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Abstract

We study here the algebraic, geometric, and analytic structure of the set of
idempotent elements in a real or complex Banach algebra. A neighborhood
of each idempotent in the set of idempotents forms the set of idempotents in
a Rees product subsemigroup of the Banach algebra. Each nontrivial con-
nected component of the set of idempotents is shown to be a generalized
saddle, a type of analytic manifold. Each component is also shown to be the
quotient of a (possibly infinite dimensional) Lie group by a Lie subgroup.

Introduction

By a Banach algebra we mean a real or complex Banach space X together
with an associative continuous bilinear multiplication function - : X X X — X.
For example, X could be the algebra of continuous linear transformations on
some Banach space Y and - could be composition. Denote by E the set to
which e belongs if and only if e -e =e. This is the set of idempotent
elements of X. If e € E we denote by C(e) the connected component of E
which contains e.

Zemének in [8] showed that each component C(e) is arcwise connected in
the case of a complex Banach algebra and showed how to connect any two
members of C(e) by an analytic arc in C(e). He did this by showing that the
component of the identity element in the group of invertible elements in X
acts transitively on C(e), if X has an identity element, via the action

g:—>glreg.
This implies via standard results in the finite dimensional case that C(e) is
homeomorphic with the manifold G/H where G is the group of invertible
elements and H is the isotrophy subgroup of e. This is not a theorem in the
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infinite dimensional case, but we show here that in our particular situation
G/H has a natural manifold structure and that the natural map of G/H
onto C(e) is a homeomorphism.

Zemanek also notes that C(e) is a singleton if and only if e is in the center
of X. This could also be inferred from results in [3] concerning the more
general setting of a semigroup with differentiable operation.

Aupetit [1] transfered Zemének’s results to the setting of a real Banach
algebra. Esterle [2] showed that each pair in C(e) can be connected by a
polynomial arc in C(e). Tremon [7] examined the degree of these polynomial
paths and showed how to construct one of degree 3 between e and f if e — f
is invertible. He also showed that in the case of the algebra of n X n real or
complex matrices any two members of C(e) can be connected by a degree 3
polynomial arc in C(e).

In (3], [4], [5] the set of idempotent elements in a semigroup with differen-
tiable multiplication function is examined and it is shown that each C(e) is a
differentiable submanifold of the semigroup. This of course implies that each
component is arcwise connected. Here, we specialize these results to the
Banach algebra setting. We identify the tangent space to C(e) at e with a
splitting closed subspace of X and provide, for each such tangent space, a
degree 3 polynomial map from the space into C(e) which is a local homeo-
morphism from a neighborhood of 0 onto a neighborhood of e. Using these
charts, we show that C(e) is a generalized saddle in the sense that it is locally
the union over an affine subspace of smoothly varying disjoint affine sub-
spaces. Tremon [7] points this out in the case of the algebra of 2 X 2
matrices.

Algebraic description of C(e)

Suppose X is a Banach algebra and E is the set of idempotent elements of
X. For each element e of E denote by C(e) the connected component of E
which contains e. We will now show that the members of C(e) live locally in
subparagroups of X and we will see how C(e) interacts algebraically with
nearby members of X. Define projections P, and Q, on X by

P,(x) = xe — exe
and

Q.(x) = ex — exe.

THEOREM 1. The affine subspaces e + im(P,) and e + im(Q,) are subsets
of C(e). Moreover,

L,=e+im(P,) ={l:el =eandle =1}
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and
R,=e+im(Q,) ={r:er=randre=¢e}.

Finally, P,oQ,= Q,°P,=0 so P, + Q, is a projection of X onto a closed
linear subspace of X.

Proof. 1t is clear since e - P(x) = Q,(x) e =0, P(x) e = P,(x), and
e Q.(x) = Q.(x) that each of P, and Q, is a projection of X onto a closed
linear subspace of X. Moreover each of im(P,) and im(Q,) is a subalgebra of
X with trivial multiplication. These remarks show that the members of
e + im(P,) and e + im(Q,) are idempotents. But since these are connected
sets of idempotent elements containing e they must be contained in C(e).
Moreover, they show that if / =e + P,(x) then le =/ and el = e and if
r=e+ Q,/x)then re = e and er = r.

