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ON QUOTIENTS OF BANACH SPACES HAVING
SHRINKING UNCONDITIONAL BASES

BY

E. OpeLt!

Introduction

We shall say that a Banach space Y has property (WU) if every normalized
weakly null sequence in Y has an unconditional subsequence. The well
known example of Maurey and Rosenthal [MR] shows that not every Banach
space has property (WU) (see also [O]). W.B. Johnson [J] proved that if Y is
a quotient of a Banach space X having a shrinking unconditional f.d.d. and
the quotient map does not fix a copy of c¢,, then Y has (WU). Our main
result extends this (and solves Problem IV.1 of [J]).

THeorReEM A. Let X be a Banach space having a shrinking unconditional
finite dimensional decomposition. Then every quotient of X has property (WU).

Of course such an X will itself have property (WU). Furthermore, if (E,)
is an unconditional f.d.d. (finite dimensional decomposition) for X, then (E,)
is shrinking if and only if X does not contain /,.

The proof of Theorem A yields:

THeEOREM B. Let Y be a Banach space which is a quotient of S, the Schreier
space. Then Y is c,-saturated.

Y is said to be cy-saturated if every infinite dimensional subspace of Y
contains an isomorph of c,.

Our notation is standard as may be found in the books of Lindenstrauss
and Tzafriri [LT 1, 2]. The proof of Theorem A is given in §1 and the proof of
Theorem B appears in §2. §3 contains some open problems. We thank H.
Knaust, H. Rosenthal and T. Schlumprecht for useful conversations regard-
ing the results contained herein.
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682 E. ODELL
1. The proof of Theorem A

Let T be a bounded linear operator from X onto Y where X has a
shrinking unconditional f.d.d., (E,). By renorming if necessary we may
suppose that (E,») is 1-unconditional. Y* is separable and so by a theorem of
Zippin [Z] we may assume that Y is a subspace of a Banach space Z
possessing a bimonotone shrinking basis, (z;). Fix C > 0 such that

T(CB,X) 2BY={yeY:lyl <1}.

Recall that (E)) is a _blocking of (E ) if there exist integers 0 = g, < ¢, <
g, < -+ such that E, =[E, j1feg,_,+1 for all i (where [---] denotes the
closed linear span). Similarly, F; = [z;]% a;,+1 defines a blocking of (z,).

Fix a sequence ¢_; > ¢, > ¢; > &, > -+ converging to 0 which satisfies

(1.1) Y, g <1/4 and Y (4i+2)¢ <e, , forp>0.

i=-1 i=p

Then choose £, > &, > --- converging to 0 which satisfies

)

(1.2) 4pé,<e,,, forp=>=1 and Y §;<ég, forp=>0.
j=p+1

Our first step is the blocking technique of Johnson and Zippin.

LemMa 1.1 [JZ 1,2].  There exist blockings (E,) and (F)) of (E ) and (z)),
respectively, such that if (Q ) is the natural projection of Z onto F then

(13)  foralli € Nandx € E, with ||x|l < C, we have ||Q;Tx||

< Emax(i’j) ifj #i,i — 1.

Roughly, this says that TE is essentially contained in F P F (where
F = {0}). Let (/) be a normallzed weakly null sequence in Y. Choose a
subsequence (y}) of (y,) and a blocking (F)) of (F), given by F, = [F 14
such that if Q;, = L%

Jlji=q;_1+1

J g1 Qj is the natural projection of Z onto F;, then

(1.4) 1Q; ¥/l < Emax, i § # -
Roughly, y; is essentially in F,. Furthermore we may assume that

(1.5) | X a;y;|| = 1 implies max|a,| < 2.
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Let (E,) be the blocking of (E,) given by the same sequence (g;) which
defined (F), E; = [E;]%

j=q;1+1"
We begin with a sequené:e of elementary technical yet necessary lemmas.
For I € N we define Q, =X, ; Q; and set 0, = 0.

