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QUADRATIC FORMS INVARIANT UNDER
GROUP ACTIONS

BY

JORGE MORALES AND JEAN-MARC PIVETEAU

Introduction

Let K be a field and let G be a finite group. A K-bilinear form /3:
V V- K on a K[G]-module V is said to be G-invariant if [3(gv, gw)=
fl(v, w) for v, w in V and g in G. For simplicity, a symmetric nondegenerate
G-invariant bilinear form will be called throughout a G-form.

In this paper we consider two equivalence relations on the set of G-forms
on a given K[G]-module V, namely isometry and projective isometry. Two
forms/3 and/32 are said to be isometric if there exists a K-automorphism f:
V - V such that flx(f(v), f(w)) fl2(u, w) for all v, w in V (notice that we
do not require f to commute with the action of G). The forms/31 and/32 are
said to be projectively isometric if there exists a non-zero constant k in K
such that fll and kfl2 are isometric in the previous sense.
W. Feit proved in [2] for the cyclic group Cp of prime order p with p 3

(mod 4), that all positive-definite Cp-forms on the irreducible Q[Cp]-module
of dimension p 1 are projectively isometric. He also proved by giving an
explicit counterexample that this is false for p -= 1 (mod 4).
Our work originates in an attempt to generalize Feit’s result. The question

whether all positive-definite G-forms on a given irreducible K[G]-module V
are projectively isometric is closely connected with two other problems,
interesting for themselves. The first is the classification of all G-forms on V
up to (projective) isometry. The second problem is to study the behavior of
invariant forms under induction. More precisely, assuming that V is induced
from a subgroup H of G, we wish to know which G-forms are obtained,
up to isometry, by inducing H-forms (induction of forms is explained in
Section 3).
We shall assume throughout this paper that the ground field K is a totally

real number field, even though this hypothesis may not be essential for some
of our statements.
Here is a summary of the contents of this article"
Section 1 explains the correspondence between symmetric G-invariant

bilinear forms on V and G-invariant hermitian forms over the center of the
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endomorphism ring of V. This correspondence is applied repeatedly through-
out the paper.

In Section 2 we calculate, under suitable hypotheses, the Hasse-Witt
invariant of the difference of two G-forms (Proposition 2.1). We apply this
result to obtain explicit criteria for (projective) isometry of G-forms (Theo-
rem 2.2 and Theorem 2.4). We also generalize Feit’s theorem [2] to arbitrary
p-groups (Corollary 2.6).

Section 3 deals with induction of forms. We prove, under some assump-
tions, that a positive-definite G-form on an irreducible induced K[G]-mod-
ule is isometric to a induced form (Theorem 3.1). In particular, for a
nilpotent group G of odd order, all positive-definite G-forms on an irre-
ducible K[G] module are obtained, up to isometry, by inducing forms
invariant by a cyclic subgroup (Corollary 3.2).

I. Lifting forms to the endomorphism ring

Let K be a field and let G be a finite group. Let V be an irreducible
k[G]-module endowed with a G-form /3. Since V is irreducible, the endo-
morphism ring Endrtal(V) is a (skew-)field. The form /3 induces an involu-
tion e , on Endrtal(V) defined by

fl( ev, w) fl( v, ?.w) for all v, w V.

The restriction of this involution to the center E of Endrtal(V) is indepen-
dent of the choice of/3" Let/3’ be another G-form on V. The form/3’ can be
written fl’(v, w) fl(av, w) for some K[G]-automorphism a of V. For any z
in the center E we have

]’( zv, w) fl ( azv, w)
(zav,w)
fl(av, 2w)

The above computation shows that/3’ induces the same involution as/3 on E
as claimed. This involution will be called the canonical involution on E.