Suppose le =1 and el =e. Note P(l—e)=P()=le —ele=1—-e. A
similar argument justifies the rest of the second assertion.

Applying P, to Q.(x) involves multiplying on the right by e. This anni-
alates Q,(x) and hence P, o Q, = 0. Similarly, Q, P, = 0.

Define the function F on im(P, + Q,) by

F(x) =e+ Qe(x) + Pe+Q,(x)(Pe(x))'

Using the fact that if x € im(P, + Q,) then P,(x) =xe, Q,(x) = ex, and
exe = 0 we see that

F(x) =e+x + xex — ex’e — ex?ex.

By Theorem 1, F maps into the set of idempotents. Its image is connected
and contains e and hence is contained in C(e). The next few results are
aimed at showing that F is a local homeomorphism onto a neighborhood of e
in C(e). Since the restriction of F to each of im(P,) and im(Q,) is an affine
homeomorphism we will thus arrive at a justification of our assertion that
C(e) is a generalized saddle.

We first derive results from [5] which are needed here. The arguments here
are special to the present setting and are more accessible than those in [5].

THEOREM 2.  Let the functions Gp and Gy on X X im(P,) and X X im(Q,)
respectively be defined by

GP(x’ y) = Py+e(x)
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and
Go(x,y) = Qy.e(x).

Then Gp and G, map into im(P,) and im(Q,) respectively. There are
neighborhoods U of e in X and V and W of 0 in im(P,) and im(Q,)
respectively so that the equations

Gp(x,y) = Gp(x,2) =0

have unique solutions (x,y) € U X Vand (x,z) € U X W. Finally, let ¢ and
¢ be the functions defined implicitly by these equation respectively. The func-
tions ¥:x - Y(x) + e and ®:x - $(x) + e are analytic retractions onto
neighborhoods of e in L, and R, respectively.

Proof. First, since the condition /- e =/ and e - [ = e is symmetric in e
and [/, by Theorem 1 it is clear that

im(P,) = im(P,,,)
if y € im(P,). Similarly we have

lm( Qe) = im(Qy+e)

if y € im(Q,) so indeed, G, maps into im(P,) and G, maps into im(Q,).
Since

D,Gp(x,y)(z) =xz —zx(y +e) — (y + e)xz

we have
D,Gp(e,0)(z) =ez —ze —ez= —z ifz €im(P,).

Thus, since G,(e,0) = P(e) = 0, the assertion about the existence of U, V,
and ¢ is simply an application of the implicit function theorem. In fact, the
iteration scheme

y0=0 and yn+1=yn+GP(x’y”)

converges to (x) if x is sufficiently close to e. The argument for the
existence of ¢ is similar.

That the functions ¢ and ¢ are analytic follows from the implicit function
theorem. On the other hand, it is clear that if y € dom(¢) N im(P,) then,
since y + e € L, we have Gp(y +¢,y) =P,, (y +e) = 0, we must have
Y(y + e) + e =y + e by the uniqueness part of the conclusion of the im-
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plicit function theorem. Thus, ¥ is a retraction. The argument for ® is
similar.

If e € E denote by H(e) the largest multiplicative subgroup of X which
contains e. This is exactly the group of invertible elements in eXe, the
subalgebra of X consisting of those elements for which e acts as an identity
element.

Note 3. The function which sends g in H(e) to Ig for I€ L, is an
isomorphism of H(e) onto H(l), and the one which sends g in H(e) to gr for
r € R, is an isomorphism of H(e) onto H(r).

Proof. Suppose g; € H(e) for i = 1,2 and !/ € L,. Note that
Ig18, = lgi(e8,) = Igy(el) g, = Ig1lg,

so g: — lg is a homomorphism. But clearly g: — eg for g € H(l) is the
inverse of this homomorphism so the function in question is an isomorphism.
The rest is similar.

Again let ® and ¥ be defined on the common domain of ¢ and ¢ by
P(x) = ¢(x) + e and ¥(x) = Y(x) + e.

THEOREM 4. There is an open set U of X containing e so that if x € U then
®(x) - ¥(x) € H(e) and the function 0 defined by

8(x) = W(x)(P(x)¥(x)) 'P(x)

is an analytic retraction onto a neighborhood of e in C(e) and x0(x) =
0(x)x € HO(x)) if x € U.

