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A NEW PROOF OF THE RESTRICTION THEOREM FOR
WEAK TYPE (1,1) MULTIPLIERS ON Rn

KRZYSZTOF WOZNIAKOWSKI

1 Introduction

In [4, Problem 5], A Pelczynskl asked the following question is it true that if a
multiplier function rn continuous at lattice points determines a weak type (1, 1) mul-
tlpher operator Mf (mf)v then the restriction m’ of rn to these points determines
a weak type (1, 1) multlpher operator M’f (m’f)v on Tn 9 In other words, can we
extend the classical de Leeuw theorem [3, Proposition 3 3] to the weak (1, 1) case9
The positive answer was given in [1, Theorem 1] In this paper the authors have
shown (Theorem 2) that convolutions with L1 functions leave the space of weak
type multlphers lnvanant This allows us to consider only functions rn such that
kernel rnV has compact support and then to use the classical argument of Calder6n
[2] However the consequence of using ths strong result is that one gets the estimate

M’ _< C M for some constant C > which appears in the formulation of the
Theorem 2 and it seems that in the case of that theorem this constant must be greater
then The purpose of this work is to give a direct proof of Pelczynskl conjecture
with C The man idea is based on taking the averages over big subsets of Rn

and to some extend is slmlar to the method of Calder6n

2 Notation

Rn stands for the n-dimensional vector space and Zn for the sublattce of Rn

consisting of the points with integer-valued coordinates The dual group of znmthe
n-dimensional torus T"mwlll be Identified with the cube [-zr, zr]n C Rn, whose
boundary points are identified in the standard way The symbols ,kn, /Zn stand for
lnvanant measures on Rn and Tn respectively, determined by conditions ,n ({
1/2}) 1, /Zn(Tn) (27r)n where Ixl maxl_<j_<. IxjI for x (xj)
The symbols Lp(Rn) Lp(Rn, n), Lp(Tn) Lp(Tn, ]J’n) have usual meanings

and denote complex valued functions The norms in this spaces will be denoted by
lip and lip T respectively By L(R), L(Tn) we denote the weak L spaces
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of functions for which the quasinorms

I111 supC.n({lbl > C})
c>0

for : Rn C,

Ilfl]’ supcXn({lfl > c})
c>0

for f" Tn --+ C

are bounded. The weak norm I1" I1" of an operator M" L(X) L(X) for X
Rn, Zn is defined in a standard way as IIMII* SUpx,x)\t01 IIM(x)ll:/llxll,x. By
Trig(T") we denote the space oftrigonometric polynomials onTn, i.e., the space of all
finite linear combinations of the exponents ei(’’a) for a 6 Z". By (x, y) .= xjyj
we denote the usual scalar product of vectors x and y in Rn. For p 6 L (Rn) and for

f Trig(Tn) the Fourier Transforms q and f are defined by

()
(2zr)"

(x)e-ilx’}dx for Rn,

f -i(x,a) Znf(a)
(2zr)n Ja’,

f(x)e dx for a 6

Finally letter 79 stands for the Schwartz class--the space of infinitely many times
differentiable functions on Rn with compact support.

3. Weak type multipliers on Rn and Zn

The main result of the present paper is essentially contained in the following:

PROPOSITION 1. Let m L(Rn) be continuous at the points of Zn. Define the
operators MR: LI(Rn) 0 LE(Rn) -- LE(Rn) and MT" Trig(Tn) -- Trig(Tn) by

and

Then the relation

[MR(c)F mq

[MT(f)l~(a) m(a)f(a) for a Zn

(1) supc.n({lMRql > c}) IIqll,
c>O

implies

for (p L1 (Rn) (q L2(Rn)

(2) supclzn({lMTfl > c}) _< Ilfll,T for f Trig(T").
c>0
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Before proving Proposition we will introduce the following notation: for f
Trig(Tn) f (’) aEa f(a)eila’’l, A C Zn, denote by F the periodic extension of

f on Rn; i.e.,

F(x) _, f(a)ei(a’x) for x Rn,
aEA

and for g MT(f) -,aA m(a)f(a)ei<a’’) denote by G the analogous periodic
extension of g. Now for k 1, 2 pick an real-valued function Hk 6 79 such that

(3) 0 <_ nk(x) _< for x Rn,

(4) H(x) for Ixl < kzr,

(5) H(x) 0 for Ixl > (k + 1)rr.

