ON QUOTIENTS OF BANACH SPACES HAVING SHRINKING UNCONDITIONAL BASES

BY E. Odell¹

Introduction

We shall say that a Banach space Y has property (WU) if every normalized weakly null sequence in Y has an unconditional subsequence. The well known example of Maurey and Rosenthal [MR] shows that not every Banach space has property (WU) (see also [O]). W.B. Johnson [J] proved that if Y is a quotient of a Banach space X having a shrinking unconditional f.d.d. and the quotient map does not fix a copy of c_0 , then Y has (WU). Our main result extends this (and solves Problem IV.1 of [J]).

THEOREM A. Let X be a Banach space having a shrinking unconditional finite dimensional decomposition. Then every quotient of X has property (WU).

Of course such an X will itself have property (WU). Furthermore, if (E_n) is an unconditional f.d.d. (finite dimensional decomposition) for X, then (E_n) is shrinking if and only if X does not contain l_1 .

The proof of Theorem A yields:

THEOREM B. Let Y be a Banach space which is a quotient of S, the Schreier space. Then Y is c_0 -saturated.

Y is said to be c_0 -saturated if every infinite dimensional subspace of Y contains an isomorph of c_0 .

Our notation is standard as may be found in the books of Lindenstrauss and Tzafriri [LT 1, 2]. The proof of Theorem A is given in §1 and the proof of Theorem B appears in §2. §3 contains some open problems. We thank H. Knaust, H. Rosenthal and T. Schlumprecht for useful conversations regarding the results contained herein.

Received February 4, 1991

¹⁹⁹¹ Mathematics Subject Classification. Primary 46B45; Secondary 46A35.

¹Research partially supported by a grant from the National Science Foundation.

1. The proof of Theorem A

Let T be a bounded linear operator from X onto Y where X has a shrinking unconditional f.d.d., $(\tilde{E_i})$. By renorming if necessary we may suppose that $(\tilde{E_i})$ is 1-unconditional. Y^* is separable and so by a theorem of Zippin [Z] we may assume that Y is a subspace of a Banach space Z possessing a bimonotone shrinking basis, (z_i) . Fix C > 0 such that

$$T(CB_aX) \supseteq B_aY \equiv \{ y \in Y : ||y|| \le 1 \}.$$

Recall that (\tilde{E}_i) is a blocking of (\tilde{E}_i) if there exist integers $0=q_0< q_1< q_2<\cdots$ such that $\tilde{E}_i=[\tilde{E}_j]_{j=q_{i-1}+1}^{q_i}$ for all i (where $[\cdots]$ denotes the closed linear span). Similarly, $\tilde{F}_i=[z_j]_{j=q_{i-1}+1}^{q_i}$ defines a blocking of (z_i) . Fix a sequence $\varepsilon_{-1}>\varepsilon_0>\varepsilon_1>\varepsilon_2>\cdots$ converging to 0 which satisfies

(1.1)
$$\sum_{i=-1}^{\infty} \varepsilon_i < 1/4 \text{ and } \sum_{i=p}^{\infty} (4i+2)\varepsilon_i < \varepsilon_{p-1} \text{ for } p \ge 0.$$

Then choose $\tilde{\varepsilon}_0 > \tilde{\varepsilon}_1 > \cdots$ converging to 0 which satisfies

$$(1.2) 4p\tilde{\varepsilon}_p < \varepsilon_{p+2} \text{for } p \ge 1 \text{ and } \sum_{j=p+1}^{\infty} \tilde{\varepsilon}_j < \tilde{\varepsilon}_p \text{for } p \ge 0.$$

Our first step is the blocking technique of Johnson and Zippin.

LEMMA 1.1 [JZ 1,2]. There exist blockings $(\tilde{E_i})$ and $(\tilde{F_i})$ of $(\tilde{\tilde{E_i}})$ and (z_i) , respectively, such that if (\tilde{Q}_i) is the natural projection of Z onto \tilde{F}_i then

(1.3) for all
$$i \in \mathbb{N}$$
 and $x \in \tilde{E}_i$ with $||x|| \le C$, we have $||\tilde{Q}_j Tx|| < \tilde{\varepsilon}_{\max(i,j)}$ if $j \ne i, i-1$.

Roughly, this says that $T\tilde{E_i}$ is essentially contained in $\tilde{F_{i-1}} + \tilde{F_i}$ (where $\tilde{F_0} = \{0\}$). Let (y_i'') be a normalized weakly null sequence in Y. Choose a subsequence (y_i') of (y_i) and a blocking (F_i) of $(\tilde{F_i})$, given by $F_i = [\tilde{F_j}]_{j=q_{i-1}+1}^{q_i}$, such that if $Q_i = \sum_{j=q_{i-1}+1}^{q_i} \tilde{Q_j}$ is the natural projection of Z onto F_i , then

(1.4)
$$||Q_i y_i'|| < \tilde{\varepsilon}_{\max(i,j)} \text{ if } i \neq j.$$

Roughly, y'_i is essentially in F_i . Furthermore we may assume that

(1.5)
$$\left\|\sum a_i y_i'\right\| = 1 \text{ implies } \max|a_i| \le 2.$$

Let (E_i) be the blocking of $(\tilde{E_i})$ given by the *same* sequence (q_i) which defined (F_i) , $E_i = [\tilde{E_j}]_{j=q_{i-1}+1}^{q_i}$. We begin with a sequence of elementary technical yet necessary lemmas.

