]) about the curvature
of singularities of analytic maps in complex Lie groups.
The questions discussed here came up in a seminar with Marcos

Sebastiani, to whom I am indebted for valuable advice.

1. Assumptions. The following notations will be used through the paper:
G n-dimensional Lie group provided with a left invariant metric ( ),
F Lie algebra of G with bracket ],
Lx left translation determined by x G,
V Riemannian connection determined by ( ).

2. Definition of /, K and of the invariant shape operator ofM. Let M be
an orientable compact hypersurface of G and 1 an unitary normal vector
field of M. We define

3/: M + sn-l(1) {S e rl Ilxll 1},

x "* (Lx-,) .(r/(x)).
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Remark. Given x M, since

d(x)(T(M)) c T/(x)(Sn-l) {(x)} .L

and Lx is an isometry, we have

(Lx),(d3"(x)(Tx(M))) (Lx),(Lx-),({’rl(x)} +/-)
{r/(x)}+/- rx(M)

so that (L.)), dy is a tensor on TM. Therefore, we define

K(x) =- det((Lx) ,o d3"(x)).

The invariant shape operator of M is the section a in the bundle
Hom(TM, TM) given by

where is the left invariant vector field of G such that (x) r/(x).
We recall that the shape operator of M is the section A in the bundle

Hom(TM, TM) given by

Ax(X) -Vxnlx

The proposition below establishes a relationship between 3’ and the
extrinsic geometry of M.

3. PROPOSITION. For any x M, we have the identity

(1) (Lx) , d3"(x) -(Ax + ax)

Proof. Let Xl,...,Xn be an orthonormal basis of T(G) such that
X,,(x) r/(x). Let Z1,..., Z be the left translation of X,..., X and set
W,. Zg(e), 1,..., n, e the identity of G.
Given y M, one can write

n

(2) n(Y) E a:(y)Z(y)
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where aj(x) 0 if 1 < j < n 1 and an(x) 1. Therefore,

n

T(Y) (Lx-),(7(Y)) Eaj(y)W’

and hence

(3)
n-1, ar(x)(X) E

From (2), we obtain

n-1

Vxqlx E X(ay)W: + VxWnlx
j=l

and this with (3) gives (1).

4. Remark. The invariant shape operator a depends essentially on G. It
is determined by (n 1) (n 1)-matrices

an= ((VwiWn,W:)), 1 <i,j<n- 1

where B {W1,..., Wn} is an orthonormal basis of left invariant vector fields.
Clearly, if F is an isometric automorphism of F, then as ae(s). There-

fore, if On denotes the set of orthonormal n-frames of F, the set of matrices
as is parametrized by On/I(G), where I(G) is the group of isometric
automorphism of G.

5. Special cases. (a) The commutative case. When G is commutative, we
see that the invariant shape operator a of M is identically zero, and y is the
usual Gauss map of M. Therefore, K is the Gauss-Kronecker curvature
of M.

(b) The sphere S3. We consider in S3 a bi-invariant metric. Then, for any
x S3, the adjoint representation Adx: " ’, " being the Lie algebra of G,
is an isometry. It is known that Ad 0(3) orthogonal group, which acts
transitively on 03. Therefore, by Remark 4, a is constant.
Computations using the quaternionic model for S3 yields

[01]
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Therefore, given x M, we have

K(x) det(Lx).dy(x) det- (Ax + ax) det-Ax + 1,

and, from the Gauss-Codazzi equation of an isometric immersion, K is the
intrinsic curvature of M.
The lemma that follows is necessary for proving Theorem 7. Its proof was

given by Prof. Sebastiani.

6. LEMMA. Let M be a compact connected differentiable manifold and

f: M -- [-1,1]

a differentiable map. Let C {x1,..., xk, Y 1,..., Y/} be the set of critical
points off, and assume that f(xi) 1 and f(yj) -1, 1 < < k, 1 < j < 1.
Then M is homeomorphic to a sphere.

Proof. If n 1 there is nothing to proof, so that we assume n > 1.
We prove that k 1. Therefore, from Theorem 1’ of [4], M is

homeomorphic to a sphere. Let us choose a Riemannian metric in M and set
X grad(f).

Given x M, let sx" R M be the trajectory of X such that s(0) x. It
is not difficult to prove that the to-limit of s is contained in {Xl,..., xk} and
that the a-limit of s is contained in {Y 1,..., Y/}, for any x M such that
X {Xl,... Xk} k3 {Yl,’’’, Yl}"

Given 1 < < k, set U/= {x Mllimt_.oos(t) xi}. U =/= since x Ui.

We prove that U/ is open. By contradiction, let Zn M- Ui be such that
zn z U. Set L infi,jd(xi, xy) and choose R > 0. Then, there exists
T > 0 such that

d(sx(T), xi) < L/2 and f(sx(T)) > 1 R.

There exists N such that if n > N, then

d(sz.(T),xi) < L/2 and f(Sz.(T)) > 1- R.