Proof. Since H(e) is open in eXe, ®(x)¥(x) € R, - L, C eXe, and each
of ¥ and ® is continuous and sends e to e there is a neighborhood U of e in
X so that if x € U then ®(x) - ¥(x) € H(e).

If f€ E and x € fXf is within 1 of f then x € H(f) since the geometric
series

fr(f=x)+(f-x)+

converges to the inverse of x relative to f. By making the set U chosen above
smaller we can insure that the distances from xW(x) to ¥(x) and from
®(x)x to ®(x) are both less than 1 and hence that x¥(x) € H(¥(x)) and
P(x)x € H(®(x)) if x € U. If we also require that U be connected we have
a set which suffices for the conclusion.

To see this, suppose x € U and let r = ®(x) and ! = ¥(x). By Theorem
2, r€R, and | € L,. By choice of U we have rl € H(e). It is clear from
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arithmetic that 0(x) = I(r])~!r € E. Since 0 is a combination of analytic
functions it is analytic. Thus, the image of 6 is contained in C(e).

Let f=06(x). Then /- f=f and f-1=1so by Theorem 1,/ € R; = R,.
Similarly, L, = L.

By construction we have xI = Ixl € H(l) and rx = rxr € H(r) so by note 3,
xf = x(f) = (xD)f is in H(f) and similarly, fx € H(f). Hence xf = fxf = fx
is in H(f).

Now consider the situation in which x is in the domain of  and is in E
and is within 1 of 6(x). Since x commutes with 6(x) we have x - 8(x) is an
idempotent in both H(x) and H(8(x)). Thus, x = x6(x) = 6(x) and the
image of 0 fills a neighborhood of e in C(e). It follows from this that 6 is a
retraction.

Remark. Esterle in [1] showed how to use Kovarik’s construction from [6]
to construct from r and /, arbitrary idempotents within 1 of each other, an
idempotent e so that r € R, and [ € L,. The construction is based on
functional calculus and spectral theory.

In this connection we also note that under suitable circumstances the
idempotent 8(x) is exactly the one obtained by integrating the resolvant of x
around a small circle in the complex plane which encloses the number 1 but
not the number 0.

One way to construct a semigroup with differentiable multiplication is the
following. Suppose that G is a Lie group, each of L and R is a differentiable
manifold, and s is a differentiable function from R X L into G. Then the
multiplication

A

(Lg,r) (L 2.7) = (L, es(r,D)g,7)

is associative and differentiable on the differentiable manifold L X G X R.
The semigroup constructed this way is called a paragroup or Rees product
semigroup. The construction naturally occurs in the present situation.

The group H(e) is an open subset of eXe. It is clear that R, - L, is
contained in eXe so the set L (eXe)R, is closed under multiplication. Since
multiplication is continuous, there are open sets Uy and U; of R, and L,
respectively containing e so that Uy - U, < H(e).

TueoreM 5. If U, and Uy are as above then S = U, - H(e) - Uy forms a
subsemigroup of X. There is a neighborhood U of e in X so that U - e - U C §.
The subsemigroup S has the structure of a paragroup. The idempotents of S are
exactly those of the form f = I(rl)~'r for | € U, and r € Ug. These idempo-
tents cover a neighborhood of e in C(e).
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Proof. The fact that S is a subsemigroup follows from the observation
that

(lgr)(fg#) = 1(2(r) £)7

remains in S if each of I, [ € U, g, 8 €H(e), and r,F € Ug.
To see the next part of the assertion, suppose each of x and y is in X and
is sufficiently close to e to insure that each of exe and eye is in H(e). Then

xey = Igr

where | = xey(exeye)™!, g = exeye, and r = (exeye) 'xey. The factthat/ € L,
and r € R, follows from the obvious le =1/, el =e, re =e, er =r, and
Theorem 1.

Since e(lgr)e = g, lgrg™! =1, and g~ llgr = r it is clear that (I, g,r) —
l-g-r is a homeomorphism of U, X H(e) X Ug onto U, - H(e) - Ug. If
s:Ug X U, — H(e) via s(r,1) = rl this homeomorphism is an isomorphism
with the paragroup determined by s.