We begin with a sequence of elementary technical yet necessary lemmas. For $I \subseteq \mathbb{N}$ we define $Q_I = \sum_{j \in I} Q_j$ and set $Q_\emptyset = 0$.

LEMMA 1.2. Let 0 < n < m be integers and let $y = \sum_{i \notin (n,m)} a_i y_i'$ with $\|y\| = 1$. Then for $j \in (n,m)$, $\|Q_j y\| < \varepsilon_j$ and $\|Q_{(n,m)} y\| < \varepsilon_n$.

Proof. Let n < j < m. Then by (1.5), (1.4), (1.2) and (1.3),

$$\begin{aligned} \|Q_{j}y\| &\leq 2 \bigg(\sum_{i \leq n} \|Q_{j}y_{i}'\| + \sum_{i \geq m} \|Q_{j}y_{i}'\| \bigg) \\ &< 2 \bigg(n\tilde{\varepsilon}_{j} + \tilde{\varepsilon}_{m-1} \bigg) \\ &\leq (2j+2)\tilde{\varepsilon}_{j} \leq 4j\tilde{\varepsilon}_{j} < \varepsilon_{j} \end{aligned}$$

Thus $||Q_{(n,m)}y|| < \sum_{i \in (n,m)} \varepsilon_i < \varepsilon_n$ by (1.1).

Lemma 1.3. Let $0 = p_0 < r_0 = 1 < p_1 < r_1 < p_2 < r_2 < \cdots$ be integers and let $y = \sum_{i=1}^{\infty} a_i y'_{p_i}$ with ||y|| = 1. Then for $i \in \mathbb{N}$,

$$||Q_{[r_{i-1},r_i)}y - a_iy'_{p_i}|| < \varepsilon_{p_{i-1}-1}.$$

Proof.

$$\begin{split} \|Q_{[r_{i-1},r_i)} y - a_i y_{p_i}'\| \\ \leq & \left\|Q_{[r_{i-1},r_i)} \sum_{j \neq i} a_j y_{p_j}'\right\| + \|Q_{[r_{i-1},r_i)} a_i y_{p_i}' - a_i y_{p_i}'\| \end{split}$$

which by Lemma 1.2 is

$$\begin{split} &<\varepsilon_{r_{i-1}-1} + \|Q_{[\ 1,\,r_{i-1})}\,a_{i}y_{p_{i}}'\| + \|Q_{[\ r_{i},\,\infty)}\,a_{i}y_{p_{i}}'\| \\ &<\varepsilon_{r_{i-1}-1} + 2\sum_{k < r_{i-1}} \|Q_{k}y_{p_{i}}'\| + 2\varepsilon_{r_{i}-1} \, (\text{by (1.5) and Lemma 1.2)} \\ &<\varepsilon_{r_{i-1}-1} + 2(r_{i-1}-1)\tilde{\varepsilon}_{p_{i}} + 2\varepsilon_{r_{i}-1} \, (\text{by (1.4)}) \\ &\le\varepsilon_{p_{i-1}} + 2p_{i}\tilde{\varepsilon}_{p_{i}} + 2\varepsilon_{p_{i}} < \varepsilon_{p_{i-1}} + 4\varepsilon_{p_{i}} \, (\text{by (1.2)}) \\ &<\varepsilon_{p_{i-1}-1} \, (\text{by 1.1}). \end{split}$$

LEMMA 1.4. Let $i \in \mathbb{N}$, $x \in E_i$ and $||x|| \le C$. Then

$$\begin{split} \|Q_{j}Tx\| &< \varepsilon_{\max(i,j)} & \text{if } j \neq i,i-1, \\ \|Q_{[1,i-2]}Tx\| &< \varepsilon_{i-1} \text{ and } \|Q_{(i,\infty)}Tx\| &< \varepsilon_{i}. \end{split}$$

Proof. Let $x = \sum_{l \in (q_{i-1}, q_i]} \omega_l$ with $\omega_l \in \tilde{E}_l$.

$$||Q_j Tx|| \le \sum_{k \in \{q_{i-1}, q_i\}} \sum_{l \in \{q_{i-1}, q_i\}} ||\tilde{Q}_k T\omega_l||.$$

If j < i - 1 this is

$$< \sum_{k \in (q_{i-1}, q_j]} \sum_{l \in (q_{i-1}, q_i]} \tilde{\varepsilon}_l \text{ (by (1.4))}$$

$$< q_j \tilde{\varepsilon}_{q_{i-1}} < q_{i-1} \tilde{\varepsilon}_{q_{i-1}} < \varepsilon_{q_{i-1}+2} < \varepsilon_i \text{ using (1.2);}$$

if j > i this is

$$\begin{split} &< \sum_{k \in (\ q_{j-1},\ q_j]} \sum_{l \in (\ q_{i-1},\ q_i]} \tilde{\varepsilon}_k \\ &< \sum_{k \in (\ q_{j-1},\ q_j]} q_i \tilde{\varepsilon}_k \leq q_i \tilde{\varepsilon}_{q_{j-1}} \\ &\leq q_{j-1} \tilde{\varepsilon}_{q_{i-1}} < \varepsilon_{q_{i-1}+2} \leq \varepsilon_{j+1} < \varepsilon_j. \end{split}$$