Lemma 1.2. Let 0 <n <m be integers and let y =%, q, ,a;y; with
lyll = 1. Then for j € (n, m), 1Q,yIl < ¢, and 1Q mll < &,

Proof. Let n <j < m. Then by (1.5), (1.4), (1.2) and (1.3),

lovll < 2( Tl + T g,y

i<n izm
< 2(n§]- + Em_l)

< (2j+2)¢; <4jé; <

Thus 1Q¢, VIl < Ejcnme; <&, by (1L1. =

LemMa 13. Let 0=p,<ro=1<p,<ry<p,<r,< --- be integers
and lety = X7_; aiyl',i with |lyll = 1. Then for i € N,

”Q[ rio1,7i) y - aiyl’h'” < Epig-1
Proof.
19, .,y —al

<

Q[ ri—1,7i) Zajyll’i + ”Q[ rim1, 1) aiyl,’i - aiy;’ill
J#i

which by Lemma 1.2 is

<eg, 1+ IIQ[I,,,,_l)aiy;iII + 19 ,i,w)a,-y,',,.ll

<&, __1+2 X 10y, Il +2¢,_, (by (1.5) and Lemma 1.2)

k<r;_,

<e, 4+ 2riy — 1)E, + 26, (by (1.4))

Ti-1—

<e, +12pe, +2¢6, <g, + 4g, (by (1.
bi—1 2 ’~P; 217: b 41—7;(b (12))

<e, _(byll). »
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Lemma 1.4. Leti €N, x € E; and |x|| < C. Then

1O, Txll < &mayii. jy ifj #i,i —1,

1O, i—Txll <&;_y and 1Q; wTxll <e;.
Proof. Let x = ¥,c 419 With , € E,

o,rxll < % Y 0, Tol.

ke(qj-1,q;] 1€(q;_1,4;]

If j <i—1thisis
< )» Y & (by(14)
ke( q,,l,qj] le(q;_y,q;]

< g€, <18, <&, .+ <& using(12);

if j > i this is
< ) Y &
ke(gj_y,q;) 1€(q;_1,a]

< Y qEc<qié,
ke( qj—-1>qj]

< 4j-184;_, <&z 42 =811 <E§u.

J

Finally,

i-2 i-2
10n, i T2l < X NQTxIl < Y&, = (i ~ 2)g; <&y
k=1 k=1

and
© ©
10¢,mTxl < X IO TxIl < Y & <s:. ™
k=i+1 k=i+1

Lemma 1.5, Let llxll <C,x =X, ,; 4 0, where w, €E, for all k.
Then

10,Txll < é,_;.
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Proof. By Lemma 1.4,

”Qij” < Z ”Qijk” < 28j+ Z €

k#j,j+1 k<j k>j+1
<(J—1egi+e =jg <g_;. |
Lemma 1.6. Let 1 <n <mandx = Lo, x|l < C, with w; € E; for all j.
Suppose that ||Q;Tx|l < 2¢;_, forn <j <m. Leta;_; = Q; Tw; and b, =
Q;Tw;. Then

@) lla; + bl <3¢;_, forn <j <mand
®) IE;cq gTw; = (a, + bl <5e,_, if n <r <s<m.

Proof. (a) Let n <j < m. By Lemma 1.5,

“Qij - (aj + bj)“ =

Qj( )» Twi)

i#j,j+1

<ég_;.

Since |Q,Tx|l < 2¢;_,, (a) follows.
(b) Let n<r<s<m and let j€(r,s]. Then Tw;,=a;_, +b;+v
where ||yl < 2¢;_; by Lemma 1.4. Thus

Z ij - (ar + bs)

r+1

< “ar + br+1 + ar+1 + br+2

s
+da,_ g+ b —(a, + b))l + Y 26,
j=r+1
s—1
< X lla; + bl + 2¢,_,
r+1

s—1

< X 3e; 1 +2¢,,(by (a))

r+1

< S5e,_q. [ |
We next come to the key lemma. Let (Pj) be the natural sequence of finite
rank projections of X onto (E;). For I ¢ N, we let P, =¥, P,.
Notation. 1If x = L x; € X with x; € E; for all j and X € X, we define

X<x if)?=ZajxjwithOSajslforallj.

LemMA 1.7. Let n € N and let € > 0. There exists m € Nym >n + 1,
such that whenever x € CBaX with ||Q;Tx|| < 2g;_, for all j € (n,m) then
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there exists X < x with
(D) ||Tx — Tx|| < & and
(2) P.x =0 for some r € (n, m).

