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APPROXIMATION BY ENTIRE FUNCTIONS AND
ARAKELYAN-TYPE EXAMPLES FOR MOVING TARGETS

ALEXANDER RUSSAKOVSKII

Introduction

In this note we apply the approximation techniques developed in 17], together
with explicit formulas for the solution of -equations, to construct examples in value
distribution theory of one and several complex variables. From our point of view
the suggested method has three main advantages: it is very natural, it is simple and
explicit and it is powerful enough to derive new results. The general approximation
scheme is described in Section 2.

Our aim is to construct examples of entire functions with given deficient values.
It is well-known [16], [5] (see also [4], [6] for the case of meromorphic functions)
that if the sum of deficiencies of an entire function is maximal, i.e.,

E 8f(a) 1,
aC

then f has integral order p and at most p deficient values a ap, each having
deficiency 1/p.

Suppose that an integer p and the values a ap are given and one would like
to have an example of an entire function of order p with these deficient values and
maximal sum of deficiencies. Examples of such type have been constructed first by
R. Nevanlinna 14]. The above mentioned approximation scheme permits an explicit
formula to construct such examples. Moreover, the scheme is valid not only for
constant deficient values, but also for small deficient functions (the so called slowly
moving targets); that is, instead ofjust a-points, one studies the solutions of

f(z) a(z),

for such a(z) that

Ta(r) o(Tf(r)), r

In [13] (see [9] for the case of meromorphic functions) it was proved that the
above properties of an entire function with maximal sum of deficient values take
place also in the case of small functions. However, to the best of our knowledge,

Received May 5, 1995.
1991 Mathematics Subject Classification. Primary 30D35; Secondary 30E15, 32A22, 32H30.
Partially supported by NATO Linkage Grant LG 930171.

(C) 1996 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

439



440 ALEXANDER RUSSAKOVSKII

examples of entire functions with a given set of deficient functions and maximal sum
of deficiencies are not known. Theorem below provides Such an example.

THEOREM 1. Let p be apositive integer and let al(z) ap(z) be entirefunc-
tions ofat most minimal type with respect to order p. Then there exists such an entire

function f(z) oforder p and normal type that al ap are its deficientfunctions
with deficiency lip each.

One can consider another problem. Suppose that an infinite sequence of values
al, a2 is given, andwewould like to have an entire function oforder p < c having
them as deficient values. Such examples were first constructed by N. U. Arakelyan
1 ]. Later on his construction was generalized and strengthened by A. E. Eremenko

[7, 8]. We call examples of such kind Arakelyan-type examples. An example for the
case of infinite order was constructed in 11 ].

Arakelyan and Eremenko use quite sophisticated tools, particularly Eremenko’s
example is based on quasiconformal techniques. However it is possible to revise Ere-
menko’s construction and to apply our approach instead ofquasiconformal mappings.
Our construction not only provides another Arakelyan-type example but also gives
the possibility to treat the case of small functions, which is a new result.

THEOREM 2. Letanumberp > 1/2andasequenceofentirefunctionsal, a2

ofat most minimal type with respect to order p, be given.
Then there exists an entirefunction oforder p andnormal type, such that al a2

are its only deficientfunctions.

Remark. Eremenko’s example [8] disproves Arakelyan’s conjecture:

<(x).

log

Eremenko’s construction gives deficiencies with lower bound cn, c < 1. In our proof
of Theorem 2 we reproduce, up to a certain stage, the construction of [7]; if one
replaces it with that of [8], then the same estimates of deficiencies will also take
place.

The above methods apply also to entire curves and to the multidimensional situa-
tion; see Section 6.

I would like to thank A. E. Eremenko for attracting my attention to the questions
considered here and for numerous fruitful discussions.

1. Characteristics of growth and value distribution

We recall some basic definitions from the Nevanlinna theory. The reader familiar
with value distribution theory can skip this section.
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The counting function of a-points of a meromorphic function f(z), f (0) # a, is
defined as

Nf(r, a) ; n(t)
dt

,/
0

where n(t) nf(t, a) is the number of solutions of the equation f(z) a 0 in the
disk of radius t.

