A NEW PROOF OF THE RESTRICTION THEOREM FOR WEAK TYPE $(1,1)$ MULTIPLIERS ON \mathbf{R}^{n}

Krzysztof Wozniakowski

1 Introduction

In [4, Problem 5], A Pelczynski asked the following question is it true that if a multiplier function m contınuous at lattice points determines a weak type $(1,1)$ multiplier operator $M f=(m \hat{f})^{\vee}$ then the restriction m^{\prime} of m to these points determines a weak type $(1,1)$ multiplier operator $M^{\prime} f=\left(m^{\prime} \hat{f}\right)^{\vee}$ on \mathbf{T}^{n} ? In other words, can we extend the classical de Leeuw theorem [3, Proposition 3 3] to the weak $(1,1)$ case? The positive answer was given in [1, Theorem 11] In this paper the authors have shown (Theorem 12) that convolutions with L_{1} functions leave the space of weak type multiphers invariant This allows us to consider only functions m such that kernel m^{\vee} has compact support and then to use the classical argument of Calderón [2] However the consequence of using this strong result is that one gets the estimate $\left\|M^{\prime}\right\| \leq C\|M\|$ for some constant $C>1$ which appears in the formulation of the Theorem 12 and it seems that in the case of that theorem this constant must be greater then 1 The purpose of this work is to give a direct proof of Pelczynski conjecture with $C=1$ The main idea is based on taking the averages over big subsets of \mathbf{R}^{n} and to some extend is simlar to the method of Calderón

2 Notation

\mathbf{R}^{n} stands for the n-dimensional vector space and \mathbf{Z}^{n} for the sublattice of \mathbf{R}^{n} consisting of the points with integer-valued coordinates The dual group of \mathbf{Z}^{n}-the n-dimensional torus \mathbf{T}^{n}-will be identified with the cube $[-\pi, \pi]^{n} \subset \mathbf{R}^{n}$, whose boundary points are identıfied in the standard way The symbols λ_{n}, μ_{n} stand for invariant measures on \mathbf{R}^{n} and \mathbf{T}^{n} respectively, determined by conditions $\lambda_{n}\left(\left\{|x|_{\infty} \leq\right.\right.$
 The symbols $L_{p}\left(\mathbf{R}^{n}\right)=L_{p}\left(\mathbf{R}^{n}, \lambda_{n}\right), L_{p}\left(\mathbf{T}^{n}\right)=L_{p}\left(\mathbf{T}^{n}, \mu_{n}\right)$ have usual meanıngs and denote complex valued functions The norms in this spaces will be denoted by $\left\|\|_{p \mathbf{R}}\right.$ and $\| \|_{p \mathbf{T}}$ respectively By $L_{1}^{*}\left(\mathbf{R}^{n}\right), L_{1}^{*}\left(\mathbf{T}^{n}\right)$ we denote the weak L_{1} spaces

[^0]of functions for which the quasinorms
\[

$$
\begin{array}{ll}
\|\phi\|_{\mathbf{R}}^{*}=\sup _{c>0} c \lambda_{n}(\{|\phi|>c\}) & \text { for } \phi: \mathbf{R}^{n} \rightarrow \mathbf{C}, \\
\|f\|_{\mathbf{T}}^{*}=\sup _{c>0} c \lambda_{n}(\{|f|>c\}) & \text { for } f: \mathbf{T}^{n} \rightarrow \mathbf{C}
\end{array}
$$
\]

are bounded. The weak norm $\|\cdot\|^{*}$ of an operator $M: L_{1}(\mathbf{X}) \rightarrow \mathbf{L}_{\mathbf{1}}^{*}(\mathbf{X})$ for $\mathbf{X}=$ $\mathbf{R}^{n}, \mathbf{Z}^{n}$ is defined in a standard way as $\|M\|^{*}=\sup _{x \in L_{1}(\mathbf{X}) \backslash\{0\}}\|M(x)\|_{\mathbf{X}}^{*} /\|x\|_{1, \mathbf{X}}$. By $\operatorname{Trig}\left(\mathbf{T}^{n}\right)$ we denote the space of trigonometric polynomials on \mathbf{T}^{n}, i.e., the space of all finite linear combinations of the exponents $e^{i\langle, a\rangle}$ for $a \in \mathbf{Z}^{n}$. By $\langle x, y\rangle=\sum_{j=1}^{n} x_{j} y_{j}$ we denote the usual scalar product of vectors x and y in \mathbf{R}^{n}. For $\phi \in L_{1}\left(\mathbf{R}^{n}\right)$ and for $f \in \operatorname{Trig}\left(\mathbf{T}^{n}\right)$ the Fourier Transforms $\hat{\phi}$ and \tilde{f} are defined by