Remark. Lemma 1.7 is the main difference between our result and
Johnson’s earlier special case [J]. In the case where T does not fix a copy of
¢y, Johnson showed that one could take ¥ = x — P.(x) for some r € (n, m).

The proof of Lemma 1.7 requires the following key result.

SuBLEMMA 1.8. Let n € N and & > 0. There exists an integer m =
m(n, e) > n + 1 satisfying the following. Let x € CBaX, x = Lw; with w; € E;
for all j. Assume in addition that ||Q;Tx|| < 2¢;_, for j € (n,m) and set
a;_y=Q;_Tw;. Then there exist k € N and integers n <i; < -+ <
i, < m such that

(1.6) k~la; +a;, + - +a,ll <e.
Proof of Lemma 1.7. Let n € N and € > 0. Choose n, > n such that
(1.7 €, < €/15.

Let m; = m(n, + 1, £ /3) be given by the sublemma and let m = m(m, € /3).

Let x = Yw; € CBaX with w; € E; for all j and suppose that [|Q;Tx|| <
2¢;_y, a;_y = Q;_Tw; and b, = Q;Tw; for j € (n, m). By our choice of m
there exist integers k and K and integers n <ny <ny + 1 <i; <i, < ---

<ip<my <j < -+ <jg <m such that
(1.8) k~'Na, + -+ +a,ll <g/3
and
-1
(1.9) K llajl + ajKII <eg/3.
Define
iy iy ik J1
- k—1 1 0
x=2wl+ Zw]+-~-+7€- ij+-EZw]-
1 i +1 ipg+1 i+l
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Clearly (2) holds and we are left to check (1).

18 2 & k &
I1Tx — Tx|| = ZTw+ Y To; + - EZij
11+1 12+1 it+1
J2 Jk
g S Z Tw; + - % Y, To;|.
J1+1 Jk—1+1
Thus by Lemma 1.6,
1 1 2 2 k K
ITx — Tx|| SH’IE“h + b, + pa, b, + o+ ga, + b
K-1 K-1, ... ,1 1,
+ K aj, + K " + + K %ix- + K ik

k K
+k7 1Y 5]'.‘5,~j_1 + K1Y 51:5,-1_1

i=1 1=1
Now
k
k! Z Sjei, 1 <5 Y& i1 < Ei—p S &y
j=1 j=1
and
K
Kty Sle;_q <&,
=1
as well.
Thus
I1Tx — TxIl < k™'a;, + -+ +a,ll +K‘1||bj1 + e +byl
+ leb +all + Z I, + all + 2¢,,
j=2
Now

K
-1 -1 -1
K~ 'lb;, + +b; Il < K'la; + +a; |l + K lzlllbj, +al.



688 E. ODELL

Hence from (1.8), (1.9) and Lemma 1.6 we obtain

k K
I Tx — Tx|| < f’3- + 5+ _2233,.j_1 + 212135,.1_1 + 2e,,
b= =
2¢e
<3 +e,, + 26, +26, <e
(by (1.7)). m

Proof of Sublemma 1.8. If the sublemma fails then by a standard compact-
ness argument we obtain w; € E; for j € N such that for all m,

< Cand <3¢,

m
Z w;
j=1

if n <j<m. The extra ¢;_; comes from an application of Lemma 1.5.
Furthermore setting Q; _,Tw; = a;_; and Q;Tw; = b; for j € N, then for all
kandall n <i; < --+ <i, we have

(1.10) k~'a;, + -+ +a,ll z &

Now a; € F; and (F)) is a shrinking f.d.d. Thus (a;); , is a seminormalized
weakly null sequence. By (1.10) any spreading model of a subsequence of (a;)
must be equivalent to the unit vector basis of /, (see [BL] for basic informa-
tion on spreading models). In particular we can choose an even integer k and
integers n <i; < --- <i, such that
(1.11) la

i

—a;, + - +a
2

L —

,—a, ll>CITIl + 1.