Then for e > 0 define H(x) Hg(ex) for x Rn and finally let

R MIt HF) HG

(this definition makes sense as HF L1 (Rn) N L2(Rn)). We have:

PROPOSITION 2. R L(Rn) and

(6) lim I1R IIo, 0
e--0

for k=l,2

Proof. The inverse formula for Fourier transform yields

IIRII,R _< II(R)’II,R.

On the other hand we have

(7) (R)’(y) _,(m(y) m(a))f(a)k (Y a )
aA E

(by linearity it is enough to verify (7) for a single exponent which is trivial). Thus
using the substitutions z y-a for a A we get

II(R)II1,R fR. Y(m(y) m(a))f(a)k (Y a ) -n

aA F
dy

< If(a)l I  (z)l Im(a + ez) m(a)l dz.
aA

Note that H L(Rn) because Hk 79. So R Loc(Rn) and as the set A is finite
applying Lebesgue Dominated Convergence Theorem we get (6).
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Now we can easily get the proof of Proposition 1.

Proof. Fix c > 0, > and k 1, 2 It follows from Proposition 2 that for
)C. Thussufficiently small e > 0 one has R, <_ (1 7

So by (1),

I c/lineal > c} c IMR(HcF)I > -(I ;Cl)(8) C,,n ([IH;GI > c}) < t)n IMRH;FI > < tlIH;FII,.

Let [z] denote the greatest integer less than or equal to z and let denote the indicator
function of a set . Taking (4) into account we get

{IHGI > c} {IGI > c & lexlo _< }

] {Ial > c& Ixl []}.
Thus

(9)

On the other hand, (5) yields

(10) IIn/Flll,R < liE lllxlo_<(tk+, Ill,R ([k+l]
__

1)nllflll,x.
"7- ]+ 1)zr

Combining (8), (9) and (lO) we get

(11) []ncktn({g > C}) < t([k+llnllf[ll,T.

Multiplying both sides of (11) by n and letting e --> 0 we get knclzn({g > c}) <

(k+ 1)n f ,T. Now dividing by k, letting k go to infinity and then setting to we
get (2).

An immediate consequence of Proposition is:

THEOREM 3. Let m, MR, MT be as in Proposition 1. In the case m C(Rn) for
e > 0 and f Trig(Tn) put M m(ea)f(a)eila,’l. Then if MR extends to a
bounded operator MR" LI(Rn) L(Rn) then MT extends to a bounded operator
MT: LI(Tn) --+ L(Tn) and IIMTII* _< IIMII*. Ifm C(Rn) the same holds for
M. Moreover in this case

(12) IIall* sup I111"
>0
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Proof. The first part of Theorem 3 is essentially a reformulation of Proposition
1. As norms of multiplier operators induced by m(x) and m(ex) are the same we get
the claim for M when m C(Rn). Formula (12) is also trivial and our argument
here is a modification of that used in [5, Theorem VII.3.18] where the classical
Lp-case was considered: for f 79, x Rn let f(x) "aEZ f(ea)eila’xl=
-n aEZ f(x-2ra) and g(x) F. n -aZ m(ea)f(ea)eila’x). Then lim_,0 g(x)

Tf(x) as a Riemann integral of the function m(y)f(y)e ly,x>. So for any K > 0,

(13) cX,({IMifl > c & Ixl _< K}) _< lim c.({Ig(x)l > c & Ixl _< K}).
e---- 0

But

(14) C,n({[g(x)l > c & Ixl g}) c-n,n({Ig()l > c & Ixlo eK})

< ce-n,n({lge()l > c & Ixl __< r}).

for a small e. On the other hand we may look at f (x) as defined on Tn and, in this
x nmecase, ge(?) e" _a.Z m(ea)f(ea)ei(a’x) can be seen as e MTf(x) so

(15) C)n({Ig(?)l > C & Ixlo r}) nlIMTII*IIA(x)II1,T
<_ n MT * f(x ,

Combining (13), (14), (15) and letting K go to infinity we get the claim.

Remark 4. One can easily observe that the statement of Theorem 3 remains true
if we consider the operators from the Lorentz spaces L(r, p) p > 1, 0 < r < x
(1 <rforp=l) intoL(s,p)0<s <
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