To see that the idempotents of S are of the form f=I(rl))~'r forl € L,
and r € R, note that if f=Igr for g € H(e) and ! and r as before then
Igrigr = Igr implies grlg = g and hence g = (#/)~!. By Theorem 4 all mem-
bers of C(e) near e are of this form for / and r near e.

1

Geometric structure of C(e)

We will now show that C(e) is a manifold, the tangent space to C(e) at e is
im(P, + Q,), and the functions F, defined by

F(x)=e+ Q,(x) + P.gu(P(x)) =e+x +xex — ex’e — ex’ex

form an analytically compatible collection of charts for C(e). As stated
before this shows that C(e) is a generalized saddle.
We need the following tool which we include for completeness.

LeMMA 6. Suppose Y is a Banach space and X = L(Y) is the Banach
algebra of continuous linear operators on Y with the operator norm. If e, f € E
and |le — fll <1 then (flim(e)) is a linear homeomorphism of im(e) onto
im(f).

Proof. Since |le — fll < 1 we have I + (e — f) invertible and hence

X=(+e-f)(X)=(-f)X) +e(X).
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Thus,
F(X) =f(I = f)(X) +f(e(X)) =f(e(X)),

and (flim(e)) is onto. If x € im(e) then (x|l — [f(x)|l < lle(x) — f()I <
lle = £l llxll so

IF() = (1= lle = f)lxl

and f is one to one on im(e).

We are now prepared to show that the F,’s are local homeomorphisms. We
use the obvious fact that e — P, and e — Q, are continuous into L(X).

THEOREM 7. For each e € E the function F, is a homeomorphism from a
neighborhood of 0 in T, = im(P, + Q,) onto a neighborhood of e in C(e).

Proof. We have already observed that 7, is a splitting subspace of X and
that F, maps 7, into C(e). Thus, it remains to show that F, is a local
homeomorphism at 0 and that a neighborhood of e in C(e) is covered by a
neighborhood of 0 under F,.

Since F, is a degree three polynomial, it is analytic. Moreover,

F}(x)(y) =y + yex + xey — exye — eyxe — ex’ey — eyxex — exyex
and hence
F,(0)(y) =y.

Choose the open set U of T, containing 0 so that if each of x and y isin U
then

IF.(x) = E(y) — (x = y)|| < 2llx = yll.

It follows that for each of x and y in U we have

sl =yl <||F,(x) = F,(») || < 3llx = yll.

Thus, F, is one to one on U and (F,|U)™! is continuous on its domain.

We know from Theorem 5 that for each f near e in C(e) there is an
leL, near e and an r € R, near e so that f=[(rl)~'r. Thus, from
Theorem 1, since f € L, we have f = r + P,(x) for some x in im(P,). But,
r=Q/(r—e)+ e andif r is close to e then P, maps the image of P, onto
im(P,). Thus, f=r + P(z) for some z near 0 in im(P,). That is to say,
f € im(F),).
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This shows that as r ranges along the affine subspace R, near e the affine
spaces L, are mutually disjoint and sweep out a neighborhood of e in C(e).
This is our justification for the terminology generalized saddle in describing
C(e).

We will now show that local homeomorphisms F, are analytically compati-
ble and hence serve as an atlas of charts for C(e).

THEOREM 8. If e € C(e) there is a neighborhood U of e in C(e) so that if
feUu then there are neighborhoods A and B of 0 in T, and T; respectively so
that Ff o F, is an analytic homeomorphism of A onto B

Proof. Suppose e € E and f € C(e). Consider the function H defined on
T, X T; into T, by

H(x,y)=(P,+Q, )(e + F,(x) — Ff(y))

It is clear that H is analytic and

DyH(x,y)(2) = (P. + Q) (—F (¥)(2)).
If y = 0 we have

DyH(x,0)(z) = —(P. + Q.)(2).

Thus, if f is sufficiently close to e to insure that P, + Q, is a homeomor-
phism of T; onto T,, we have the existence of an implicitly defined analytic
function u with domam an open set of 7T, containing x into T; so that
u(x) = 0 and H(z,u(z)) = H(x,0) for all z € dom(u).

