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ON QUOTIENTS OF BANACH SPACES HAVING
SHRINKING UNCONDITIONAL BASES

BY

E. ODELL

Introduction

We shall say that a Banach space Y has property (WU) if every normalized
weakly null sequence in Y has an unconditional subsequence. The well
known example of Maurey and Rosenthal [MR] shows that not every Banach
space has property (WU) (see also [O]). W.B. Johnson [J] proved that if Y is
a quotient of a Banach space X having a shrinking unconditional f.d.d, and
the quotient map does not fix a copy of c0, then Y has (WU). Our main
result extends this (and solves Problem IV.1 of [J]).

THEOREM A. Let X be a Banach space having a shrinking unconditional
finite dimensional decomposition. Then every quotient ofX has property (WU).

Of course such an X will itself have property (WU). Furthermore, if (En)
is an unconditional f.d.d. (finite dimensional decomposition) for X, then (En)
is shrinking if and only if X does not contain 1.

The proof of Theorem A yields:

THEOREM B. Let Ybe a Banach space which is a quotient of S, the Schreier
space. Then Y is Co-saturated.

Y is said to be Co-Saturated if every infinite dimensional subspace of Y
contains an isomorph of c0.

Our notation is standard as may be found in the books of Lindenstrauss
and Tzafriri [LT 1, 2]. The proof of Theorem A is given in 1 and the proof of
Theorem B appears in 2. {}3 contains some open problems. We thank H.
Knaust, H. Rosenthal and T. Schlumprecht for useful conversations regard-
ing the results contained herein.
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1. The proof of Theorem A

Let T be a bounded linear op.erator from X onto Y where X has a
shrinking unco.nditional f.d.d., (i). By renorming if necessary we may
suppose that (/i) is 1-unconditional. Y* is separable and so by a theorem of
Zippin [Z] we may assume that Y is a subspace of a Banach space Z
possessing a bimonotone shrinking basis, (zi). Fix C > 0 such that

z(fnag) BaY {Y Y’Ilyll 1}.

Recall that (/i) is a blocking of (/i) if there exist integers 0 q0 < q <
q2 < such that E --[Ej]iqi_l+l for all (where [... denotes the
closed linear span). Similarly, F/= [z.]/q_+ defines a blocking of (zi).

Fix a sequence e_ > e0 > e > e > converging to 0 which satisfies

(1.1) ] i < 1/4 and E (4i + 2)e < Ep_ forp > 0.
i= i=p

Then choose g0 > g > converging to 0 which satisfies

(1.2) 4pgp<ep+ 2 forp> 1 and ] i.<ip forp>0.
j=p+l

Our first step is the blocking technique of Johnson and Zippin.

LEMMA 1.1 [JZ 1,2]. There exist blockings (i) and (ffi) of (i) and (Zi)
respectively, such that if (Oi) is the natural projection of Z onto F then

(1.3) for all N and x i with IIx C, we have yTx
< max(i,j) ifj =i i, 1.

Roughly, this says that T is essentially contained in /-1 - Pi (where
if0 {0}). Let (y’) be a normalized weakly null sequence in Y. Choose a
subsequence (Y’)i of (Yi) and a. blocking (F/) of (Fi), given by F/= [F.]/q_l+ ,
such that if Q q. Q is the natural projection of Z onto F then

=qi-1 +

(1.4) Qjy’ < if 4: jemax(i, j)

Roughly, y is essentially in Fi. Furthermore we may assume that

implies maxlail 2.
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Let (Ei) be the blocking of (/i) given by the same sequence (qi) which
defined (F/), E j]Tiqi_l + 1.

We begin with a sequence of elementary technical yet necessary lemmas.
For I c_ N we define QI Ej i Qj and set Q 0.

LEMMA 1.2. Let 0 < n < m be integers and let y Y"i (n, m)aiY with
IlYll 1. Then for j (n, m), IIO-yll < e and IlQ(n,m)yll < En.

