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Dedicated to my teacher, R. Creighton Buck, on the occasion of
his retirement

Introduction

In this paper, we continue the work of Part I by studying a kind of
separation of variables for some of the PDE’s of mathematical physics. For
example, in Section 1, we find all solutions of the form u q(A(x) + B(y))
of Laplace’s equation in two variables, Uxx + uyr 0. In the terminology of
Part I, we study which A(x) + B(y) are quasi-solutions of Laplace’s equa-
tion. (However, Part II can be read independently of Part I.) Surprisingly, the
Jacobi elliptic functions appear naturally in this context. At present, their
appearance seems to be an "accident" of computation. We have no concep-
tual explanation for their occurrence, or for why doubly-periodic functions
should play a role in this kind of separation of variables.

Questions to be addressed at a future time involve expansions in series
whose terms are constants times these Jacobi elliptic functions. How does
one choose these constants? Are there any orthogonality relations? How fast
is the convergence? These are natural questions especially for solving the
Dirichlet problem in a rectangle, for which this form of separation of
variables seems quite appropriate. Note that by using logarithms or exponen-
tials, it is equivalent to the form u (C(x)D(y)).

Willard Miller, Jr., has shown the author how to derive many of the results
of this paper by the method of differential-Stickel matrices in [KAM]. This
organized method has some advantages over the ad hoc methods of the
present paper, but the calculations are still lengthy. The author thanks
Professor Miller for his helpful communications.
Throughout this paper, all functions are supposed to be real-analytic on a

domain in the appropriate Euclidean space. Alternatively, one could suppose
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CLOSED-FORM SOLUTIONS OF SOME PDE’S 117

that certain expressions that appear are zero-flee. In this paper, the work is
purely formal. Questions like boundary-value problems will be held for a
possible future paper. Some of the calculations in this paper were done by
Georg Reinhart at a Sun workstation, while he was supported in this work by
a grant from the Research Board of the University of Illinois.

I. Laplace’s equation in two variables

THEOREM 1. Suppose u (A(x) + B(y)) is a non-constant solution of
Uxx + uyy O. Then we must be in one of the following six cases, up to scaling
and other normalizations:

(1.1)

(1.3)

(1.4)

(1.6)

u cos x cosh y,

u aX 2 + fiX-- ay E + TY,

u log(cosh y + cos x),
u log(cosh y cos x),

A(x) log[dn(x: k) k cn(x: k)],
B(y) -log[dn(/y: k) k cn(/y: k)],

cosh t 1
p(t) log cosh / 1’

A(x) log[0n(x: k) k cn(x: k)],
B(y) log[dn(/y: k) k cn(/y: k)],

cosh 1
q(t) =log cosht / 1"

Furthermore, each of these six cases gives a solution of the form q(A(x) +
B(y)).

A word about "scaling and other normalizations" is in order. If u(x, y)
satisfies Laplace’s equation, then so does

3,u(a(x Xo), a( y Yo)) +

for any constants, y,a, fl, and any real constants x0 and Y0. We also
implicitly accept the change of variables x y, y--, x. Throughout this
paper, where convenient, we have chosen the values of the parameters
y, a,/, (x0, Y0) that give the simplest formulas for u.
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Proof of Theorem 1. We suppose

(1.7) u p(A(x) + B(y)).

In what follows, the argument of q, q’, q" is always A + B. The argument of
A, A’, A", A" is always x and the argument of B, B’, B", B" is always y. We
have

(1.8) Ux A’, Uxx (’tA’2 q- tAt’, etc.

so that

(1.9) Uxx -- Uyy 0

becomes

(1.10) "(A’ + B’) + ’(A" + B") o,

which we write as

A’2 + B’2 A + B)(1.11) A" + B" q"A + B)"

Here we suppose we are not in Case (2’).
Case (2’). A" + B" O.
It is easy to see that in Case (2’) we have Case (2) of Theorem 1. Note now

that the right-hand side of (1.11) is a function of A + B. Letting

(1.12) J(R(x,y),S(x,y))

OR OR
Ox Oy
OS OS
Ox Oy

be the Jacobian determinant of the two function R(x, y) and S(x, y), we
have

(1.13)
A 2 + B’2 ),A+B =0.