If K is a totally real number field, then the canonical involution on E is
either trivial or it coincides with complex conjugation (see e.g. [1, (50.37)]).
The dual vector space V* HomK(V, K) can be made into an E-vector
space by setting (edp)(v)= d(v) for e in E and b in V*. Similarly, the
vector space Home(V, E) has the E-vector space structure given by (edp)(v)

(v)’. We leave to the reader to see that the map

Hom(V, e) Homr(V, K),
Tr/r()
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is an E-isomorphism. This isomorphism induces a bijection

Herme, a(V) SymmK,a(V),
h Tre/K(h)

between the set Herme, a(V) of G-invariant hermitian forms on V (with
respect to the canonical involution) and the set Symmr, a(V) of symmetric
G-invariant bilinear forms on V.
We conclude this section by an example. Let Cn be the cyclic group of

order n. The irreducible Q[C,,]-module V of dimension q(n) can be identi-
fied with Q(sr), where " is a primitive nth root of unity, and a fixed generator
of C,, acts on Q(sr) by multiplication by ’. The canonical involution on
E Endo[c,l(V) Q(’) is complex conjugation. Hence the bijection (1) can
be written in this case

Q(sr + sr-l) SymmQ,a(V),
a

where/3a is the form give by

2. The classification of G-forms

We list here for convenience the notation that will be in force from now
on:

G
K
V
E
F
dEF

Brz(L)

(,),
W(L)
I(L)
L

a finite group
a totally real number field
a non-trivial irreducible K[G]-module
the center of Endral(V)
the subfield of E fixed by the canonical involution
the determinant of trace form (x, y) Tr/e(xy)
the subgroup of elements of order at most 2 in the Brauer group
of L

( a’d/F )the norm of the quaternion algebra --if--
the Hilbert symbol at the prime p
the Witt ring of L
the fundamental ideal of W(L)
the Hasse-Witt homomorphism bL: I2(L) - BrE(L)



148 JORGE MORALES AND JEAN-MARC PIVETEAU

We shall assume henceforth the condition
(*) End/q(V) is a commutative field and the canonical involution is

non-trivial.

Instances of representations satisfying condition (*) include faithful irre-
ducible representations over K of the following types of groups: abelian
groups of order > 3, nilpotent groups of odd order (see [4], Satz 3).
We shall now calculate explicitly under assumption (*) the difference of

two G-forms in the Witt group W(K). The class of a bilinear form/3 in the
Witt ring will be denoted by [/3].

(2.1) PROPOSITION. Assume condition (*). Let 1 and 2 be two G-forms
on Vand let a be the unique element in F such that ill(X, y) flE(ax, y) for all
x, y in V. Then the difference [/31] -[/32] lies in I2(K) and its Hasse-Witt
invariant is given by

a, dEF )tK([fll] [f12]) dime(V)COrF/r F (2)

Proofi Let h" V V E be the hermitian form over E such that
/31 Tre/r(h) (see (1)). Obviously we have f12 Tre/r(ah). We first com-
pute the class of the form

Xa Tre/F(h) _t. ( Tre/e(ah) )
in W(F). Choosing a diagonalization we write h-- (Cl,...,Cn) where the
coefficients c are in the fixed field F and n is the dimension of V over E.
On the one hand we have

Xa (1, a) (R) Tre/F(.h)
(1,-a) (R) (1,-dee ) (R) (2cl,...,2cn)

(1,-a,-de/F, ade/e) (R) (2cl,...,2c)
Na (R) (2Cl,... ,2c,).

On the other hand, the forms Na and cNa are isometric over F for any c in
F*. Thus [Xa] n[Na] in W(F). In particular [Xa] belongs to I2(F). Using
the commutativity of the diagram

I2(F) - Br2(F)

I(K) Br(K)



QUADRATIC FORMS 149

(see e.g. [3, Section 6])we obtain

We are now able to formulate the main result of this section.

(2.2) THEOREM. Let V be a K[G]-module satisfying condition (*). Let 131
and fiE be two G-forms on V. Let a F be such that l(x, y) flE(ax, y).

(I) Suppose that dimtr(V) is even. Then fll and 2 are isometric if and
only if they have the same signature.

(II) Suppose that dime(V) is odd. Then [1 and [2 are isometric if and
only if they have the same signature and

for all primes of K.