Proof Let n < j < m. Then by (1.5), (1.4), (1.2) and (1.3),

n i>m

< 2(n, + m--1)
< (2j + 2)g < 4jg. < e

Thus IlQ(n,m)yll < Y"je(n,m)6j < 8n by (1.1). m

LEMMA 1.3. Let 0 Po < ro 1 < Pl < rl < P2 < r2 <
and let y F,i=1 aiypi with Ily[I 1. Then for N,

be integers

Qt
i_l, ri)

y a y’ <
Pi F-’Pi- 1"

Proof

Qt
i_ 1, ri)

y a YPi

< Qt
i_1, ri) ajy, / Qt

i_l, ri) ai pi ai pi

which by Lemma 1.2 is

< Eri_l-- + IIQ
1, ri_l) aiY’pi[I + IIQ

ri,oo
aiY’pill

< Ere_ 1-1 q- 2 , IlQy’pi / 2Eri- (by (1.5)and Lemma 1.2)
k<ri_

< .ri_l_ "Jr- 2(ri_ 1)6"p/-1- 26ri_ (by (1.4))

EPi_l - 2Pie’pi q- 26pi < EPi_l "Jr- 46pi (by (1.2))

< 8Pi_l_ (by 1.1). m



684 E. ODELL

LEMMA 1.4. Let N, x E and IIxll c. Then

IIQyZxll < emax(i,j) ifj 4: i, 1,

IIQt1,i_21Txll < Ei_ and IIQ<i,ooZxll < Ei.

Proof Let x E (qi_l, qi]O)l with w Et.

k( qj-1, qj] l( qi-1, qi]

Ifj<i- lthisis

< E E , (by (1.4))
k(qy_l, qy] l(qi_,qi]

< qi lqi < < 6 using (1.2)"qJEqi-1 Eqi-+2

if j > this is

k( qj-1, qj] l( qi-1, qi]

< E qik <- qiqj_l
k qj_ 1, qj]. qj_lqj_l < Eqj_l+2 "< ej+ < F_,j.

Finally,

i-2 i-2

IlQ[1,i_z]rxll <_ _, IlQrxll < E (i- 2)e < Ei_
k=l k=l

and

IIQ<i,)Txll < IIQTxll < Ek < Ei.
k=i+l k=i+l

LEMMA 1.5.
Then

Let Ilxll C, x E =/:j,j+l (JOk where wk Ek for all k.
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Proof. By Lemma 1.4,

QyTx < IIQ.Zoll < e+ e
k:/=j,j+l k<j k>j+l

< (j- 1)ey + ey jey < 8j_ 1.

LEMMA 1.6. Let 1 < n < m and x P.o)y, IIx C, with ooy Ey for all j.
Suppose that IlayZxll < 2ey_l for n < j < m. Let ay_ Qy_lTOOy and by
QyToy. Then

(a) I1%. / b.ll < 3ey_ for n < j < m and
(b) F,y (r, s]T% (ar + bs)II < 5er_ if n < r < s < m.

Proof. (a) Let n < j < m. By Lemma 1.5,

IIQjZx- (ay + by)ll
i/j,j+l

Since II QTx < 2e_ , (a) follows.
(b) Let n <r<s <m and let je(r,s]. Then T%

where IIll < 2ej_l by Lemma 1.4. Thus
=aj_l + bj + Tj

-t- Was_ + b (a

s-1

< liar. + bll + 28r_
r+l

s-1

r+l
3ej_ + 2er_ (by (a))

+b,)ll + 2ej_
j=r+l

< 5er- 1" 1

We next come to the key lemma. Let (Py) be the natural sequence of finite
rank projections of X onto (Ey). For I

___
N, we let PI Ei i Pi.

Notation. If x I2 xy X with xy Ey for all j and ff X, we define

if if= ayxywith0<ay< lforallj.

LEMMA 1.7. Let n N and let e > O. There exists m N, m > n + 1,
such that whenever x CBaX with [IQrxl[ < 2e._1 for all j (n, m) then
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there exists x with
(1) IITx- T II < e and
(2) Pr 0 for some r (n, m).