Expanding (1.13) and simplifying, we get

(1.14) [(A" + B")2A’A"- (A’2 + B’Z)A"]B
[(A" + B")2B’B"- (A’z + B’)B"]A
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which becomes

(1.15) 2A,,2 (A,2 + B,2) A’" B,2 B"-- 2B"2 (A’2 + )--r.
Now (1.14) (and also (1.15)) is what we call a differential interlacing. Our
purpose is to use some elimination procedures to get from it a differential
interlacing in which the variables are separated. In (1.15), take O/Ox to get

(1.16) 4A’M" (A’2 + B’2) -2-
A"

2A’A" A’A"-- -2

Now simplify to get

(1.17) (A’2 + 9’2) -2A’A",.
Now take 0/0y to get

(1.18) )’B’B" -A’A" (
Dividing, we get

A"
/A’A"=

B"
/B’B"(1.19) -r

so that the variables are separated. Consequently, for some constant

A"
/A’A"

B"
/B’B".(1.20) A --For the time being we suppose we are not in Cases (3’)-(4’) where Z 0. So

h 4: 0. We have

(1.21)

(1.22)

(1.23)

(1.24)

Z.2

(1.25) 2

(1.26)

( A"/A’)’ hA’A",

A"/A’
h .,2 const),=A +a (a=

A" A ,3=-A +aA’,

A"A" A ,3A. aA’A".=-A +

A .,4 a ,2 b
=-gA +A + (b=const),

A,,2 A ,,4 aA,2=A + +b.
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Let

(1.27) 2[ A’, B’.

Hence

(1.28) g),2 4"" + ag2 + b.

(1.29) 9’= + /-9.14 + a212+b

(1.30/ fga(x) do"
+x + c.

""O
"4 + ao"2 + b

Taking a translate of A(x) if necessary, we may suppose

(1.31) c 0.

Notice that the integral in (1.30) is an elliptic integral. Working with
now, we similarly get

(1.32) /(Y) dr
+Y,

"0 AO.4 2- +r +b

where and b are other constants. Normalizing and scaling, we have

(1.33)
(1.34)
where

2I(x) a sn(/3x" k),
B(y) sn(x" k)

(1.35) /n(:k) as
"0 I/(1-s2)(1-k2s2)

=x

defines the Jacobi elliptic function (sinus amplitudinus) sn(x" k).
We now see that in order for 91--A’ and B’ to fit (1.14), some

restrictions must be placed on a, b, , b (equivalently on a,/3, if,/3). Rewrite
(1.15) as

(1.36) A" B’z B"

But from (1.23)

( 1.23) A" A’3 + aA’
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and similarly

(1.23’) B" }B’3 + fiB’,

the left-hand side of (1.36) becomes

(1.37)
A 2 2 2A"22A’2B -aB’ + 2

Now use (1.26) to see that the left-hand side of (1.36) becomes

(1.38)

-A’2B’2 aB’2 + ( A-A ( A ,,4+ 2aA’2 + 2b --A + aM’2),
which simplifies to

(1.39) "--’A’2B’22 aB,2 + aAt2 + 2b.

Similarly, the right-hand side of (1.36) becomes

(1.40) A2 A’2B’2 .1’2 + "B’2 + 2.

They are equal exactly when

(1.41) aB’2 + aA’2 + 2b -.1t2 + B’2 + 2,

or

(1.42) (a + )A’2 (a + )B’2 + 2(b b).

Thus, we have the necessary restriction

(1.43) a +=0, b=b.