H (a, de/l)e 1 (3)

Proof. Recall that forms over number fields are classified by rank, dis-
criminant, Hasse invariant, and signature. Evidently/31 and/32 have the same
rank and discriminant, and by hypothesis they have the same signature.
Hence we need only to test the vanishing of the Hasse-Witt homomorphism
thr on the difference [1]

(I) If dime(V) is even then br([/31] [/32]) 0 by Proposition 2.1.
(II) If dime(V) is odd then identity (2) becomes

a, dEF )tK([fll] []2]) COrF/K V

Let now la be a prime of K and let be a prime of F above p. Using the
commutativity of the diagram

Br(Fo) Corp./K Br(Ka)
in1 inv,,o

Q/Z Q/Z

(see e.g. [5, Section 1]), and taking the sum over all primes lying above
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we obtain the commutative diagram

Br2(Fa)
1-Il Corv/ra Br2(K)

l invF1 linvKa
Z/2Z sum

Z/2Z,

which shows immediately that the p-component of COrF/K(a, dE/F/F) is
given by the product of Hilbert symbols

I-I (a, de/F)e.

This completes the proof of the theorem.

(2.3) Remark. If is inert in E then Br2(F) can be identified with
F/Ne/e(E). With this identification, the natural map Br2(F) Z/2Z is
given by x ord(x) (mod 2). Thus, in this case, condition (3) becomes

ord(a) 0 (mod 2),

or equivalently,

ord(NF/r(a)) 0 (mod 2f),

where f is the inertial degree of la in F.
With the same notation, we have:

(2.4) THEOREM. Let V be a irreducible K[G]-module satisfying (*).
(I) If dime(V) is even, then all positive-definite invariant bilinear forms

are isometric.
(II) ff dime(V) is odd, then the following statements are equivalent:

(a) [F:K] is odd;
(b) All positive-definite G-forms are projectively isometric.

Proof (I). Direct consequence of Theorem 2.2.
(II). Assume now that dime(V) is odd.

(a) = (b). Since [F" K] is odd and E/K is normal, we can choose dEF in
K*. Let /31 and /32 be positive-definite G-forms. Let a be in F such that
/3(x, y) 132(ax, y) for all x, y in V. Let p be a prime of K and fix a prime
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3 0 of F above la. Let F Gal(F/K). With this notation we have

I-I (a, dF/F)re

(note that the order of F0 is odd). Applying Theorem 2.2 we conclude that
/31 and NF/r(a)2 are isometric.

(b) (a). Let 1 be a positive-definite G-invariant form on V. Choose a
prime la of K such that 0F is the product of [F:K] distinct primes of F
which are inert in E (such a prime exists by Tchebotarev’s Density Theorem).
Let 2)1,..., tF:/(l be the primes of F lying above la and let a be a totally
positive element in F satisfying

1 if/= 1,ordei(a) 0 if i> 1.

Let fl2(U, W) 131(av, w). By hypothesis, there exists k in K* such that kill
and 2 are isometric. By Theorem 2.2 part II (and Remark 2.3), we must
have

] ord(a)= E ord(k) (mod2). (4)

The left hand side of (4) is equal to 1 by the construction of a, and, since p is
totally decomposed in F, the right hand side of (4) is given by

E ord(k) [F’K]ord(k).

Therefore [F:K] must be odd.

(2.5) COROLLARY. Let K Q and assume condition (*). Suppose that G
acts faithfully on Vand that dime(V) is odd. If all positive-definite G-forms on
V are projectively isometric, then the center Z(G) of G is cyclic and its order is
either 2 with 0 <_ v <_ 2, or of the form pV or 2p with p prime and p 3
(mod 4).

Proof. Let n IZ(G)I. The statement being trivial for n < 2 we may
assume n > 2. Since G acts faithfully, the center Z(G) is mapped injectively
into E*, therefore Z(G) is cyclic and E contains the cyclotomic field Q(’).
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By Theorem 2.4 Part II the degree [Q(’n + ’n): Q] must be odd, or equiva-
lently, q(n)/2 must be odd. This is true only for n 4 or of the form p’* or
2p’* with p 3 (mod4). D

We also have a generalization of Feit’s result.