Finally,

$$\|Q_{[1,i-2]}Tx\| \le \sum_{k=1}^{i-2} \|Q_kTx\| < \sum_{k=1}^{i-2} \varepsilon_i = (i-2)\varepsilon_i < \varepsilon_{i-1}$$

and

$$\|Q_{(i,\infty)}Tx\| \leq \sum_{k=i+1}^{\infty} \|Q_kTx\| < \sum_{k=i+1}^{\infty} \varepsilon_k < \varepsilon_i.$$

Lemma 1.5. Let $||x|| \le C, x = \sum_{k \ne j, j+1} \omega_k$ where $\omega_k \in E_k$ for all k. Then

$$\|Q_j Tx\| < \varepsilon_{j-1}.$$

Proof. By Lemma 1.4,

$$\begin{split} \|Q_{j}Tx\| &\leq \sum_{k \neq j, j+1} \|Q_{j}T\omega_{k}\| < \sum_{k < j} \varepsilon_{j} + \sum_{k > j+1} \varepsilon_{k} \\ &< (j-1)\varepsilon_{j} + \varepsilon_{j} = j\varepsilon_{j} < \varepsilon_{j-1}. \end{split}$$

LEMMA 1.6. Let $1 \le n < m$ and $x = \sum \omega_j$, $||x|| \le C$, with $\omega_j \in E_j$ for all j. Suppose that $||Q_jTx|| < 2\varepsilon_{j-1}$ for n < j < m. Let $a_{j-1} = Q_{j-1}T\omega_j$ and $b_j = 0$ $Q_i T \omega_i$. Then

(a) $||a_j + b_j|| < 3\varepsilon_{j-1}$ for n < j < m and (b) $||\sum_{j \in (r,s]} T\omega_j - (a_r + b_s)|| < 5\varepsilon_{r-1}$ if n < r < s < m.

Proof. (a) Let n < j < m. By Lemma 1.5,

$$\|Q_j Tx - (a_j + b_j)\| = \left\|Q_j \left(\sum_{i \neq i, j+1} T\omega_i\right)\right\| < \varepsilon_{j-1}.$$

Since $||Q_jTx|| < 2\varepsilon_{j-1}$, (a) follows.

(b) Let n < r < s < m and let $j \in (r, s]$. Then $T\omega_j = a_{j-1} + b_j + \gamma_j$ where $\|\gamma_i\| < 2\varepsilon_{i-1}$ by Lemma 1.4. Thus

$$\left\| \sum_{r+1}^{s} T\omega_{j} - (a_{r} + b_{s}) \right\| \leq \|a_{r} + b_{r+1} + a_{r+1} + b_{r+2} + \dots + a_{s-1} + b_{s} - (a_{r} + b_{s})\| + \sum_{j=r+1}^{s} 2\varepsilon_{j-1}$$

$$< \sum_{r+1}^{s-1} \|a_{j} + b_{j}\| + 2\varepsilon_{r-1}$$

$$< \sum_{r+1}^{s-1} 3\varepsilon_{j-1} + 2\varepsilon_{r-1} \text{ (by (a))}$$

$$< 5\varepsilon_{r-1}.$$

We next come to the key lemma. Let (P_i) be the natural sequence of finite rank projections of X onto (E_i) . For $I \subseteq \mathbb{N}$, we let $P_I = \sum_{i \in I} P_i$.

Notation. If $x = \sum x_i \in X$ with $x_i \in E_i$ for all j and $\bar{x} \in X$, we define

$$\bar{x} \lesssim x$$
 if $\bar{x} = \sum a_j x_j$ with $0 \le a_j \le 1$ for all j .

LEMMA 1.7. Let $n \in \mathbb{N}$ and let $\varepsilon > 0$. There exists $m \in \mathbb{N}$, m > n + 1, such that whenever $x \in CBaX$ with $||Q_iTx|| < 2\varepsilon_{i-1}$ for all $j \in (n, m)$ then

there exists $\bar{x} \leq x$ with

- (1) $||Tx T\bar{x}|| < \varepsilon$ and
- (2) $P_r \bar{x} = 0$ for some $r \in (n, m)$.

Remark. Lemma 1.7 is the main difference between our result and Johnson's earlier special case [J]. In the case where T does not fix a copy of c_0 , Johnson showed that one could take $\bar{x} = x - P_r(x)$ for some $r \in (n, m)$. The proof of Lemma 1.7 requires the following key result.

Sublemma 1.8. Let $n \in \mathbb{N}$ and $\varepsilon > 0$. There exists an integer $m = m(n, \varepsilon) > n + 1$ satisfying the following. Let $x \in CBaX$, $x = \sum \omega_j$ with $\omega_j \in E_j$ for all j. Assume in addition that $\|Q_jTx\| < 2\varepsilon_{j-1}$ for $j \in (n, m)$ and set $a_{j-1} = Q_{j-1}T\omega_j$. Then there exist $k \in \mathbb{N}$ and integers $n < i_1 < \cdots < i_k < m$ such that