Now, if we consider

(1.44) fa(x) ds

o /(1 s2)(1 k2s2)

then the quartic polynomial under the radical is

(1.45) (1 s2)(1 k2s2) 1 (1 + k2)s2 + k2s4.
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When we pass to (with b b but -a), we must get

(1.46) 1 + (1 + k2)s2 + k2s4= (1 + s2)(1 + k2s2)

so that

(1.47) fa(y) ds
+Y

o V/(1 + s2)(1 + k2s2)

Thus,

(1.48) (y) -T-i sn(iy" k).

Note here that, because h 4: 0, we have k 4: 0.
At this point, we give a brief summary of some basic definitions and facts

about the Jacobi elliptic functions (see [WHW])
Let

y -1/2( 2t 2 -1/2(1.49) u (1 t 2) 1 k ) dt.

Then

(1.50)

(1.51)

(1.52)

(1.53)

(1.54)

(1.55)

(1.56)

(1.57)

y sn(u: k),

sn2(u: k) + cnZ(u: k) 1,

k 2 sn2(u: k) + dn2(u: k) 1,

on(O: k) dn(O: k) 1,

d
sn(u" k) on(u" k)dn(u" k)du

d cn(u" k) sn(u" k)dn(u" k)du

d__ dn(u" k) -k2 sn(u" k)cn(u" k)du

k log dn(u" k) k cn(u" k)sn(u. k) du
J dn(u" k) + k cn(u" k)

sn(-u:k) -sn(u:k),

cn(-u: k) cn(u: k),

dn(-u; k) dn(u: k).
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By simple operations

(1.58) f sn(
1

u" k) du log[dn(u" k) k cn(u" k)].

We assume we are in Case 5’ where k = +/- 1. In this case ((5’)-(6’)) we wish
to find . We seek to determine in

(1.59) A"(x) +
A’(x)2+B’(y)2 ap(A(x) + B(y)).

Here, in (1.48), we have chosen the minus sign. Later we will do the plus sign.
Write

(1.60) sn(x" k) s, sn(iy" k)

Then

(1.61)
A" + B" (1 s2) 1/2(1 k2s2) 1/2 + (1 0"2) 1/2( 1 k20.2) 1/2

A’2 + B’2

(1.62) (1-s2) 1/2(1 k2s2) 1/2
S 2 0.2

+ (1 0.2)1/2(1 k20.2) 1/2

2 2S --0.

1 (1 k2s2) 1/2 k(1 s2) 1/2 )- log
(1 k20. 2) 1/2 k(1 0.2)1/2

Write

(1.63) R= (1 s2) 1/2(1 k2s2) 1/2 + (1 0.2)1/2(1 k20. 2) 1/2

(1.64) T

S 2 0.2

(1 k2s2) 1/2 k(1 s2) 1/2

(1 k20. 2) 1/2 k(1 0.2) 1/2"

Georg Reinhart has found and verified on a computer, using the Macsyma
program, that

(1.65) R w(r)
where

(1.66) W(z) k
z2+l
Z2- 1
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This was done as follows. Set o. 0. Then R becomes

(1.67) kz(s) (1 $2)1/2(1 k2s2) 1/2 + 1
S2

and T becomes

1 1/2(1.68) 2F= 1 k[(1-k2s2) k(1 s2) 1/2]
and we have

( 1.69) / W(2?)
so that

(1.70) W(Z) -"/(- l(z)),
and W can be found by straightforward computation. Hence

cosh kt o" ( t )(1.71) (t) =k sinh kt q’ ( t )

which is a simple differential equation for o, whose solution, up to a constant
factor, is

cosh kt 1
(1.72) log sinh kt + 1"

Absorbing factors of k into A(x) and B(y), we are led to the solution (1.5).
If we choose the plus sign in (1.48), the computations are very similar. We

get

( 1.63" )

R* (1 s2) 1/2(1 k252) 1/2 (1 o.2)1/2(1 k2o. 2) 1/2

( 1.64* )
T [(1 k2s2)

(1.65")
where

s2 o. 2

1/2- k( 1 --S2)1/2] [(1- k2o.2) 1/2

R*= W*(T*),

k(1 o.