However,

CITl =\T

i2 i4 ik
ij+ ij+'”+ ij
i+1 i3+1 ig_1+1
> lla; + b, +a;, +b,+ - +a;,_ +b,l
k
-5) &1 (by Lemma 1.6).
j=1

Now 5Lf_;¢&;_; < ¢;,_, and by Lemma 1.6 and (1.11)

la;, +b;,+ - +a;_ +b\l = lla; —a;,,+a;,—a;, + - +a;,_ —a,ll
k)2 k)2
-y la;, + b, Il > CITI + 1 - Yy 31,1

j=1 j=1
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Thus
CITI > CITI + 1~ &, _, — &,
>CITI + 1 - 2¢;
> CITIl,

which is impossible. W

Completion of the proof of Theorem A. Let the integer m given by Lemma
1.7 be denoted by m = m(n; e). Choose 1 < p, <p, < -+ such that for all
i,pi1 — 1 2m(p;e,). Let (y;) = (y,). We shall prove that (y,) is uncondi-
tional.

Let y=Xa,y;,llyll =1, x € CBaX,Tx =y and let x = L7_, g, where
80 =Py pyx and g, =P, , . 4yx for i > 1. We shall apply Lemma 1.7 to
each g; for i > 1. Fix i > 1 and let (n,m) = (p;, p;,; — 1. Let j € (n,m).
Then [|Q;yll <&; by Lemma 1.2. Thus

<g;.

”Qij” =H QTg; + QjTZ 8k

k+i

However |Q,T L, ., g/l <&_, by Lemma 1.5 so |Q;Tg,ll <g;_, +¢; <
2g;_;. Thus by Lemma 1.7 there exist g; < g and r, € (p;, p;,; — 1) such
that P, g; = 0 and || Tg; — Tg,ll < e, forall i € N.

Let X = X7 (& = Xi_ X; where §,=g, and X, =P, . x forieN
(ro = 1). Of course, X; =P, X if i > 1

Claim. ||Tx; — a;y;|l < 4e, ,_, forieN.

Indeed [1Q;,  ,,v —a;yll <e, _, by Lemma 1.3. Thus the claim fol-
lows from the following:

Subclaim. ||Q,, . Tx — Tx,|l < 3e

pi-1—1
To see this we first note that
”Q[ ) Ix - O Fio1o ) T(gi—1+8 + 81l
< X
kel ri_y,r)

< Y &._,(byLemma 1.5)
kel ri_y,r)

<e

O 2 ng

jEi—1,i,i+1

ri_1—1°
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Also

10,  , T(8iy+&+gi)—0Qn, . T(8i1+&+&.)l
=< ”T(gi—l +8 + 841 8i-1— 8 — g’i+1)”

<.9p‘__1 + gp,»+8p,« 1<.*s

+ pi—1—1°

Finally, applying Lemma 1.5 again we have
”Q[ oo 7D [T(gi—l +8 + §i+1) - T(fi)] ”
<e

ri—1— 12

and the subclaim follows.
Let 8, = +1. Then

|80y, <|| Zoi(ary: — Tx)| +] Z8.7%,]
< 24.91)“_1_1 + ”T“"Z@'f;‘” (by the claim)
<1+ ClTI. ]

The proof of Theorem A yields the following:

ProposiTiON 1.9. Let X have a shrinking K-unconditional f.d.d. (E;) and
let T be a bounded linear operator from X onto Y. Let T(CBaX) 2 BaY. Then
if £;10 and if (y}) is a normalized weakly null basic sequence in Y there exists a
subsequence (y;) of (y!) and integers p, <p, < --- with the following
property. Let | a;y;ll < 2. Then there exists x = L x; € 2CKBaX, (x;) a
block basis of (E,), such that

ITx;, — a,y,l <e; foralli.

Moreover there exist (r) with 0 =ry, <p, <r, <p,<r,< -+ such that
x; €Eicq, vy foralli.

CoroLLARY 1.10. Let X have a shrinking K-unconditional f.d.d. and let T
be a bounded linear operator from X onto the Banach space Y. Then Y contains
¢, if and only if T fixes a copy of c,.