(1.6)
$$k^{-1} \|a_{i_1} + a_{i_2} + \cdots + a_{i_k}\| < \varepsilon.$$

Proof of Lemma 1.7. Let $n \in \mathbb{N}$ and $\varepsilon > 0$. Choose $n_0 \ge n$ such that

$$(1.7) \varepsilon_{n_0} < \varepsilon/15.$$

Let $m_1 = m(n_0 + 1, \varepsilon/3)$ be given by the sublemma and let $m = m(m_1, \varepsilon/3)$. Let $x = \sum \omega_j \in CBaX$ with $\omega_j \in E_j$ for all j and suppose that $\|Q_jTx\| < 2\varepsilon_{j-1}$, $a_{j-1} = Q_{j-1}T\omega_j$ and $b_j = Q_jT\omega_j$ for $j \in (n, m)$. By our choice of m there exist integers k and K and integers $n \le n_0 < n_0 + 1 < i_1 < i_2 < \cdots < i_k < m_1 < j_1 < \cdots < j_K < m$ such that

$$(1.8) k^{-1} ||a_{i_1} + \cdots + a_{i_k}|| < \varepsilon/3$$

and

(1.9)
$$K^{-1}||a_{j_1} + \cdots a_{j_K}|| < \varepsilon/3.$$

Define

$$\bar{x} = \sum_{1}^{i_{1}} \omega_{j} + \frac{k-1}{k} \sum_{i_{1}+1}^{i_{2}} \omega_{j} + \dots + \frac{1}{k} \sum_{i_{k-1}+1}^{i_{k}} \omega_{j} + \frac{0}{k} \sum_{i_{k}+1}^{j_{1}} \omega_{j} + \frac{1}{K} \sum_{j_{1}+1}^{j_{2}} \omega_{j} + \dots + \frac{K}{K} \sum_{j_{k}+1}^{\infty} \omega_{j}.$$

Clearly (2) holds and we are left to check (1).

$$||Tx - T\overline{x}|| = \left\| \frac{1}{k} \sum_{i_1+1}^{i_2} T\omega_j + \frac{2}{k} \sum_{i_2+1}^{i_3} T\omega_j + \dots + \frac{k}{k} \sum_{i_k+1}^{j_1} T\omega_j + \frac{K-1}{K} \sum_{j_1+1}^{j_2} T\omega_j + \dots + \frac{1}{K} \sum_{j_{K-1}+1}^{j_K} T\omega_j \right\|.$$

Thus by Lemma 1.6,

$$\begin{split} \|Tx - T\overline{x}\| &\leq \left\| \frac{1}{k} a_{i_1} + \frac{1}{k} b_{i_2} + \frac{2}{k} a_{i_2} + \frac{2}{k} b_{i_3} + \dots + \frac{k}{k} a_{i_k} + \frac{K}{K} b_{j_1} \right. \\ &+ \frac{K - 1}{K} a_{j_1} + \frac{K - 1}{K} b_{j_2} + \dots + \frac{1}{K} a_{j_{K-1}} + \frac{1}{K} b_{j_K} \right\| \\ &+ k^{-1} \sum_{j=1}^{k} 5j \varepsilon_{i_j - 1} + K^{-1} \sum_{l=1}^{K} 5l \varepsilon_{j_{l-1}}. \end{split}$$

Now

$$k^{-1} \sum_{j=1}^{k} 5j \varepsilon_{i_j-1} \le 5 \sum_{j=1}^{k} \varepsilon_{i_j-1} < \varepsilon_{i_1-2} \le \varepsilon_{n_0}$$

and

$$K^{-1} \sum_{l=1}^{K} 5l \varepsilon_{j_l-1} < \varepsilon_{n_0}$$

as well.

Thus

$$||Tx - T\overline{x}|| < k^{-1}||a_{i_1} + \dots + a_{i_k}|| + K^{-1}||b_{j_1} + \dots + b_{j_K}||$$

$$+ \sum_{j=2}^{k} ||b_{i_j} + a_{i_j}|| + \sum_{l=1}^{K-1} ||b_{j_l} + a_{j_l}|| + 2\varepsilon_{n_0}.$$

Now

$$K^{-1}||b_{j_1} + \cdots + b_{j_K}|| \le K^{-1}||a_{j_1} + \cdots + a_{j_K}|| + K^{-1}\sum_{l=1}^K ||b_{j_l} + a_{j_l}||.$$

Hence from (1.8), (1.9) and Lemma 1.6 we obtain

$$||Tx - T\overline{x}|| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \sum_{j=2}^{k} 3\varepsilon_{i_{j}-1} + 2\sum_{l=1}^{K} 3\varepsilon_{j_{l}-1} + 2\varepsilon_{n_{0}}$$
$$< \frac{2\varepsilon}{3} + \varepsilon_{n_{0}} + 2\varepsilon_{n_{0}} + 2\varepsilon_{n_{0}} < \varepsilon$$

(by (1.7)).

Proof of Sublemma 1.8. If the sublemma fails then by a standard compactness argument we obtain $\omega_j \in E_j$ for $j \in \mathbb{N}$ such that for all m,

$$\left\| \sum_{j=1}^{m} \omega_{j} \right\| \leq C \text{ and } \left\| Q_{j} T \left(\sum_{i=1}^{m} \omega_{i} \right) \right\| \leq 3\varepsilon_{j-1}$$

if n < j < m. The extra ε_{j-1} comes from an application of Lemma 1.5. Furthermore setting $Q_{j-1}T\omega_j = a_{j-1}$ and $Q_jT\omega_j = b_j$ for $j \in \mathbb{N}$, then for all k and all $n < i_1 < \cdots < i_k$ we have

$$(1.10) k^{-1} ||a_{i_1} + \cdots + a_{i_k}|| \ge \varepsilon.$$

Now $a_j \in F_j$ and (F_j) is a shrinking f.d.d. Thus $(a_j)_{j>n}$ is a seminormalized weakly null sequence. By (1.10) any spreading model of a subsequence of (a_j) must be equivalent to the unit vector basis of l_1 (see [BL] for basic information on spreading models). In particular we can choose an even integer k and integers $n < i_1 < \cdots < i_k$ such that