( 1.66* )
+z

W*(z) -k (1 k2)2 2

(1 :) z

and this leads to the solution (1.6).
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Let us now do the case

(1.73) k=+_l.

In this case, we have

(1.74)

so that

a(y) ds
1 +S2 +y’

(1.75)
(1.76)

Similarly,

(y) =B’(y) +tany,

B(y) + log cos y.

(1.77) A(x) log cosh x.

It is quickly verified that

(1.78) q(t) exp t,

so that we have the solution given by (1.1).
We now treat the only case remaining, namely A 0. This means

(1.79) ,2__ a92 + b.

Then up to a normalization,

(1.80)

We then find

A cos x.

(1.81) B +/-cosh y.

From

A" + B" "(A + B) W(A + B)(1.82)
A’z + B’2 p’ ( A + B)

say, we have

(1.83)
cos x _+ cosh y

sinZx + sinh2y W(cos x +/- cosh y),

so that

(1.84)
1

W( t) -i
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and therefore

(1.85) q(t) log t.

In other words, we are in Case (3) or Case (4). Thus, the first (direct) part of
the theorem is proved. For the second ("furthermore") part, we observe that
all the steps in the first part are reversible, so that each of Cases (1)-(6) does
indeed give a solution of the desired form. To be on the safe side, Georg
Reinhart has run a successful direct computer check, using the Mathematica
program on Cases (5) and (6). It was not possible to fully verify that these
cases are solutions, but some "random" numerical values were plugged in,
and the answer was indeed zero in these cases. Of course Cases (1)-(4) are
easily checked by hand computation.

2. The wave equation in two variables

Since u(x, y) is a solution of the wave equation in two variables, if and
only if u(x, iy) is-a solution of the Laplace equation in two variables, and
since Theorem 1 is purely formal, we have the following result, with no need
for further proof.

THEOaEM 2. Suppose u (A(x) + B(y)) is a non-constant solution of
Uxx uyy O. Then we must be in one of the following six cases, up to scaling
and other normalizations:

(2.1) u cos x cos y (also u cosh x cosh y),

(2.2) u ax E + ay E + otx + fly,

(2.3) u log(cos x + cos y) ( also u log(cosh x + cosh y)),
(2.4) u log(cos y cos x) ( also u log(cosh y cosh x)),
(2.5) A(x) log[dn(x: k) k cn(x: k)],

B(y) -log[dn(y: k) k cn(y: k)l,
cosh 1

q(t) log cosht + 1’

(2.6) A(x) log[dn(x: k) k cn(x: k)],
B(y) log[dn(y: k) k cn(y: k)],

sinh t 1
q(t) log cosh t + 1"

Furthermore, each of these six cases gives a solution of the form p(A(x) +
B(y)).

We remark that Case (2.5) (or (2.6)) can be used to prove an addition
formula involving the Jaeobi elliptic functions. One example of an addition
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formula is (see [WHW])

(2.7) sn(x + y)
sn x cn y dn y + sny cn x dn x

1 k 2 sn2 x sn2y

(Here, we have suppressed the parameter k in sn, cn, dn.) We proceed here
as follows. We have the solution of the wave equation u(x, y) q(A(x) +
B(y)) of (2.5), where A(x) and B(y) are expressions in the Jacobi elliptic
functions. Hence, for this u, perhaps adding a constant to make u(0, 0) 0,

(2.8) u(x, y) f(x + y) + g(x y).

First setting y x and then y -x, we get, on supposing that f(0) g(0)
0,

(2.9) f(x) u ,
(2.10) g(y) u(, -1.
Hence (2.8) becomes

(x+y x+y)(x-y x-y)(2.11) u(x,y) =u 2 2 +u 2 2

which is the desired addition formula.