Proof. If Y contains c, then there exists (see [Ja]) (y,), a normalized
sequence in Y, with 27" < |2 a,y,Il <2 if (a,) € S, the unit sphere of c,.
Let ¢, |0 with ¥ ¢; < 1. We may assume that (y,) satisfies the conclusion of
Proposition 1.9. Thus for all n € N there exist

O=rfg<p, <ri<p,<ry< :-:
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and x € [E;];c(,n  ,» such that if x" =X, _, x7, then [x"|| <2CK and
I1Tx! — y,|l <eg, fori <n.

By passing to a subsequence (x/'*) we may assume lim, _, r/** = r; and
lim, _, x/* = x; exist for all i € N. Thus x; € [E;];c(, _, ,y With ry=0<
ry <ry, < - Tx; — y;Il <eg; for all i and sup,, ||} x;l| < . It follows that
(x;) is equivalent to the unit vector basis of c¢,. Moreover if we choose
; € g;,CBaX with Tw; =y, — Tx; then T(x; + w;) =y, and some subse-
quence of (x; + w;) is also a ¢, basis. Hence T fixes ¢c,. W

2. The proof of Theorem B

We begin by recalling the definition of the Schreier space S [S]. Let ¢, be
the linear space of all finitely supported real valued sequences. For x =
(¢c;) € ¢y set

p
||x||=max{Z|cki|:p€N and p<k; < --- <kp}.
i=1

S is the completion of (cy, |l - ). We let |lx]lo denote the c,-norm of x. The
unit vector basis (e,) is a shrinking 1-unconditional basis of S. S can be
embedded into C(w®) and thus § is c¢,-saturated.

Theorem B will follow from a quantitative version, Theorem B’ (below).
Given a sequence (x,), A > 0 and F a finite nonempty subset of N, y =
AL, cr X, is said to be a 1-average of (x,). We say that a Banach space X
has property-S(1) if every normalized weakly null sequence in X admits a
block basis of 1-averages which is equivalent to the unit vector basis of ¢,. S
has property-S(1).

THEOREM B'. Let Y be a quotient of S. Then Y has property-S(1).
We shall use the following result:

Lemma 2.1. Let (x,) be a normalized weakly null sequence in S with
lim,,|lx,llo = 0. Then some subsequence of (x,) is equivalent to the unit vector
basis of c,,.

Let T be a bounded linear operator from S onto a Banach space Y and let
(y!) be a normalized weakly null basic sequence in Y. Let T(CBaS) 2 BaY.

LemMma 2.2.  If no block basis of 1-averages of (y}) is equivalent to the unit
vector basis of c,, then there exists 8 > 0 such that if x € 3CBaS, Tx is a
1-average of (y}) and || Tx|| > 1/3 then |ixllo > 8.

Proof. If no such & exists then there exists (x,) € 3CBaS with
lim,|lx,|lo = O,/ Tx,/l > 1 and Tx, a 1-average of (y;) for all i. By Lemma 2.1
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there exists a subsequence (x}) of (x,) which is equivalent to the unit vector
basis of ¢,. By passing to a further subsequence we may assume that (Tx}) is
a seminormalized weakly null basic sequence in [(y))]. Thus (Tx}) is also
equivalent to the unit vector basis of ¢, W

Proof of Theorem B'. Let (y!) be a normalized weakly null sequence in Y.

If (y}) fails the S(1) property, choose § > 0 by Lemma 2.2. Let (¢,)7_, be a
sequence of positive numbers satisfying (recall T(CBaS) 2 BaY)

(2.1) i g; <min(8/(2C),1).
i=1

Let (y;) be the subsequence of (y;) given by Proposition 1.9 for the
sequence (g;).
Choose an even integer m € N with

(2.2) m > 8C/s.

From the theory of spreading models there exists (z;)?™, a finite subse-
quence of (y;), such that setting A = [| 27, zll -1

(2.3) 2> A Y 2| > 1/3.
ieF
whenever F c {1,...,2m} with |F| = m.