$$(1.11) ||a_{i_1} - a_{i_2} + \cdots + a_{i_{k-1}} - a_{i_k}|| > C||T|| + 1.$$

However,

$$C||T|| \ge \left| \left| T \left(\sum_{i_1+1}^{i_2} \omega_j + \sum_{i_3+1}^{i_4} \omega_j + \dots + \sum_{i_{k-1}+1}^{i_k} \omega_j \right) \right| \right|$$

$$\ge ||a_{i_1} + b_{i_2} + a_{i_3} + b_{i_4} + \dots + a_{i_{k-1}} + b_{i_k}||$$

$$- 5 \sum_{j=1}^{k} \varepsilon_{i_j-1} \quad \text{(by Lemma 1.6)}.$$

Now $5\sum_{j=1}^k \varepsilon_{i_j-1} < \varepsilon_{i_1-2}$ and by Lemma 1.6 and (1.11)

$$\begin{aligned} \|a_{i_1} + b_{i_2} + \cdots + a_{i_{k-1}} + b_{i_k}\| &\geq \|a_{i_1} - a_{i_2} + a_{i_3} - a_{i_4} + \cdots + a_{i_{k-1}} - a_{i_k}\| \\ &- \sum_{j=1}^{k/2} \|a_{i_{2j}} + b_{i_{2j}}\| > C\|T\| + 1 - \sum_{j=1}^{k/2} 3\varepsilon_{i_{2j}-1}. \end{aligned}$$

Thus

$$\begin{split} C\|T\| &> C\|T\| + 1 - \varepsilon_{i_1-2} - \varepsilon_{i_2-2} \\ &\geq C\|T\| + 1 - 2\varepsilon_{i_1-2} \\ &> C\|T\|, \end{split}$$

which is impossible.

Completion of the proof of Theorem A. Let the integer m given by Lemma 1.7 be denoted by $m = m(n; \epsilon)$. Choose $1 < p_1 < p_2 < \cdots$ such that for all $i, p_{i+1} - 1 \ge m(p_i; \varepsilon_{p_i})$. Let $(y_i) = (y'_{p_i})$. We shall prove that (y_i) is unconditional.

Let $y = \sum a_i y_i$, $\|y\| = 1$, $x \in CBaX$, Tx = y and let $x = \sum_{i=0}^{\infty} g_i$ where $g_0 = P_{[1,p_1)}x$ and $g_i = P_{[p_i,p_i+1)}x$ for $i \ge 1$. We shall apply Lemma 1.7 to each g_i for $i \ge 1$. Fix $i \ge 1$ and let $(n,m) = (p_i,p_{i+1}-1)$. Let $j \in (n,m)$. Then $\|Q_iy\| < \varepsilon_i$ by Lemma 1.2. Thus

$$||Q_j Tx|| = ||Q_j Tg_i + Q_j T \sum_{k \neq i} g_k|| < \varepsilon_j.$$

However $\|Q_j T \sum_{k \neq i} g_k\| < \varepsilon_{j-1}$ by Lemma 1.5 so $\|Q_j T g_i\| < \varepsilon_{j-1} + \varepsilon_j < 2\varepsilon_{j-1}$. Thus by Lemma 1.7 there exist $\bar{g}_i \preceq g_i$ and $r_i \in (p_i, p_{i+1} - 1)$ such that $P_r \bar{g}_i = 0$ and $\|T g_i - T \bar{g}_i\| < \varepsilon_n$ for all $i \in \mathbb{N}$.

that $P_{r_i}\bar{g}_i=0$ and $\|Tg_i-T\bar{g}_i\|<\varepsilon_{p_i}$ for all $i\in\mathbb{N}$. Let $\bar{x}=\sum_{i=0}^{\infty}\bar{g}_i=\sum_{i=1}^{\infty}\bar{x}_i$ where $\bar{g}_0=g_0$ and $\bar{x}_i=P_{[r_{i-1},r_i)}\bar{x}$ for $i\in\mathbb{N}$ $(r_0=1)$. Of course, $\bar{x}_i=P_{(r_{i-1},r_i)}\bar{x}$ if i>1.

Claim.
$$||T\bar{x}_i - a_i y_i|| < 4\varepsilon_{p_{i-1}-1}$$
 for $i \in \mathbb{N}$.

Indeed $\|Q_{[r_{i-1},r_i)}y-a_iy_i\|<\varepsilon_{p_{i-1}-1}$ by Lemma 1.3. Thus the claim follows from the following:

Subclaim.
$$||Q_{[r_{i-1},r_i)}Tx - T\overline{x}_i|| < 3\varepsilon_{p_{i-1}-1}$$
.

To see this we first note that

$$\begin{split} \|Q_{[r_{i-1},r_i)} Tx - Q_{[r_{i-1},r_i)} T(g_{i-1} + g_i + g_{i+1}) \| \\ & \leq \sum_{k \in [r_{i-1},r_i)} \|Q_k \sum_{j \neq i-1,i,i+1} Tg_j \| \\ & < \sum_{k \in [r_{i-1},r_i)} \varepsilon_{k-1} \text{ (by Lemma 1.5)} \\ & < \varepsilon_{r_{i-1}-1}. \end{split}$$

Also

$$\begin{split} \|Q_{[r_{i-1},r_i)}T(g_{i-1}+g_i+g_{i+1}) - Q_{[r_{i-1},r_i)}T(\bar{g}_{i-1}+\bar{g}_i+\bar{g}_{i+1})\| \\ & \leq \|T(g_{i-1}+g_i+g_{i+1}-\bar{g}_{i-1}-\bar{g}_i-\bar{g}_{i+1})\| \\ & < \varepsilon_{p_{i-1}}+\varepsilon_{p_i}+\varepsilon_{p_{i+1}} < \varepsilon_{p_{i-1}-1}. \end{split}$$

Finally, applying Lemma 1.5 again we have

$$\begin{aligned} & \left\| Q_{[r_{i-1},r_i)} \left[T(\bar{g}_{i-1} + \bar{g}_i + \bar{g}_{i+1}) - T(\bar{x}_i) \right] \right\| \\ &< \varepsilon_{r_{i-1}-1}, \end{aligned}$$

and the subclaim follows.