Remark. Lemma 1.7 is the main difference between our result and
Johnson’s earlier special case [J]. In the case where T does not fix a copy of
Co, Johnson showed that one could take x Pr(X) for some r (n, m).
The proof of Lemma 1.7 requires the following key result.

SUBLEMMA 1.8. Let n N and e > O. There exists an integer m
re(n, e) > n + 1 satisfying the following. Let x CBaX, x ,toj with wj Ej
for all j. Assume in addition that IIQjTxl[ < 2ej_ for j (n,m) and set

aj_ Qj_ITwj. Then there exist k N and integers n <il < <
k < m such that

(1.6) k-lllail + ai2 + +ai,11 < e.

Proof of Lemma 1.7. Let n N and e > 0. Choose no > n such that

(1.7) En0 < 6/15.

Let m m(no + 1, e/3) be given by the sublemma and let m m(ml, e/3).
Let x E%. CBaX with to. E. for all j and suppose that IIOZxll <

2ej_l, aj_ Qj_lTtOj and b. QjTtoj for j (n, m). By our choice of m
there exist integers k and K and integers n < no < no + 1 < < 2 <
< i < m < Jl < < J/ < m such that

(1.8) k-lllai + +ai,,ll < el3
and

(1.9) K-1llaj, + a,ll < e/3.

Define

K
o,; + +g E

Ja + Jk +
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Clearly (2) holds and we are left to check (1).

1 i2 2 i3 k -.
+ + k +

K-1
K Twi+ +- Toai

j + JK- +

Thus by Lemma 1.6,

1 1 2 2 k K
bhTx TII -- a -+- - b -1-- -- a + -- b -+- +--ai + --K-1 K- lbj2+ + -t- bjK+ K ajl + K -ajI’:-I

k K

+ k- E 5jeij- "Jr- K- _, 5leh 1"
j=l /=1

Now

k k

k-1 E 5jEij-1 <- 5 E Eij-1 < 8i,-2 <- 8n
j=l j=l

and

K

K- E 518jl- ( en
1=1

as well.
Thus

IlZx TII < k-lllai + +ai,ll + K-’llbjl + +bjK
k K-1

+ E [[bij + aijl[ -[- E Ilbjl / ajll[ -.l- 2eno.
j=2 1=1

Now

K

+ +bj./ll K-iliah + +aj./ll + K-1 Ilbjl + ahll.
1=1
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Hence from (1.8), (1.9) and Lemma 1.6 we obtain

2E< -- + eno + 2eno + 2eno < e

(by (1.7)). m

Proof of Sublemma 1.8. If the sublemma fails then by a standard compact-
ness argument we obtain oj Ej for, j" N such that for all m,

< C and < 3e_

if n < j < m. The extra ej_ comes from an application of Lemma 1.5.
Furthermore setting Q._ 1T%. a._ and QjTtoi b for j N, then for all
k and all n < < < i we have

(1.10) k-lllail + +aikll _> e.

Now a. F. and (F.) is a shrinking f.d.d. Thus (a)j> is a seminormalized
weakly null sequence. By (1.10) any spreading model of a subsequence of (a.)
must be equivalent to the unit vector basis of la (see [BL] for basic informa-
tion on spreading models). In particular we can choose an even integer k and
integersn <ia < <ig such that

(1.11) [[ai --ai2 + +aik_- azll > CIIZll + 1.

However,

E + E o,; + + E
i1+1 i3+1 ik_l+l

-+" bi2 + ai3 + bi4 -I- +aik_l + bill[
k

5 E eij-1 (by Lemma 1.6).
j=l

Now 5E=l 8i- < 6il- 2 and by Lemma 1.6 and (1.11)

+ bill[ > [la ai2 + ai3 ai4 + +ai_l[Jail -[- bi2 -+ + ai--1
k/2 k/2

Ilai=, + bi]l > CllZll + 1- 38i2,_ 1.
j=l j=l
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Thus

CII Tll > C TII + 1 E 1_2

>_ clI Tll / 1 2%_2
> clITll,

which is impossible.