$$
\begin{aligned}
\hat{\phi}(\xi)=\frac{1}{(2 \pi)^{n}} \int_{\mathbf{R}^{n}} \phi(x) e^{-i\langle x, \xi\rangle} d x & \text { for } \xi \in \mathbf{R}^{n} \\
\tilde{f}(a)=\frac{1}{(2 \pi)^{n}} \int_{\mathbf{T}^{n}} f(x) e^{-i(x, a)} d x & \text { for } a \in \mathbf{Z}^{n}
\end{aligned}
$$

Finally letter \mathcal{D} stands for the Schwartz class-the space of infinitely many times differentiable functions on \mathbf{R}^{n} with compact support.

3. Weak type multipliers on \mathbf{R}^{n} and \mathbf{Z}^{n}

The main result of the present paper is essentially contained in the following:
Proposition 1. Let $m \in L_{\infty}\left(\mathbf{R}^{n}\right)$ be continuous at the points of \mathbf{Z}^{n}. Define the operators $M_{\mathbf{R}}: L_{1}\left(\mathbf{R}^{n}\right) \cap L_{2}\left(\mathbf{R}^{n}\right) \rightarrow L_{2}\left(\mathbf{R}^{n}\right)$ and $M_{\mathbf{T}}: \operatorname{Trig}\left(\mathbf{T}^{n}\right) \rightarrow \operatorname{Trig}\left(\mathbf{T}^{n}\right)$ by

$$
\left[M_{\mathbf{R}}(\phi)\right]^{\top}=m \hat{\phi}
$$

and

$$
\left[M_{\mathbf{T}}(f)\right]^{\sim}(a)=m(a) \tilde{f}(a) \quad \text { for } a \in \mathbf{Z}^{n}
$$

Then the relation

$$
\begin{equation*}
\sup _{c>0} c \lambda_{n}\left(\left\{\left|M_{\mathbf{R}} \phi\right|>c\right\}\right) \leq\|\phi\|_{1, \mathbf{R}} \quad \text { for } \phi \in L_{1}\left(\mathbf{R}^{n}\right) \cap L_{2}\left(\mathbf{R}^{n}\right) \tag{1}
\end{equation*}
$$

implies

$$
\begin{equation*}
\sup _{c>0} c \mu_{n}\left(\left\{\left|M_{\mathbf{T}} f\right|>c\right\}\right) \leq\|f\|_{1, \mathbf{T}} \quad \text { for } f \in \operatorname{Trig}\left(\mathbf{T}^{n}\right) . \tag{2}
\end{equation*}
$$

Before proving Proposition 1 we will introduce the following notation: for $f \in$ $\operatorname{Trig}\left(\mathbf{T}^{n}\right), f(\cdot)=\sum_{a \in A} \hat{f}(a) e^{i\langle a, \cdot\rangle}, A \subset \mathbf{Z}^{n}$, denote by F the periodic extension of f on \mathbf{R}^{n}; i.e.,

$$
F(x)=\sum_{a \in A} \hat{f}(a) e^{i(a, x\rangle} \quad \text { for } x \in \mathbf{R}^{n}
$$

and for $g=M_{\mathbf{T}}(f)=\sum_{a \in A} m(a) \hat{f}(a) e^{i(a, \cdot)}$ denote by G the analogous periodic extension of g. Now for $k=1,2, \ldots$ pick an real-valued function $H_{k} \in \mathcal{D}$ such that

$$
\begin{gather*}
0 \leq H_{k}(x) \leq 1 \quad \text { for } x \in \mathbf{R}^{n} \tag{3}\\
H_{k}(x)=1 \quad \text { for }|x|_{\infty} \leq k \pi \tag{4}\\
H_{k}(x)=0 \quad \text { for } \quad|x|_{\infty} \geq(k+1) \pi \tag{5}
\end{gather*}
$$