3. The heat equation

THEOREM 3. Suppose u(x, t) o(A(x) + B( )) is a nonconstant real solu-
tion of the heat equation Uxx ut. Then, apart from scalings and translations,
u must have one of the following seven forms"

(3.1) u(x,t) =x,

X 2

(3.2) u(x, t) - + t,

(3.3) u(x,t) =ex+t,
(3.4) u(x,t) =e-x+t

(3.5) u(x, t) e -t sin x,

(3.6) u( x, t) e sinh x,
x

(3.7) u(x, t) err 2---"
Moreover, each of (3.1)-(3.7) is a solution of the form q(A(x) + B(t)).
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Proof of Theorem 3. We start by supposing

(3.8) u,x u O,

(3.9) u q(A(x) + B(t)).

We then have

(3.10) ttAt2 + o’A" o’B’ 0,

B’ A"
(3.11) p"/q’

A’2 (A + B),

or, if we suppose, for a while, that

(3.12) B’ A" 4: O,

then

o’ A’2

(3.13) q" B’ A" (A + B).

Consequently

(3.14) J B’-A’’A + B O,

where J, as before, denotes the Jacobian determinant. Thus

(3.15) [(B’ A")2A’A" + A’ZA"]B + A’3B" O,

or

(3.16) ( B’ A")2A’A" + A’ZA B"
h,3 B’

Take O/Ot in (3.16) to get

(3.17) B, 2A" ( B" )’A,2

Suppose also

(3.18) B"( t) , O.
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Then

( )’CA" " /,,(3.19) A,2 -r

and the variables are separated. We have, for some constant

2A"
(3.20)

A’2 h,

(3.21) -r -Aft’.

Now suppose

(3.22) A 4: 0.

Then we have

2 2A
(3.23) A’= 1 Ax’ A"= (a hx)

2,A’’
43,2

(a -Ax)3

for some constant a, and thus

(3.24) A=--2 log(a-Ax) +b,

for some constant b. Consequently

(3.25) exA
be

(a -Ax)2"

From (3.21)

(3.26) B---r -AB’ + c.

for some constant c. We now show that

(3.27) c 0,

so that

(3.28) B--r -AB’.
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From (3.26), we have

(3.29) logB’= AB + ct + d

for a constant d. Then we have

(3.30) B’ ke-aBect,

(3.31) enB kect,
1 ea k

eC + ot(3.32) - -b-

if we suppose

(3.33) c #: 0.

We rewrite (3.32) as

(3.34) ean fee ct + &,

(3.35) B=X1 log(feet, + &),

c kect

(3.36) B’ A ceCt +6

(3.37) B" ---- ’eCt
2"

(feect + &)

Now try this A and B in (3.15). The left-hand side of (3.15) becomes

(3.38) (AB’2 + B")
8A

(a -Ax)3"

If this is to vanish, then by (3.26), we must have (3.27), contrary to (3.33).
Hence (3.27) holds in any event. Hence

(3.39) B--r -AB’

from which we get

(3.40) e

1
log(a + It),(3.41) B

(3.42) B,=( )- e
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Note that

A" 2A
eAA

for a suitable constant

(3.43)
1)e_XB 2A AeB’ A" "A,2 4 XA--e

K

l) 2A eMA+B)
B’ -A" --U

(3.44)
A’2 4eX(A+B)

which makes manifest the functional dependence of (3.11). We have

qf(s) :l -As A
(3.45) q’(s)

e 2

l -As(3.46) log q(s)
4A2

e 2s +/3,

and for simplicity we choose

(3.47) /3 0.

This yields

( kl
(3.48) q(s) exp --e
Make the substitution

(3.49) p e-x/2, r e-As

to get

(3.50) o( s) A exp __p2 dp,

which we change by an additive constant to get

(3.51) q(s) err(rye- )2t
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where

Kl
(3.52) 3’ 4A2.

Now putting s A + B and using (3.24) and (3.41), we get

(x)(3.53) u err --after taking simplifying normalizations, where is a constant. But it is easy to
see that the only value of s for which (3.53) is a solution of Ux u is

(3.54)

Thus, we are in Case (3.7). We now consider the cases we excluded, namely

B’-A"=0, B"=0, and A =0.

The first of these is included in the second, so we now assume

(3.55) B’ A" O.