Completion of the proof of Theorem A. Let the integer rn given by Lemma
1.7 be denoted by rn m(n; ). Choose 1 < Pa < P2 < such that for all
i, Pi+ 1 > m(pi; epi). Let (Yi) (Ym). We shall prove that (Yi) is uncondi-
tional.

Let y=EaiYi,]lyl] 1, xCBaX, Tx=y and let x=E=0gi where
go Pia, pox and gi P[pi, pi+l)x for > 1. We shall apply Lemma 1.7 to
each gi for > 1. Fix > 1 and let (n, m) (Pi, Pi+a 1). Let j (n, m).
Then Qy < ej by Lemma 1.2. Thus

QyTx QjTg -Jr- QT g
k4=i

However IIQyT Eg =/=i ggl[ < Ej_l by Lemma 1.5 so IlQyZgill < ej_ + ej <
2ej_l. Thus by Lemma 1.7 there exist gi gi and r (pi, Pi+l 1) such
that eri, 0 and IlZg Zill < 8pi for all N.

Let ff E_o gi ET= "i where g0 go and ’i P[ri-1, ri)" for N
(r0 1). Of course, ’i e(ri_l, ri) if > 1.

Claim. IITi- aiYill < 48pi_,_ for N.

Indeed IlQ[ri_l, ri)Y- aiYi[I < 8Pi_1-1 by Lemma 1.3. Thus the claim fol-
lows from the following:

Subclaim. IlQ[ri_l, ri)Zx Till < 38pi_1_ 1.

To see this we first note that

Qt
ri_l, ri)

<- E
k i_ 1, ri)

<
k[ ri_l,ri)

ri_1-1"

Tx Q[ ri_l,ri) T( gi_ -1- gi -t- gi+l)ll

[IQ 
j4=i--l,i,i+l

8k_ (by Lemma 1.5)
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IIQ[ri_l,r,)Z(gi-1 + gi "+- gi+l) Q[ri_l,ri) Z(i-1 -4- i -1- i+1)1[
< IIZ(gi- + gi q- gi+l ,i-1 ,i-

pi-1 "3t- pi -1" ’pi+l pi-1

Finally, applying Lemma 1.5 again we have

ri_l,ri)[Z(gi-1 -" gi-Jr- gi+l)
< Eri_l-l

and the subclaim follows.
Let i -1-1. Then

E iai Yi < Ei(ai Yi Ti) -4-11 EiZi][
< E 48pi_-1%- II Z[I E i’i (by the claim)
_< 1 / CIIZll,

The proof of Theorem A yields the following:

PROPOSITION 1.9. Let X have a shrinking K-unconditional f.d.d. (Ei) and
let T be a bounded linear operator from X onto Y. Let T(CBaX)

_
BaY. Then

if e $ 0 and if ( y) is a normalized weakly null basic sequence in Y there exists a
subsequence (Yi) of (Y’)i and integers Pa <P2 < with the following
property. Let ]l2aiYill < 2. Then there exists x E x 2CKBaX, (xi) a
block basis of (Ei), such that

Tx aiYill < E for all i.

Moreover there exbt (ri) with 0 r0 < 191 < r < P2 < r2 <
X [Ej]j(ri_,ri for all i.

such that

COROLLARY 1.10. Let X have a shrinking K-unconditional f.d.d, and let T
be a bounded linear operator from X onto the Banach space Y. Then Y contains
co if and only if Tfixes a copy of co.