Then for $\varepsilon>0$ define $H_{k}^{\varepsilon}(x)=H_{k}(\varepsilon x)$ for $x \in \mathbf{R}^{n}$ and finally let

$$
R_{k}^{\varepsilon}=M_{\mathbf{R}}\left(H_{k}^{\varepsilon} F\right)-H_{k}^{\varepsilon} G
$$

(this definition makes sense as $H_{k}^{\varepsilon} F \in L_{1}\left(\mathbf{R}^{n}\right) \cap L_{2}\left(\mathbf{R}^{n}\right)$). We have:
PROPOSITION 2. $\quad R_{k}^{\varepsilon} \in L_{\infty}\left(\mathbf{R}^{n}\right)$ and

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\left\|R_{k}^{\varepsilon}\right\|_{\infty, \mathbf{R}}=0 \quad \text { for } \quad k=1,2, \ldots \tag{6}
\end{equation*}
$$

Proof. The inverse formula for Fourier transform yields

$$
\left\|R_{k}^{\varepsilon}\right\|_{\infty, \mathbf{R}} \leq\left\|\left(R_{k}^{\varepsilon}\right)\right\|_{1, \mathbf{R}}
$$

On the other hand we have

$$
\begin{equation*}
\left(R_{k}^{\varepsilon}\right) \widehat{ }(y)=\sum_{a \in A}(m(y)-m(a)) \tilde{f}(a) \widehat{H}_{k}\left(\frac{y-a}{\varepsilon}\right) \varepsilon^{-n} \tag{7}
\end{equation*}
$$

(by linearity it is enough to verify (7) for a single exponent which is trivial). Thus using the substitutions $z=\frac{y-a}{\varepsilon}$ for $a \in A$ we get

$$
\begin{aligned}
\|\left(R_{k}^{\varepsilon}\right) \widehat{\|_{1, \mathbf{R}}} & =\int_{\mathbf{R}^{n}}\left|\sum_{a \in A}(m(y)-m(a)) \tilde{f}(a) \widehat{H}_{k}\left(\frac{y-a}{\varepsilon}\right) \varepsilon^{-n}\right| d y \\
& \leq \sum_{a \in A}|\tilde{f}(a)| \int_{\mathbf{R}^{n}}\left|\widehat{H}_{k}(z)\right||m(a+\varepsilon z)-m(a)| d z
\end{aligned}
$$

Note that $\widehat{H}_{k} \in L_{1}\left(\mathbf{R}^{n}\right)$ because $H_{k} \in \mathcal{D}$. So $R_{k}^{\varepsilon} \in L_{\infty}\left(\mathbf{R}^{n}\right)$ and as the set A is finite applying Lebesgue Dominated Convergence Theorem we get (6).

Now we can easily get the proof of Proposition 1.
Proof. Fix $c>0, t>1$ and $k=1,2, \ldots$ It follows from Proposition 2 that for sufficiently small $\varepsilon>0$ one has $\left\|R_{k}^{\varepsilon}\right\| \leq\left(1-\frac{1}{t}\right) c$. Thus

$$
\left\{\left|H_{k}^{\varepsilon} G\right|>c\right\} \subset\left\{\left|M_{\mathbf{R}}\left(H_{k}^{\varepsilon} F\right)\right|>\frac{c}{t}\right\} .
$$

So by (1),

$$
\begin{equation*}
c \lambda_{n}\left(\left\{\left|H_{k}^{\varepsilon} G\right|>c\right\}\right) \leq t \frac{c}{t} \lambda_{n}\left(\left\{\left|M_{\mathbf{R}} H_{k}^{\varepsilon} F\right|>\frac{c}{t}\right\}\right) \leq t\left\|H_{k}^{\varepsilon} F\right\|_{1} . \tag{8}
\end{equation*}
$$

Let $[z]$ denote the greatest integer less than or equal to z and let 1_{Ω} denote the indicator function of a set Ω. Taking (4) into account we get

$$
\begin{aligned}
\left\{\left|H_{k}^{\varepsilon} G\right|>c\right\} & \supset\left\{|G|>c \&|\varepsilon x|_{\infty} \leq k \pi\right\} \\
& \supset\left\{|G|>c \&|x|_{\infty} \leq\left[\frac{k}{\varepsilon}\right] \pi\right\}
\end{aligned}
$$