(2.6) COROLLARY. Let G be a p-group (p > 2). Let Vbe a simple non-triv-
ial Q[G]-module. The following statements are equivalent:

(a) p -= 3 (mod 4);
(b) All positive-definite G-forms on V are projectively isometric.

Proof. Evident consequence of Theorem 2.4, since in this case E contains
Q(ff) and is contained in Q(fflal). Notice also that condition (*) is automati-
cally satisfied, rn

3. Induction of forms

We keep the conventions and the notation from the previous section. Let
H be a subgroup of G and let U be a K[H]-module. We write the induced
K[G]-module Ind,(U) K[G] (R)iCtHlU in the form

r

Indg(U) X (R) U,
i=1

where {X 1,... Xr} is a system of representatives of the left cosets of G
(mod H). Let /3 be an H-form on U. The induced module Ind,(U) inherits
naturally the G-form fi defined by

(X (R) U, Xj (R) W) ij[(U,W),

which will be called the form induced from/3. We have the following result.

(3.1) THEOREM. Let H be a normal subgroup ofprime index p in G (p > 2)
and let U be a K[H]-module. Suppose that V= Ind,(U) is irreducible and
satisfies condition (*) of the previous section. Then any positive-definite G-form
on V is isometric to a G-form induced from a positive-definite H-form on U.

Proof The induction functor Ind provides an injection of M
End/q/l(U) into E EndKt1(V). Two cases have to be distinguished.

(a) M E. In this case Rest(V) is the orthogonal sum of non-isomorphic
K[H]-submodules x (R) U, where {Xl 1, x2,..., xv} is a system of repre-
sentatives of_G/H. Any G-form/3 on V is in this case the orthogonal sum of
p copies of/3: U U - K, where/3 is given by [3(u, v):=/3(1 (R) u, 1 (R) v).
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(b) M E. In this case Resin(V) is isomorphic to U U; therefore
E -= Mp(M)//. Comparing the dimensions over M, we see that ElM is an
extension of degree p. Note that complex conjugation is non-trivial on M
(since [E:M] is odd, M cannot be contained in the subfield F of E fixed by
complex conjugation). Let N be the intersection M F. We sketch here for
clarity the related tower of fields:

E

K

Let fll and f12 be positive definite G-forms on V and assume that 1 is a
form induced from H, that is

where /31 is a positive-definite H-form on U. Let Bi" V )< V--> N be such
that

i(x, y) TrE/K(Bi(x, y)) for 1,2.

Since [F’N] =p is odd, by Theorem 2.4 Part II, the forms B and B2 are
projectively isometric, that is there exists a in N such that aB and B2 are
isometric. Applying the trace Tru/i we see that the forms/33

.’= Trv/r(aB1)
and f12 TrN/K(B2) are isometric. We finish the proof by showing that/33 is
an induced form as well

3(Xl (R) U, Xy (R) U) TrN/KB3(x (R) l, Xj (R) U)
TrN/IcBI(xi (R) au, xj (R) v)
Ol(au, u)ij. I]

(3.2) COROLLARY. Let G be a nilpotent group of odd order and let V be an
irreducible K[G]-module. Let [3 be a positive-definite G-form on V. Then there
exists a divisor n of IGI and a totally positive element a in the cyclotomic field
K(n) such that [3 is isometric to an orthogonal sum

[3o+/- +/- flo,

where Bo(X, y)= Trr(,)/(ax).
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Proof We may assume that G acts faithfully on V. We prove the
corollary by induction on the order of G. For Ia[ 1 the statement is trivial.
For [al > 1 we have two possible cases.

(1) If V-- Ind,(U), where H is a subgroup of index p, then we apply
Theorem 3.1 and the induction hypothesis.

(2) If V is not induced, then, by [4, Section 3], the group G must be
cyclic, r

(3.3) Remark. Corollary 3.2 together with Feit’s theorem [2] give an
alternative proof for Corollary 2.6.
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