Proof If Y contains co then there exists (see [Ja]) (yi), a normalized
sequence in Y, with 2-1 < ]]E aiYill < 2 if (a i) Sco, the unit sphere of c0.
Let e $ 0 with E e < 1. We may assume that (Yi) satisfies the conclusion of
Proposition 1.9. Thus for all n N there exist

n<p2< n<0 r < P < r r2



QUOTIENTS OF BANACH SPACES 691

and x.n, [gj]j(r[_l,r) such that if xn= Ei<nx’, then IIxll 2CK and
[[Tx’i’ y/I[ < ei for _< n.
By passing to a subsequence (x’) we may assume limk r/n ri and

limk_o x’ x exist for all N. Thus x [gj]j(ri_l, ri
with r0 0 <

r < r2 < "",[[Tx y/I[ < E for all and supn[[E’ xi[[ < . It follows that
(xi) is equivalent to the unit vector basis of c0. Moreover if we choose
oo eiCBaX with Too Yi rxi then T(x + wi) Yi and some subse-
quence of (x + wi) is also a co basis. Hence T fixes c0. m

2. The proof of Theorem B

We begin by recalling the definition of the Schreier space S [S]. Let Coo be
the linear space of all finitely supported real valued sequences. For x
(ci) Coo set

p

Ilxll max [cl’p N
i=l

and p <_k < <kp}.
S is the completion of (c00,ll II). We let Ilxll0 denote the c0-norm of x. The
unit vector basis (en) is a shrinking 1-unconditional basis of S. S can be
embedded into C(w) and thus S is c0-saturated.
Theorem B will follow from a quantitative version, Theorem B’ (below).

Given a sequence (Xn), h > 0 and F a finite nonempty subset of N, y
i -n F Xn is said to be a 1-average of (xn). We say that a Banach space X
has property-S(1) if every normalized weakly null sequence in X admits a
block basis of 1-averages which is equivalent to the unit vector basis of c0. S
has property-S(1).

THEOREM B’. Let Y be a quotient of S. Then Y has property-S(1).
We shall use the following result:

LEMMA 2.1. Let (Xn) be a normalized weakly null sequence in S with
limnl[Xnl[O O. Then some subsequence of (xn) is equivalent to the unit vector
basis of co

Let T be a bounded linear operator from S onto a Banach space Y and let
(y) be a normalized weakly null basic sequence in Y. Let T(CBaS)

_
BaY.

LEMMA 2.2. If no block basis of 1-averages of ( y) is equivalent to the unit
vector basis of c0, then there exists > 0 such that if x 3CBaS, Tx is a
1-average of (y) and [[Tx[[ > 1/3 then [[x[[0 > 6.

Proof If no such 6 exists then there exists (Xi) C 3CBaS with
limillxi[[o O,[[Zxil[ > and TX a 1-average of (Yi) for all i. By Lemma 2.1
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there exists a subsequence (x’i) of (Xi) which is equivalent to the unit vector
basis of c0. By passing to a further subsequence we may assume that (Tx’i) is
a seminormalized weakly null basic sequence in [(y)]. Thus (Tx’i) is also
equivalent to the unit vector basis of c0. m

Proof of Theorem B’. Let (y) be a normalized weakly null sequence in Y.
If (y) fails the S(1) property, choose 6 > 0 by Lemma 2.2. Let (ei)i=l be a
sequence of positive numbers satisfying (recall T(CBaS) BaY)

(2.1) E gi < min(a/(2C), 1).
i=1

Let (Yi) be the subsequence of (y) given by Proposition 1.9 for the
sequence (ei).
Choose an even integer m N with

(2.2) m > 8C/.

2mFrom the theory of spreading models there exists (Zi)i=l, a finite subse-
quence of (Yi), such that setting h lIE2m=lzll -a,

> 1/3.

whenever F
___

{1,..., 2m} with IFI >_ m.
Thus there exists

2m

X E Xi ( 2CBaS
i=1

with (Xi) a block basis of (ei) and IlTx hzil[ < e for < 2m. For < 2m
choose (.o S with Too hz Tx and I1o11 _< Ce. Hence T(x + ooi)
I Z