Thus

$$
\begin{align*}
\lambda_{n}\left(\left\{\left|H_{k}^{\varepsilon} G\right|>c\right\}\right) & \geq \lambda_{n}\left(\left\{|G|>c \&|x|_{\infty} \leq\left[\frac{k}{\varepsilon}\right] \pi\right\}\right. \tag{9}\\
& =\left[\frac{k}{\varepsilon}\right]^{n} \mu_{n}(\{|g|>c\})
\end{align*}
$$

On the other hand, (5) yields

$$
\begin{equation*}
\left\|H_{k}^{\varepsilon} F\right\|_{1, \mathbf{R}} \leq\left\|F \cdot 1_{\left\{|x|_{\infty} \leq\left\{\left(\frac{k+1}{\varepsilon}\right]+1\right) \pi\right\}}\right\|_{1, \mathbf{R}}=\left(\left[\frac{k+1}{\varepsilon}\right]+1\right)^{n}\|f\|_{1, \mathbf{T}} . \tag{10}
\end{equation*}
$$

Combining (8), (9) and (10) we get

$$
\begin{equation*}
\left[\frac{k}{\varepsilon}\right]^{n} c \mu_{n}(\{g>c\}) \leq t\left(\left[\frac{k+1}{\varepsilon}\right]^{n}\|f\|_{1, \mathbf{T}} .\right. \tag{11}
\end{equation*}
$$

Multiplying both sides of (11) by ε^{n} and letting $\varepsilon \rightarrow 0$ we get $k^{n} c \mu_{n}(\{g>c\}) \leq$ $t(k+1)^{n}\|f\|_{1, \mathbf{T}}$. Now dividing by k, letting k go to infinity and then setting t to 1 we get (2).

An immediate consequence of Proposition 1 is:
Theorem 3. Let $m, M_{\mathbf{R}}, M_{\mathbf{T}}$ be as in Proposition 1. In the case $m \in C\left(\mathbf{R}^{n}\right)$ for $\varepsilon>0$ and $f \in \operatorname{Trig}\left(\mathbf{T}^{n}\right)$ put $M_{\mathbf{T}}^{\varepsilon}=\sum m(\varepsilon a) \hat{f}(a) e^{i\langle a, \cdot\rangle}$. Then if $M_{\mathbf{R}}$ extends to a bounded operator $\bar{M}_{\mathbf{R}}: L_{1}\left(\mathbf{R}^{n}\right) \rightarrow L_{1}^{*}\left(\mathbf{R}^{n}\right)$ then $M_{\mathbf{T}}$ extends to a bounded operator $\bar{M}_{\mathbf{T}}: L_{1}\left(\mathbf{T}^{n}\right) \rightarrow L_{1}^{*}\left(\mathbf{T}^{n}\right)$ and $\left\|\bar{M}_{\mathbf{T}}\right\|^{*} \leq\left\|\bar{M}_{\mathbf{R}}\right\|^{*}$. If $m \in C\left(\mathbf{R}^{n}\right)$ the same holds for $M_{\mathbf{T}}^{\varepsilon}$. Moreover in this case

$$
\begin{equation*}
\left\|\bar{M}_{\mathbf{R}}\right\|^{*}=\sup _{\varepsilon>0}\left\|\bar{M}_{\mathbf{T}}^{\varepsilon}\right\|^{*} \tag{12}
\end{equation*}
$$

Proof. The first part of Theorem 3 is essentially a reformulation of Proposition 1. As norms of multiplier operators induced by $m(x)$ and $m(\varepsilon x)$ are the same we get the claim for $M_{\mathbf{T}}^{\varepsilon}$ when $m \in C\left(\mathbf{R}^{n}\right)$. Formula (12) is also trivial and our argument here is a modification of that used in [5, Theorem VII.3.18] where the classical L_{p}-case was considered: for $f \in \mathcal{D}, x \in \mathbf{R}^{n}$ let $f_{\varepsilon}(x)=\sum_{a \in \mathbf{Z}^{n}} \hat{f}(\varepsilon a) e^{i(a, x\rangle}=$ $\varepsilon^{-n} \sum_{a \in \mathbf{Z}^{n}} f\left(\frac{x-2 \pi a}{\varepsilon}\right)$ and $g_{\varepsilon}(x)=\varepsilon^{n} \sum_{a \in \mathbf{Z}^{n}} m(\varepsilon a) \hat{f}(\varepsilon a) e^{i(\varepsilon a, x\rangle}$. Then $\lim _{\varepsilon \rightarrow 0} g_{\varepsilon}(x)$ $=\bar{M}_{\mathbf{T}} f(x)$ as a Riemann integral of the function $m(y) \hat{f}(y) e^{i(y, x\rangle}$. So for any $K>0$,