Since one can also find T’ such that d(sz,(T’), xi) > L/2, there exists TO such
that

d(sz,(To), xi) L/2 and f(Sz,(To) ) > f(Sz,(T)) > 1 R.

Given r > 0, let u Sz,(To) be such that

f(ur) > 1/r and d(u,xi)= L/2.
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Then, taking the limit for r 0% we obtain a contradiction with the choice
of L.

Since n > 2, M- {Y1,..., Y/} is connected. So k 1. Similar reasoning
shows that 1, proving the lemma.

7. THEOREM. Let M be an orientable compact hypersurface of G which has
no degenerate points. Then either M is homeomorphic to a sphere or the set in
which K 0 is non-denumerable.

Proof. Set T {x MIK(x) 0}, and let us assume that T is denumer-
able. Given t T, set

R, d3,(t)(Tt(M)) +/- nSn-1.

Since M has no degenerate points, dim(d3,(t)(Tt(M)))> 0, and R is a
totally geodesic k-sphere of Sn- with k < n 1. Therefore

W :--- Sn (tTRt u (r)) =/= J

Choose v W and define f: M 1, 1] by f(x) (3’(x), v ). Set

V 3’-l(u) U 3’-1(_v).

Then U is finite since it contains just regular points of 7. Furthermore,
f(x) + 1, for any x e U.

If y is a critical point of f, then df(y) (d3’(y), v) 0 and thus

v d3"( Y)(Tr(M)) +/-

Hence, y T, that is, y is a regular point of 3’. But then,

d3"(y)(Ty(M)) +/-
span{3’( y)}

and v +/- 3’(y), that is, y U. We now apply Lemma 6 to conclude the
proof.

8. THEOREM. Let M be a compact orienmble hypersurface of even dimen-
sion. Let to be the volume element ofM with respect to the induced metric of G.
Then

fMgtO--- -Cn X(M)

here x(M) is the Euler characteristic ofM and Cn_ vol(S"-l(1)).
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Proof. It follows from Fubini’s Theorem that

fMg fMy fS O" Cn-ldeg(y)"to *(tr) deg(7)
n-1

We prove that deg(y) 1/2x(M). For let be the section in the bundle

Hom( TG, GxF)

given by

Hence, ,x(rt(x))---y(x), x M. Since qx: Tx(G) F is an isometry, we
have

,x(T(M)) T/(x)(Sn-1), dim(M) n- 1,

so that we have a bundle morphism

TM TSn-1

,y sn!i"
Therefore, if cM and cs are the obstructions to extend to M and S-1

vector fields without critical points, and since n 1 is even, we obtain

x(M) (Cu, [M]) (y*(Cs), [M])
(Cs,y*([M])) (cs,deg(,y)[sn-1])
deg(y)(Cs,[Sn]) deg(y)x(Sn) 2deg(y),

where the bracket denotes fundamental class in homology and (
duality between homology and cohomology.

) the

Remark. If M is odd dimensional there is no relationship between the
degree of 3’ and x(M). In fact, in this case, x(M)= 0. The best one can
assert in the case of arbitrary dimension is that fMKto Cn-1 deg(y).

9. THEOREM. Assume that the metric of M is bi-invariant. Let M be an
orientable compact hypersurface of G whose second fundamental form is
positive definite. Then M is diffeomorphic to a sphere.
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FIG. 1

Proof. The metric of G being bi-invariant, the Riemannian connection of
G is given by

VxZ 1/2[X,Z] (see [3]).

It follows that the invariant shape operator of M is skew-symmetric.
It is not difficult to prove the sum of a positive definite operator plus a

skew-symmetric one is inversible. Hence, we apply Proposition 3 to conclude
that

y: M- Sn-1

is a local diffeomorphism. Since M is compact, y is a global diffeomorphism.

Remark. Contrary to what happens in Euclidean spaces, y" M Sn-

can be a diffeomorphism without M being embedded. The following example
was given by Prof. Sebastiani.

Let M S {X el Ilxll 11 and G S X I. Let c: [0,27r] -o C,
c(t) Cl(t) + ic2(t), be a differentiable curve whose image is
We define f: M --, G by f (ec*, c2).

In the proposition that follows we give a characterization of the degenerate
points of a hypersurface.

10. PROPOSITION.
degenerate then (Lx-

Let M be an orientable hypersurface of G. If x M is. (Tx(M)) is a Lie subalgebra of codimension 1 of F.

Proof Let x M be a degenerate point. It follows from Proposition 3
that a -Ax. Since A is a symmetric operator, so is a.

Let {X1,..., Xn_ 1} be a basis of T(M) and set W. (L-O,(Xj), 1 < j <
n 1 and W y(x). We must then have

(VwW, W.) (Vw,.W, IV/), 1 < i,j < n- 1.
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In terms of invariant vector fields, the covariant derivative of G is given by

(v,w, w.> {([w/, w], w.) ([w, w.], w,) + ([w., w/i, w])} ([3])

Computations then show

([W/,W.],W) =0, 1 <i,j<n- 1,

that is, [W/, W.] span{W1,..., Wn_l).
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