Since [[T(F,m(xi + o9/))11 > 1/3, and

X

2m

+ I1oill < 2C + EiC <

by Lemma 2.2 we have [lZm(xi + o9i110 > a. Since 11212mo9i110 11E12mOil[ <
6/2 by (2.1) there exists < 2m with Ilxill0 > /2.
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Now

T E (Xi-Jr- O.)i)
i=1
i4i

i=1
ii

and so we may repeat the argument above finding 2 4: with Ilxi2110 > 6/2.
In fact by (2.3) we can repeat this m-times obtaining distinct integers
(i)km=l

___
{1,2,...,2m} with Ilxikll0 > /2 for k < m. But then

2C> Ilxll--II xii=l m

Xik --" E Ilxi llo 6m/4
k=l k=m/2 +

which contradicts (2.2).

3. Open problems

Our work suggests a number of problems, of which we list a few. For a
more extensive list of related problems and an overview of the current state
of infinite dimensional Banach space theory, see [R].

Problem 1. Let X be a Banach space having property (WU)which does
not contain and let Y be a quotient of X. Does Y have property (WU)?

In light of Theorem A it is worth noting that C(to’) has property (WU)
[MR] but does not embed into any space having a shrinking unconditional
f.d.d. In fact C(to’) is not even a subspace of a quotient of such a space.
Indeed C(to’) fails property (U) (for example, see [HOR]) while any quotient
of a space with a shrinking unconditional f.d.d, will have property (U). In fact
if X has property (U) and does not contain a, then any quotient of X will
have property (U) [R]. The next problem is due to H. Rosenthal.

Problem 2. Let X have a shrinking unconditional f.d.d, and let Y be a
quotient of X. Does embed into a Banach space having a shrinking
unconditional f.d.d.?

We say that a Banach space Y has uniform-(WU) if there exists K <
such that every normalized weakly null sequence in Y has a K-unconditional
subsequence. Our proof of Theorem A showed that the quotient space has
uniform-(WU).

Problem 3. If Y has property (WU)does Y have uniform-(WU)?
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Theorem B solved a special case of the following well known problem.

Problem 4. Let Y be a quotient of C(w’) (or more generally C(K)where
K is a compact countable metric space). Is Y c0-saturated?

Regarding this problem, T. Schlumprecht [Sc] has observed that if Y is a
quotient of C(to’), then the closed linear span of any normalized weakly null
sequence in Y which has 11 as a spreading model must contain c0.

It is not true that the quotient of a c0-saturated space must also be
c0-saturated. The separable Orlicz function space Ht(0, 1), with M(x)=
(ex4- 1)/(e- 1), considered in [CKT] is c0-saturated and yet has 12 as a
quotient. We wish to thank S. Montgomery-Smith for bringing this fact to our
attention. However this space does not have an unconditional basis and so we
ask:

Problem 5. Let X be a c0-saturated space with an unconditional basis
and let Y be a quotient of X. Is Y c0-saturated?

A more restricted and perhaps more accessible question is the following
(S is defined below).

Problem 6. Let Y be a quotient of Sn, the nth-Schreier space, where
n > 2. Is Y c0-saturated? Does Y have property-S(n)?

S is defined as follows. Let Ilxlla be the Schreier norm. If (Sn, IIn) has
been defined, set for x Coo, the finitely supported real sequences,

[Ixlln+ max [IExlln "p < E < E2 <
k=l

(Here p < E means p < min E and E < E2 means max E < min E2.

Also Ex(i)= x(i) if E and 0 otherwise.) Sn+ is the completion of
(Coo, IIn+l)- The unit vector basis (en) is a 1-unconditional shrinking basis
for every S and S embeds into C(to’").

Property-S(n) is defined as follows, n-averages of a sequence (Ym) are
defined inductively: an n + 1-average of (Ym) is a 1-average of a block basis
of normalized n-averages. Y has property-S(n) if every normalized weakly
null basic sequence in Y admits a block basis of n-averages equivalent to the
unit vector basis of co. S has property-S(n).

Added in proof Denny Leung has solved Problem 5 in the negative.
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