Let $\delta_i = \pm 1$. Then

$$\begin{split} \left\| \sum \delta_i a_i y_i \right\| &\leq \left\| \sum \delta_i (a_i y_i - T \overline{x}_i) \right\| + \left\| \sum \delta_i T \overline{x}_i \right\| \\ &< \sum 4 \varepsilon_{p_{i-1}-1} + \|T\| \left\| \sum \delta_i \overline{x}_i \right\| \quad \text{(by the claim)} \\ &\leq 1 + C \|T\|. \end{split}$$

The proof of Theorem A yields the following:

PROPOSITION 1.9. Let X have a shrinking K-unconditional f.d.d. (E_i) and let T be a bounded linear operator from X onto Y. Let $T(CBaX) \supseteq BaY$. Then if $\varepsilon_i \downarrow 0$ and if (y_i') is a normalized weakly null basic sequence in Y there exists a subsequence (y_i) of (y_i') and integers $p_1 < p_2 < \cdots$ with the following property. Let $\|\sum a_i y_i\| \le 2$. Then there exists $x = \sum x_i \in 2CKBaX$, (x_i) a block basis of (E_i) , such that

$$||Tx_i - a_iy_i|| < \varepsilon_i$$
 for all i.

Moreover there exist (r_i) with $0 = r_0 < p_1 < r_1 < p_2 < r_2 < \cdots$ such that $x_i \in [E_j]_{j \in (r_{i-1}, r_i)}$ for all i.

COROLLARY 1.10. Let X have a shrinking K-unconditional f.d.d. and let T be a bounded linear operator from X onto the Banach space Y. Then Y contains c_0 if and only if T fixes a copy of c_0 .

Proof. If Y contains c_0 then there exists (see [Ja]) (y_i) , a normalized sequence in Y, with $2^{-1} \le \|\sum a_i y_i\| \le 2$ if $(a_i) \in S_{c_0}$, the unit sphere of c_0 . Let $\varepsilon_i \downarrow 0$ with $\sum \varepsilon_i < 1$. We may assume that (y_i) satisfies the conclusion of Proposition 1.9. Thus for all $n \in \mathbb{N}$ there exist

$$0 = r_0^n < p_1 < r_1^n < p_2 < r_2^n < \cdots$$

and $x_i^n \in [E_j]_{j \in (r_{i-1}^n, r_i^n)}$ such that if $x^n = \sum_{i \le n} x_i^n$, then $||x^n|| \le 2CK$ and $||Tx_i^n - y_i|| < \varepsilon_i$ for $i \le n$.

By passing to a subsequence $(x_i^{n_k})$ we may assume $\lim_{k\to\infty} r_i^{n_k} = r_i$ and $\lim_{k\to\infty} x_i^{n_k} = x_i$ exist for all $i\in\mathbb{N}$. Thus $x_i\in[E_j]_{j\in(r_{i-1},r_i)}$ with $r_0=0< r_1< r_2<\cdots, \|Tx_i-y_i\|<\varepsilon_i$ for all i and $\sup_n\|\sum_1^n x_i\|<\infty$. It follows that (x_i) is equivalent to the unit vector basis of c_0 . Moreover if we choose $\omega_i\in\varepsilon_iCBaX$ with $T\omega_i=y_i-Tx_i$ then $T(x_i+\omega_i)=y_i$ and some subsequence of $(x_i+\omega_i)$ is also a c_0 basis. Hence T fixes c_0 .

2. The proof of Theorem B

We begin by recalling the definition of the Schreier space S [S]. Let c_{00} be the linear space of all finitely supported real valued sequences. For $x = (c_i) \in c_{00}$ set

$$||x|| = \max \left\{ \sum_{i=1}^{p} |c_{k_i}| : p \in \mathbb{N} \text{ and } p \leq k_1 < \cdots < k_p \right\}.$$

S is the completion of $(c_{00}, \|\cdot\|)$. We let $\|x\|_0$ denote the c_0 -norm of x. The unit vector basis (e_n) is a shrinking 1-unconditional basis of S. S can be embedded into $C(\omega^{\omega})$ and thus S is c_0 -saturated.

Theorem B will follow from a quantitative version, Theorem B' (below). Given a sequence (x_n) , $\lambda > 0$ and F a finite nonempty subset of N, $y = \lambda \sum_{n \in F} x_n$ is said to be a 1-average of (x_n) . We say that a Banach space X has property-S(1) if every normalized weakly null sequence in X admits a block basis of 1-averages which is equivalent to the unit vector basis of c_0 . S has property-S(1).

THEOREM B'. Let Y be a quotient of S. Then Y has property-S(1). We shall use the following result:

LEMMA 2.1. Let (x_n) be a normalized weakly null sequence in S with $\lim_n ||x_n||_0 = 0$. Then some subsequence of (x_n) is equivalent to the unit vector basis of c_0 .