The proximity function is

my(r, a) lg+
If(z) al

d argz.

Finally, the Nevanlinna characteristic function of f is defined as

,fTf(r) log+ If(z)ld argz.

By the First Main Theorem of Nevanlinna,

N(r, a) + m(r, a) T(r) + O(1),

and in the average the leading term on the left is N (r, a). Those values for which

8f(a) lim sup Nf(r, a)
r--oo Tf(r)

lim inf
mf (r, a)

>0,
roo Tf(r)

are called the deficient values and f (a) is called the deficiency.
It is well known that the set of Nevanlinna deficient values is at most countable

and that

3f(a) < 2.
aEC

The Nevanlinna theory studies value distribution ofmeromorphic functions. How-
ever at this moment it is not clear whether our method can give precise results for
meromorphic functions. So in this paper we restrict ourselves to the case of entire
functions; i.e., we always have

If f(z) is an entire function of finite order/9, its indicator is defined as

Hf (z) lim sup
r--- oo r’

log lf (rz)l

The indicator has the property H(tz) tPH(z).
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An entire function f (z) is of completely regular growth if lim sup in the definition
of the indicator can be replaced by limro, rCe, where E has zero density.

To determine the deficiency, we have to compare the L1-norms of log+ Ifl and
log- If a on circles of radius r, for functions of completely regular growth, so the
relation between the deficiency and the indicator of f a is obvious.

If the deficiencies of a function are known, much can be said about its behavior.
The examples that we construct below seem very easy because they rest on the
descriptions of the behavior and properties of the corresponding functions. It took
years and efforts ofmany people to derive this information, butnow we know precisely
what to construct.
We will use substantially the information concerning the required form of the

indicator in our examples. For instance, for the case when the sum of deficiencies is
maximal, this information was provided in [6] and [9].

In the simplest possible case the plane splits into 2/9 angular sectors, and the
indicator of f(z) equals cos(p argz)l in the even sectors while the indicator of

f(z) aj equals -I cos(p arg z)l in the corresponding odd sectors.
We would like to note that once the corresponding indicators are as above, all

deficiencies are determined (the deficiency of aj in this particular case is the number
of negative waves in the indicator of f (z) aj divided by the number of positive
waves in the indicator of f, which is/9 in this case). The most elementary example
is the exponential function ez" for which all aj 0 and 8 (0) 1.

Similar considerations play their role in the multidimensional case, too. The
characteristics of growth and value distribution are defined in the same way with
circles replaced by spheres, moduli by norms, number of points by area of analytic
set, etc. The definition of the (radial) indicator in several variables involves upper
regularization. However, in the multidimensional case we will just outline how the
suggested scheme may be applied, hence there is no reason to go deeply into details
here. The reader is referred, for instance, to 19, 20].

2. Approximation by entire functions on unbounded sets

Let f(z) be a function holomorphic on an unbounded set f2 C C". It is a classical
problem to find an entire function g(z) which approximates f with certain rate on
some subset of f2, and to estimate the minimal possible growth of g. It is reasonable to
expect that the rate of growth of g is determined by f2, the growth of f itself, the rate
of approximation, and the characteristics of the subset f21 on which approximation
takes place.

There is a very natural way to approach the problem. Suppose one takes a cut-off
function X (z) equal to zero outside of f2 and equal to one on a neighborhood of
and looks at g(z) of the form

g(z) X. (z)f (z) (z).
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In order that g be entire one has to solve the -equation

fl =c X "f
with appropriate estimates. "Appropriate" means here that fl has to be "small" (i.e.,
tending to zero with given rate) on fll and not very "large" elsewhere.