Let 6 be the retraction of a neighborhood of ¢ in X onto a neighborhood
of e in C(e) constructed in Theorem 4. Choose A4 open in 7, so that F, is a
homeomorphism from A4 onto a neighborhood of e in C(e) which is con-
tained in the image of 6 and so that if fe F(A4) then P,+ Q, is a
homeomorphism of T; onto T,. Suppose x, € 4 and let f = F,(x,). Consider
the function H based on this choice of x and f. We have

H(x0,0) = (P, + Q.)(e + F.(x0) — Fp(0)) = (P.+ Q. )(e +f—f) =0
so our implicitly defined function u satisfies
(P, + Q)(FAx)) = Fy(u(x)) = 0

for each x € dom(u).
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Now, since 6 is a retraction and 8(e) = e, 6'(e) is an idempotent linear
operator on X. Since the image of 6 is a neighborhood of e in C(e),
for /€ L, and near e we have 6(/) = . Similarly, for r € R, and near
e we have 6(r) = r. It follows that 6’(e)({ — e) = — e for each | € L, and
0'(e)(r — e) = r — e for each r € R, since

l6(?) —8(e) —(I-e)| =0

for [ near e in L, and

lo(r) —6(e) = (r =) =0

for r near e in R,. On the other hand, if ex = xe and x is near e then
®(x) = ¥(x) = e by Theorem 2. Thus, 8(x) = 8(e) = e and hence

l6(x) —6(e) — 0(x —e)| = 0.

It follows that 8'(e)(x — e) = 0 for such x. Thus, if xe = ex then 6'(eXx) = 0.
Thus the kernel of 6'(e) contains the set of x such that xe = ex. Hence, we
see that 6'(e) leaves the image of P, + Q, fixed and maps ker(P, + Q,) to 0.
Hence, §'(e) = P, + Q,.

Choose the open set V' of X containing e so that if x,y € V and x #y
then

l6(x) — 6(y) —6'(e)(x —y) | < llx —yll.

For x € dom(u) we have

Fe(x) - Ff(u(x)) - (Pe + Qe)(Fe(x) - Ff(u(x)))"
=] F.(x) = Fr(u(x))|.

Thus, recalling that 8(F,(x)) = F,(x) and 6(F;(u(x))) = Fy(u(x)), we have
F.(x) = Fy(u(%)) = 0

if each of F,(x) and F;(u(x)) is in V. By making A smaller, we can guarantee
this happens for all x in a neighborhood of x,. Thus, there is an open set 4
containing 0 in 7, so that for each x € A there is an analytic function u from
a neighborhood of x in 7, into a neighborhood of 0 in T, so that
F/(2) = Fy(,(u(2)) on the domain of u. That is to say, so that u = Fy(,, o F,
is analytic on dom(u).
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C(e) as a homogenous space

Suppose X contains an identity element 1. We now turn to an examination
of Zemanek’s result that G, the component of 1 in H(1), acts transitively on
C(e) via x — g~ 'xg. The isotropy subgroup of an idempotent e is the
subgroup H defined by

H={geG:g leg =e}.

This is exactly the set of elements of G which commute with e. The function
which sends gH — g~ leg is a natural one to one correspondence between
the members of G/H and C(e). The space G/H of left cosets of H in G
with the quotient topology is naturally topologically homogeneous since the
left translations by members of G move the cosets among themselves and are
homeomorphisms. We will show that the correspondence between G/H and
C(e) is a local homeomorphism from a neighborhood of H onto a neighbor-
hood of e.

If we regard X in the usual way as a Lie algebra under the commutator
product [x, y] = xy — yx then X is the Lie algebra of G. The exponential
map is a local homeomorphism from a neighborhood of 0 in X onto a
neighborhood of 1 in G. The tangent set to H at 1 is exactly the set & of
members of X which commute with e since H is the intersection of this
subspace & with G. It is clear that exp(h) < H since exp(x) commutes with e
if x does. Moreover, A is a sub Lie algebra of X.

The Lie subalgebra A splits in X because it is exactly the kernel of the
projection P, + Q,. The complementary subspace 7, in turn splits into the
linear but not Lie algebraic direct sum of the two subalgebras P,(X) and
Q.(X). On these subalgebras the multiplication function of X is the trivial
xy = 0.