Let T be a bounded linear operator from S onto a Banach space Y and let (y_i) be a normalized weakly null basic sequence in Y. Let $T(CBaS) \supseteq BaY$.

LEMMA 2.2. If no block basis of 1-averages of (y_i') is equivalent to the unit vector basis of c_0 , then there exists $\delta > 0$ such that if $x \in 3CBaS$, Tx is a 1-average of (y_i') and ||Tx|| > 1/3 then $||x||_0 > \delta$.

Proof. If no such δ exists then there exists $(x_i) \subseteq 3CBaS$ with $\lim_i ||x_i||_0 = 0, ||Tx_i|| > \frac{1}{3}$ and Tx_i a 1-average of (y_i') for all i. By Lemma 2.1

there exists a subsequence (x_i') of (x_i) which is equivalent to the unit vector basis of c_0 . By passing to a further subsequence we may assume that (Tx_i') is a seminormalized weakly null basic sequence in $[(y_i')]$. Thus (Tx_i') is also equivalent to the unit vector basis of c_0 .

Proof of Theorem B'. Let (y_i) be a normalized weakly null sequence in Y. If (y_i) fails the S(1) property, choose $\delta > 0$ by Lemma 2.2. Let $(\varepsilon_i)_{i=1}^{\infty}$ be a sequence of positive numbers satisfying (recall $T(CBaS) \supseteq BaY$)

(2.1)
$$\sum_{i=1}^{\infty} \varepsilon_i < \min(\delta/(2C), 1).$$

Let (y_i) be the subsequence of (y'_i) given by Proposition 1.9 for the sequence (ε_i) .

Choose an even integer $m \in \mathbb{N}$ with

$$(2.2) m > 8C/\delta.$$

From the theory of spreading models there exists $(z_i)_{i=1}^{2m}$, a finite subsequence of (y_i) , such that setting $\lambda = \|\sum_{i=1}^{2m} z_i\|^{-1}$,

$$(2.3) 2 > \lambda \left\| \sum_{i \in F} z_i \right\| > 1/3.$$

whenever $F \subseteq \{1, \ldots, 2m\}$ with $|F| \ge m$.

Thus there exists

$$x = \sum_{i=1}^{2m} x_i \in 2CBaS$$

with (x_i) a block basis of (e_i) and $||Tx_i - \lambda z_i|| < \varepsilon_i$ for $i \le 2m$. For $i \le 2m$ choose $\omega_i \in S$ with $T\omega_i = \lambda z_i - Tx_i$ and $||\omega_i|| \le C\varepsilon_i$. Hence $T(x_i + \omega_i) = \lambda z_i$.

Since $||T(\sum_{i=1}^{2m}(x_i + \omega_i))|| > 1/3$, and

$$\left\| \sum_{1}^{2m} (x_i + \omega_i) \right\| \le \left\| \sum_{1}^{2m} x_i \right\| + \sum_{1}^{2m} \|\omega_i\| < 2C + \sum_{1}^{\infty} \varepsilon_i C < 3C,$$

by Lemma 2.2 we have $\|\Sigma_1^{2m}(x_i + \omega_i\|_0 > \delta$. Since $\|\Sigma_1^{2m}\omega_i\|_0 \le \|\Sigma_1^{2m}\omega_i\| < \delta/2$ by (2.1) there exists $i_1 \le 2m$ with $\|x_{i_1}\|_0 > \delta/2$.

Now

$$\left\| T \left(\sum_{\substack{i=1\\i\neq i_1}}^{2m} \left(x_i + \omega_i \right) \right) \right\| = \left\| \sum_{\substack{i=1\\i\neq i_1}}^{2m} \lambda z_i \right\| > \frac{1}{3}$$

and so we may repeat the argument above finding $i_2 \neq i_1$ with $||x_{i_2}||_0 > \delta/2$. In fact by (2.3) we can repeat this *m*-times obtaining distinct integers $(i_k)_{k=1}^m \subseteq \{1, 2, \dots, 2m\}$ with $||x_{i_k}||_0 > \delta/2$ for $k \leq m$. But then

$$2C \ge \|x\| = \left\| \sum_{i=1}^{2m} x_i \right\| \ge \left\| \sum_{k=1}^{m} x_{i_k} \right\| \ge \sum_{k=m/2+1}^{m} \|x_{i_k}\|_0 \ge \delta m/4$$

which contradicts (2.2).

3. Open problems

Our work suggests a number of problems, of which we list a few. For a more extensive list of related problems and an overview of the current state of infinite dimensional Banach space theory, see [R].

Problem 1. Let X be a Banach space having property (WU) which does not contain l_1 and let Y be a quotient of X. Does Y have property (WU)?

In light of Theorem A it is worth noting that $C(\omega^{\omega})$ has property (WU) [MR] but does not embed into any space having a shrinking unconditional f.d.d. In fact $C(\omega^{\omega})$ is not even a subspace of a quotient of such a space. Indeed $C(\omega^{\omega})$ fails property (U) (for example, see [HOR]) while any quotient of a space with a shrinking unconditional f.d.d. will have property (U). In fact if X has property (U) and does not contain l_1 , then any quotient of X will have property (U) [R]. The next problem is due to H. Rosenthal.

Problem 2. Let X have a shrinking unconditional f.d.d. and let Y be a quotient of X. Does Y embed into a Banach space having a shrinking unconditional f.d.d.?