This may be achieved when the sets fl and fll have special form. Suppose u and
v are two plurisubharmonic functions in Cn, v > 0, and suppose that our sets are
given by

f {z: u(z) < 0], f {z: u(z) < -v(z)}.
Then the function tp(z) u(z) + 1/2v(z) is plufisubharmonic, negative in f21 and
positive near the boundary of f2. If we solve our 0-equation by H6rmander’s method
with estimation of weighted L2-norms using a multiple of o as a weight, then one
can obtain the required approximating functions. Their growth will thus be estimated
in terms of u and v. This construction has been presented in [17]. The precise
formulation of the corresponding result looks as follows"

Let w(z) and o(z) will be plufisubharmonic functions in Cn, both possessing the
property

(u)tll(z) < -A(-u)tll(z) + B,
where u[rl(z) denotes sup{u(w)" [z w[ < r}. Also, assume that o(z) > 0, log Izl
o(o(z)), Izl 0. For e > 0 let

"e {z E Cn" o9(z) < -e(z)}

and suppose that

inf{Iz-z21" Zl Ef2,,z2C’*\f22}>0, Yel >e2,

which is a kind of smoothness condition on o9 and o.
THEOREM [17]. Let f(z) be an analyticfunction in fo satisfying the estimate

If(z)l _< CfeCI(z), z 0.
Thenfor each e > 0 and each N > there exists such an entirefunction g(z) that

If(z)- g(z)l _< Ce-s<z), z

.o++o)(z) cnIg(z)l _< CeCmax(N’Cy)’(" z
where C does not depend on N.

This result was applied in 12] to the study ofreal determination and uniqueness sets
for functions holomorphic in cones of Cn. We show below how it may be applied to
the construction ofexamples ofentire functions with given deficient values. However,
instead of using the approximation result directly (which would require certain work
anyway) we apply the same scheme with explicit formulas for solving the -equation.



444 ALEXANDER RUSSAKOVSKII

3. A formula for the solution of -equation in C

Suppose that we are given a function a(z) and that we have been able to find an
entire function h(z) such that

c(z)
-dz/x dIh(O" to)

h(z)(w z)
c

(3.1)

is uniformly bounded.
Then the function

solves the equation

and satisfies the estimate

/(z) h(z----2 h(, z) (3.)

(3.3)

I(z)l CIh(z)l. (3.4)

The formula (3.2) is known. Apparently it is due to I. N. Vekua (see for instance
[21 where several formulas of this kind are given); it has been applied to interpolation
problems by A. E Grishin and the author [10]. Its very powerful multidimensional
analogues were constructed by B. Berndtsson and M. Andersson [3].

4. Proof of Theorem I

Let

H,(z) Re zp.

Then the plane is a union of 2p angular sectors, with the origin as vertex, in each of
which the function Hp has constant sign. Denote the sectors in which H < 0 by
G1 G.

The question is reduced to the construction of an entire function f(z) whose
indicator equals max(H, 0) and which has the property that f(z)-aj (z) has indicator

Ho in Gj.
Fix a number 8 (0, 1/2). Let ftj, j p, be the truncated angular sectors

{z" no(z) < 2lzl, Izl > 2I.

It is clear that j are disjoint, and each one intersects only one of the sectors Gk.
We enumerate j and Gj in concordance.

Let Xj (z) be a smooth function with the properties: Xj 0 outside of t2j, Xj
on the set {z
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Let

or(z) aj(z)Ox.j/O.

Note that for R large enough,

(suppa) ["{Izl > R} C {z" Hp(z) > 6lzlP}.

Therefore the integral

(z)
l(w) -dzAd

ezo (w z) 2
c

is uniformly bounded independent of w, so that we can apply (3.1)-(3.4).
We claim that the function

f (z) )fj(z)aj(z) ezo l(z)/zr

is the one we are looking for.
Indeed, f is entire by (3.2) and (3.3), the sum does not affect the indicator where

it is positive while by (3.4) the second term has indicator not exceeding Hp. Also, if
z Gj and Izl is large enough, then

f (z) aj (z) ezo I (z)/zr

and hence

If(z)- aj(z)l <_ Cenz).

Thus the function f (z) has the required properties. The theorem is proved.

Remark. If f(z) is the function constructed above and if g(z) is any entire func-
tion ofminimal type order p, then the function f(z)+g(z)ezo has the same deficiencies
as f (z).