LeMMA 9. The function M defined by the equation
M(x) = exp(P,(—x))exp(Q.(x))exp(( — P. — Q.)(x))

has domain containing a neighborhood of 0 in X on which M is a homeomor-
phism onto a neighborhood of 1 in G.

Proof. This is just an application of the inverse function theorem, given
the facts that dom(M) = X, M is analytic, and

M0)=-P+Q,+1-P,-Q,=(1-P)—P,

is invertible.
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The following maps are also of interest:

7:G > G/H via m(x) =xH
B:G/H — C(e) via B(xH) = x"lex
N:T,-> G/H via N(x) = exp(—P,(x))exp(Q (x)H.

Note that since each of P,(X) and Q,(X) is a subalgebra with trivial
multiplication we have

exp(x) =1+xforxeP(X) U Q. (X).

Hence exp(im(P,)) = 1 + P,(X) and exp(im(Q,)) = 1 + Q,(X) are abelian
subgroups of G, each intersecting the other and H at {1}. Lemma 9 shows
that (1 + Q. (X))X1 + P(X))H is a direct product of sorts and that it
contains a neighborhood of 1.

If x € T, then there are unique / € L, and r € R, so that P(x) = (I —e)
and Q,(x) = (r — e). The composition B N thus is given at x by

B(N(x)) =(1-(r—e)(1+(I-e)e(l-(I-e))(1+(r—e))
=(1-(r=e))l(1+(r—e))

=(1-(r—e))lr
=lr—rr+r
= F,(x).

Choose an open set W containing 0 so that (M|W) is a homeomorphism.
Suppose U is an open set in im(F,) and is sufficiently close to e to make
F7YU) + V c W for some open set V of H. The set M(F,X(U) + V) - H is
open in G since it is the product of an open set and a set. Thus

N(F7'(U)) =B~1(U)
is open in G/H since
m ' (B~'(U))=M(F,'(U)+V)-H
is open in G. Thus, B is continuous on a neighborhood of H in G/H and
maps this neighborhood onto a neighborhood of e in C(e).

Since N = 7 o«(M|T,) we have N continuous. Because of the above factor-
ization of F, we have that N is one to one from an open set of 7, onto an
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open set of G/H and maps open sets to open sets. Thus, B itself is a
homeomorphism from an open set of G/H onto a neighborhood of e in
C(e).

These remarks constitute a proof of the following theorem.

TueoreM 10. The homogenous space G /H is locally homeomorphic with
T, and the function B is a local homeomorphism from a neighborhood of H in
G /H onto a neighborhood of e in C(e).

We remark that the polynomial paths constructed by Esterle [2] could
be thought of as using the basic idea of parametrizing G/H as
exp(—Q, (x)exp(—P,(x)) - H for x € T, then shooting 7, into C(e) by
composing with 8. What is missing there is the fact that this parametrizes a
neighborhood of e in C(e).

Final remarks

In the example in which X = L(Y') for some Banach space Y it is easy to
see that

L, = {l:ker(l) = ker(e)} and R, = {r:im(r) = im(e)}.

As we remarked after the proof of Theorem 4, one can use spectral theory to
construct the retraction 6 on a neighborhood of e in X. The existence of 6
implies that if x is close enough to e then x leaves the kernel and image of
the nearby idempotent 6(x) invariant. The construction of ¥ and ® by
successive approximations yields the nearby !/ = ¥(x) with the same kernel
as e and whose image is left invariant by x and the nearby r = ®(x) whose
image is the same as that of e and whose kernel is invariant under x. There
doesn’t seem to be a natural construction based on spectral theory for the
idempotents / and r.

The charts F, arise naturally in the homogeneous space through the
parametrization N of G/H and the natural map of G/H onto C(e). They
also arise through the parametrization of C(e) obtained by following R, to r
then L, to the (it turns out) typical idempotent near e. Of course, another
natural collection of charts arise via first following L, to / then R, to the
typical idempotent. Among the parametrizations of C(e) obtainable from
natural homeomorphisms from 7, into G/H these two seem to have the
lowest degree.

We close with a question. Must the functions F, be one to one? Must they
be homeomorphisms?
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