$$
\begin{equation*}
c \lambda_{n}\left(\left\{\left|\bar{M}_{\mathbf{R}} f\right|>c \&|x|_{\infty} \leq K\right\}\right) \leq \lim _{\varepsilon \rightarrow 0} c \lambda_{n}\left(\left\{\left|g_{\varepsilon}(x)\right|>c \&|x|_{\infty} \leq K\right\}\right) \tag{13}
\end{equation*}
$$

But

$$
\begin{align*}
c \lambda_{n}\left(\left\{\left|g_{\varepsilon}(x)\right|>c \&|x|_{\infty} \leq K\right\}\right) & =c \varepsilon^{-n} \lambda_{n}\left(\left\{\left|g_{\varepsilon}\left(\frac{x}{\varepsilon}\right)\right|>c \&|x|_{\infty} \leq \varepsilon K\right\}\right) \tag{14}\\
& \leq c \varepsilon^{-n} \lambda_{n}\left(\left\{\left|g_{\varepsilon}\left(\frac{x}{\varepsilon}\right)\right|>c \&|x|_{\infty} \leq \pi\right\}\right)
\end{align*}
$$

for a small ε. On the other hand we may look at $f_{\varepsilon}(x)$ as defined on \mathbf{T}^{n} and, in this case, $g_{\varepsilon}\left(\frac{x}{\varepsilon}\right)=\varepsilon^{n} \sum_{a \in \mathbf{Z}^{n}} m(\varepsilon a) \hat{f}(\varepsilon a) e^{i\langle a, x\rangle}$ can be seen as $\varepsilon^{n} \bar{M}_{\mathbf{T}}^{\varepsilon} f_{\varepsilon}(x)$ so

$$
\begin{align*}
c \lambda_{n}\left(\left\{\left|g_{\varepsilon}\left(\frac{x}{\varepsilon}\right)\right|>c \&|x|_{\infty} \leq \pi\right\}\right) & \leq \varepsilon^{n}\left\|\bar{M}_{\mathbf{T}}^{\varepsilon}\right\|^{*}\left\|f_{\varepsilon}(x)\right\|_{1, \mathbf{T}} \tag{15}\\
& \leq \varepsilon^{n}\left\|\bar{M}_{\mathbf{T}}^{\varepsilon}\right\|^{*}\|f(x)\|_{1, \mathbf{R}}
\end{align*}
$$

Combining (13), (14), (15) and letting K go to infinity we get the claim.
Remark 4. One can easily observe that the statement of Theorem 3 remains true if we consider the operators from the Lorentz spaces $L(r, p) p \geq 1,0<r<\infty$ ($1 \leq r$ for $p=1$) into $L(s, p) 0<s<\infty$.

REFERENCES

1. N. Asmar, E. Berkson and J. Bourgain, Restrictions from \mathbf{R}^{n} to \mathbf{Z}^{n} of weak type multipliers, Studia Math. 108 (1994), 291-299.
2. A. P. Calderón, Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. (U.S.A.) 59 (1968), 349-353.
3. K. de Leeuw On L L_{p} multipliers Ann. of Math. 81 (1965), 346-347.
4. A. Pelczyński Boundness of canonical projections for Sobolew spaces generated by finite families of linear differential operators, Proceedings of the Special Year in Modern Analysis at the University of Illinois, 1986-87, London Math. Soc. Lecture Notes Series 137, Cambridge University Press, Cambridge, England, 1989, pp. 395-415.
5. E. M. Stein, G. Weiss Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, New Jersey, 1971.

[^0]: Received May 251995
 1991 Mathematics Subject Classıfication 42B15
 The author was partially supported by KBN grant 2P301 0406