Then the variables separate, so that we easily have

(3.56) A X2/2, B t,

or, in a degenerate case,

(3.57) A =x, B=0.

Thus (3.57) accounts for Case (3.1) and (3.56) for Case 3.2. Now we consider

(3.58) B"= 0, but B’-A" 0.

We then have

(3.59) B’ h const.

We have

(3.60) "/’ =,(A +B)
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and taking O/Ot we get

(3.61)

so that

’(A + B)B’-- 0

(3.62)
(3.63)
(3.64)

so that

=o,
const

o"/q’ Ix,

(3.65) q(s) es,

up to scaling and translation. Hence

(3.66) u eA(x)+t

or

(3.67) u eA(x)-t.

From Uxx ut in (3.66) we get

(3.68)

and, in (3.67),

A"+ A’2= 1

(3.69) A" + A’z 1

which lead to Cases (3.3), (3.4), (3.5), and (3.6).
Finally, we have the case

(3.70) h 0, B’ -A" 4: 0, B" 4: 0,

where appears in (3.28). Hence B"= 0, which is excluded by (3.70). This
completes the proof of the first part of Theorem 3. The "moreover" part is
easily verified by direct computation.

4. Laplace’s equation in more than two variables

We state our theorem for three variables, but it will be obvious how to
adapt the statement and proof for any number, exceeding two, of variables.
The gist of the theorem is that for more than two variables, there is no new
separation of variables possible.
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THEOREM 4. Suppose that A’(x)B’(y)C’(z) 4 0 and that u(x, y, z) is not
a quadratic polynomial. Then there exists no non-constant function o such that

u (A(x) + (y) + C())

is a solution of

Uxx -[- Uyy -[- Uzz O.

Proof. Reasoning as in the proof of Theorem 1, we have

A 2 + B’2 + C’2

(4.1) Jx, y A"+B"+C" ,A+B+C =0,

where Jx, y is the Jacobian determinant

(4.2) Jx, y(F, G)

OF OF
Ox Oy
OG OG
Ox Oy

Expanding (4.1), we get

(4.3) [(A" + B" + C")2A’A"- (A’2 + B’2 + C’2)A"]B
[(A" + B" + C")2B’B"- (A’2 + B’z + C’ZlB"]A

unless

(4.4) A"(x) + B"(y) + C"(z) 0.

But in case of (4.4), the variables separate, and we see that A, B, C are each
quadratic polynomials, and the result follows in this case. Otherwise, we see
from (4.3) that

(4.5) C"(2A’B’A" 2A’B’B") C’2(A"B’- A’B")

is independent of the variable z. Now we do a case analysis.
Suppose first that

(4.6)

Then

C" 4: 0.

(4.7) A’B’A" A’B’B"



CLOSED-FORM SOLUTIONS OF SOME PDE’S 135

and

(4.8) A"B’ =- B’A’.

If we now suppose that A and B are both non-constant then from (4.7),
A"(x) A, B"(y) A and so A and B must be quadratic polynomials. Then
C must also be a quadratic polynomial, and the result follows in this case.

If C" 0, we may suppose C’ 4: 0, since if C’ 0, the result follows.
So C’ is a non-zero constant, and it follows from (4.5) that (4.8) must hold.

By interchanging the variables, the arguing as above, we may assume that
A" 0, A’ const 4= 0. Then from (4.7), it follows that B’ is also a constant,
and the result follows in this, the last case.

5. A remark

Remark 5. We note that if A, B, q and q are non-constant and if

then

q(A(x) + B(y)) $(C(x) + D(y))

q(s) g,(as + b), A(x) =aC(x) + d, B(y) aD(y) + e,

so that there is no redundancy in the list of separated solutions that occurs in
Theorem 1, say. For then, on letting -1 O’, we have

o’(A(x) + B(y)) C(x) + D(y).

Taking 02/OxOy, we get o’"(A(x) + B(y))A’(x)B’(y) O, so that r"= O,
and the result follows.
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