Thus there exists

2m
x= Y x; €2CBaS

i=1

with (x,) a block basis of (e;) and [|Tx; — Az,|l <e¢, for i < 2m. For i <2m
choose w; € § with Tw; = Az; — Tx; and |lo;|l < Ce;. Hence T(x; + w;) =
Az,

Since |T(Z?"(x; + 0, )|l > 1/3, and

2m ©

< + Yllwll <2C + Y ¢,C < 3C,
1 1

2m
21: (x; + w;)

2m
in
1

by Lemma 2.2 we have [|[Z2"(x; + w,llo > 8. Since [|X3"w;llo < IZ"w,ll <
8/2 by (2.1) there exists i; < 2m with ||x; llo > 8 /2.
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Now

2m 2m 1
T| X (x+w)|| =] XAz >3
i=1 i=1
it it
and so we may repeat the argument above finding i, # i; with ||x,~2||0 > 5/2.

In fact by (2.3) we can repeat this m-times obtaining distinct integers
G, c{1,2,...,2m} with IIxikllo > §/2 for k < m. But then

2m m m
202 Ikl = Xxl=| Xx |2 X lxlo=dm/4
i=1 k=1 k=m/2+1

which contradicts (2.2). ®

3. Open problems

Our work suggests a number of problems, of which we list a few. For a
more extensive list of related problems and an overview of the current state
of infinite dimensional Banach space theory, see [R].

Problem 1. Let X be a Banach space having property (WU) which does
not contain /; and let Y be a quotient of X. Does Y have property (WU)?

In light of Theorem A it is worth noting that C(w®) has property (WU)
[MR] but does not embed into any space having a shrinking unconditional
f.d.d. In fact C(w®) is not even a subspace of a quotient of such a space.
Indeed C(w®) fails property (U) (for example, see [HOR]) while any quotient
of a space with a shrinking unconditional f.d.d. will have property (U). In fact
if X has property (U) and does not contain /,, then any quotient of X will
have property (U) [R]. The next problem is due to H. Rosenthal.

Problem 2. Let X have a shrinking unconditional f.d.d. and let Y be a
quotient of X. Does Y embed into a Banach space having a shrinking
unconditional f.d.d.?

We say that a Banach space Y has uniform-(WU) if there exists K < o
such that every normalized weakly null sequence in Y has a K-unconditional
subsequence. Our proof of Theorem A showed that the quotient space Y has
uniform-(WU).

Problem 3. If Y has property (WU) does Y have uniform-(WU)?
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Theorem B solved a special case of the following well known problem.

Problem 4. Let Y be a quotient of C(w®) (or more generally C(K) where
K is a compact countable metric space). Is Y ¢ -saturated?

Regarding this problem, T. Schlumprecht [Sc] has observed that if Y is a
quotient of C(w®), then the closed linear span of any normalized weakly null
sequence in Y which has /; as a spreading model must contain c,.

It is not true that the quotient of a c,-saturated space must also be
co-saturated. The separable Orlicz function space H,,(0,1), with M(x) =
(e*' = 1)/(e — 1), considered in [CKT] is cy-saturated and yet has I, as a
quotient. We wish to thank S. Montgomery-Smith for bringing this fact to our
attention. However this space does not have an unconditional basis and so we
ask:

Problem 5. Let X be a cgsaturated space with an unconditional basis
and let Y be a quotient of X. Is Y ¢,-saturated?

A more restricted and perhaps more accessible question is the following
(S, is defined below).

Problem 6. Let Y be a quotient of §,, the nth-Schreier space, where
n > 2. Is Y ¢,-saturated? Does Y have property-S(n)?

S, is defined as follows. Let ||x|l; be the Schreier norm. If (S,,I| - |I,) has
been defined, set for x € ¢, the finitely supported real sequences,

D
lxll,r1 = max{ Y NExl,:p <E <E,< - Ep}.
k=1

(Here p < E; means p < min E; and E, < E, means max E; < min E,.
Also Ex(i) = x(i) if i € E and 0 otherwise.) S,,, is the completion of
(cgos Il * lln+1). The unit vector basis (e,) is a 1-unconditional shrinking basis
for every S, and S, embeds into C(w®").

Property-S(n) is defined as follows. n-averages of a sequence (y,,) are
defined inductively: an n + 1-average of (y,,) is a 1-average of a block basis
of normalized n-averages. Y has property-S(n) if every normalized weakly
null basic sequence in Y admits a block basis of n-averages equivalent to the
unit vector basis of c,. S, has property-S(n).

Added in proof. Denny Leung has solved Problem 5 in the negative.
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