We say that a Banach space Y has uniform-(WU) if there exists $K < \infty$ such that every normalized weakly null sequence in Y has a K-unconditional subsequence. Our proof of Theorem A showed that the quotient space Y has uniform-(WU).

Problem 3. If Y has property (WU) does Y have uniform-(WU)?

Theorem B solved a special case of the following well known problem.

Problem 4. Let Y be a quotient of $C(\omega^{\omega})$ (or more generally C(K) where K is a compact countable metric space). Is $Y c_0$ -saturated?

Regarding this problem, T. Schlumprecht [Sc] has observed that if Y is a quotient of $C(\omega^{\omega})$, then the closed linear span of any normalized weakly null sequence in Y which has l_1 as a spreading model must contain c_0 .

It is not true that the quotient of a c_0 -saturated space must also be c_0 -saturated. The separable Orlicz function space $H_M(0,1)$, with $M(x)=(e^{x^4}-1)/(e-1)$, considered in [CKT] is c_0 -saturated and yet has l_2 as a quotient. We wish to thank S. Montgomery-Smith for bringing this fact to our attention. However this space does not have an unconditional basis and so we ask:

Problem 5. Let X be a c_0 -saturated space with an unconditional basis and let Y be a quotient of X. Is $Y c_0$ -saturated?

A more restricted and perhaps more accessible question is the following (S_n) is defined below).

Problem 6. Let Y be a quotient of S_n , the nth-Schreier space, where $n \ge 2$. Is $Y c_0$ -saturated? Does Y have property-S(n)?

 S_n is defined as follows. Let $||x||_1$ be the Schreier norm. If $(S_n, ||\cdot||_n)$ has been defined, set for $x \in c_{00}$, the finitely supported real sequences,

$$||x||_{n+1} = \max \left\{ \sum_{k=1}^{p} ||E_k x||_n : p \le E_1 < E_2 < \cdots E_p \right\}.$$

(Here $p \leq E_1$ means $p \leq \min E_1$ and $E_1 < E_2$ means $\max E_1 < \min E_2$. Also Ex(i) = x(i) if $i \in E$ and 0 otherwise.) S_{n+1} is the completion of $(c_{00}, \|\cdot\|_{n+1})$. The unit vector basis (e_n) is a 1-unconditional shrinking basis for every S_n and S_n embeds into $C(\omega^{\omega^n})$.

Property-S(n) is defined as follows. n-averages of a sequence (y_m) are defined inductively: an n + 1-average of (y_m) is a 1-average of a block basis of normalized n-averages. Y has property-S(n) if every normalized weakly null basic sequence in Y admits a block basis of n-averages equivalent to the unit vector basis of c_0 . S_n has property-S(n).

Added in proof. Denny Leung has solved Problem 5 in the negative.

REFERENCES

- [BL] B. BEAUZAMY and J.-T. LAPRESTE, Modèles étalés des espaces de Banach, Travaux en Cours, Hermann, Paris, 1984.
- [CKT] P.G. CASAZZA, N.J. KALTON and L. TZAFRIRI, Decompositions of Banach lattices into direct sums, Trans. Amer. Math. Soc., vol. 304 (1987), pp. 771-800.
- [HOR] R. HAYDON, E. ODELL and H. ROSENTHAL, "On certain classes of Baire-1 functions with applications to Banach space theory" in *Functional analysis*, Lecture Notes in Math., no. 1470, Springer-Verlag, New York, 1991, pp. 1–35.
- [J] W.B. Johnson, On quotients of L_p which are quotients of l_p , Compositio Math., vol. 34 (1977), pp. 69–89.
- [Ja] R.C. JAMES, Uniformly non-square Banach spaces, Ann. of Math., vol. 80 (1964), pp. 542-550.
- [JZ1] W.B. Johnson and M. Zippin, On subspaces of quotients of $(\Sigma Gn)_{lp}$ and $(\Sigma Gn)_{c_0}$, Israel J. Math., vol. 13 (1972), pp. 311–316.
- [JZ2] _____, Subspaces and quotients of $(\Sigma G_n)_{lp}$ and $(\Sigma G_n)_{c_0}$, Israel J. Math., vol. 17 (1974), pp. 50-55.
- [LT1] J. LINDENSTRAUSS and L. TZAFRIRI, Classical Banach spaces I, Springer-Verlag, Berlin, 1977.
- [LT2] _____, Classical Banach spaces II, Springer-Verlag, Berlin, 1979.
- [MR] B. Maurey and H. Rosenthal, Normalized weakly null sequences with no unconditional subsequence, Studia Math., vol. 61 (1977), pp. 77-98.
- [O] E. Odell, A normalized weakly null sequence with no shrinking subsequence in a Banach space not containing l₁, Composite Math., vol. 41 (1980), pp. 287–295.
- [R] H. ROSENTHAL, "Some aspects of the subspace structure of infinite dimensional Banach spaces," in *Approximation theory and functional analysis* (ed. C. Chuy), Academic Press, San Diego, 1991, pp. 151–176.
- [S] J. SCHREIER, Ein Gegenbeispiel zur Theorie der schwachen Konvergenz, Studia Math., vol. 2 (1930), pp. 58–62.
- [Sc] T. Schlumprecht, private communication.
- [Z] M. ZIPPIN, Banach spaces with separable duals, Trans. Amer. Math. Socl, vol. 310 (1988), pp. 371-379.

University of Texas Austin, Texas