5. Proof of Theorem 2

The construction of the function f (z) is similar to the previous one. The difference
is that now we have an infinite number of aj and that the exponential function has to
be replaced by another entire function, h (z), of normal type order p, with properties
of essentially the same nature. However, all the deficient values can no longer be
asymptotic, so one has to replace the angles by "local sectors" (the idea going back
to Arakelyan). Namely, we need to construct a set consisting of disjoint components
which are truncated sectors. These components have to cross each circumference in
an infinite number of components. A sequence of components, each chosen so that
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its radial projection is a ray going to infinity and its circular width is bounded below,
plays the role of the set Gj. We need the function h (z) to have the properties

log Ih(z)l < -xjlzl, z Gj

and

log Ih(z)l > ylzlp

on certain sets around the components of Gj. Then, in the same way as before, we
will construct the function f (z) of the form

f(z) Xj(z)aj(z) h(z)lh(Ot, z)/zr,

so that log If(z) aj(z)l < Clh(z)l on Gj. This would yield 8f(aj) > O.
It turns out that a certain entire function constructed in Eremenko’s paper [7] has

exactly the required properties of h(z). For reader’s convenience we reproduce the
main stages ofEremenko’s construction below, preserving his notations and constants.
We only give a sketch; the details may be found in [7].

Let B(r) be the disk of radius r centered at the origin and let E(e) denote the
e-neighborhood of a set E.

Choose a number/z < zr (1 ). Let

UI {z B(23): 0 < argz </z},

U2 {z B(26): -/z < argz < 0},

U3 {z B(29): 0 < argz </z},

U’-’,
Fix an arbitrary sequence

On’ > "--’ 0,

let &k (Ok 0)/5 and for k 1, 2, 3 consider domains

O- {z B(28) \ B(24)" 0 < argz < Ok},

D- {z" E B(25) \ B(2)" -Ok < argz < -0},

o, ot U o;, o U o,,
k=0

E- {z B(27"9) \ B(24’1)" 0 + Sk

_
argz < Ok --k},
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E- {z" E B(24"9) \ B(21"l) -Ok + dk < argz < --0- 8k},

With respect to the coordinates s log2 r, 0, where r, 0 are the usual polar
coordinates, each set Dk is a union of two rectangular boxes of equal width 58k,
whose projection onto the s-axis is the interval (1, 8), Ek C D is a union of two
boxes of equal width 3, whose projection onto the s-axis is (1.1, 7.9).

Let E C Dk be a neighborhood of Ek.
Let w be a subharmonic function in C, with the following properties: (1) w(z) >

0, z E C\ D; (2) w(z) O, z Do; (3) w(z) < O, z D, k 1,2
(4) max{w(z)" z B(r)} < cr, . < p; (5) w(z) -x, z Ek, k 1, 2 for
some sequence xk 0.
We omit the details of the construction of w.
Define

U(Z) 26ntw
n=l

The second property of w implies that only a finite number of terms are non-zero
for fixed z (ifz E B(26m) then the terms withn > m vanish). Hence u is subharmonic
in C. Next, for z B(6(m + 1)) \ B(6m) in view of properties (1) and (4) we have

m

bt(Z) < Cy 26np Izl---x < C126mp-IZlX < CllZl
n=l

Finally we observe that u(z) has the properties

U(26nz) 26nptl(Z), argzl _<

U(26nz) >_ 26nPu(z),
which follow from property (2) of w.

zC,

Remark. At this point we could use a version of our approximation theorem from
Section 2; however we follow Eremenko’s construction a bit further in order to apply
(3.1)-(3.4).

Choose e > 0 such that the sets D(ek) are disjoint. Let

Ekn 26n Ek, Dn 26nD(e).

By a theorem of Azarin [2], there exists an entire function h(z) such that

log Ih(z)l u(z) + o(Izl), Izl ,
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outside of some exceptional set of zero density. A standard argument involving com-
parison of lengths of circular projections shows that for n > no(k) this exceptional

ekset cannot intersect the sets Ekn and that Dkn \ "-’kn contains a closed curve (con-
taining Ekn in its interior) whose 1-neighborhood 1-’ lies outside of the exceptional
set. Denote the bounded component of the complement of rkn by f2n.

From the properties of u(z) it follows that h(z) has order p, and that, for some
c > 0 and n > no(k),

log Ih(z)l > cylzl p, z - rkn,

log Ih(z)l <-cxlzlp, z E Ekn.
By increasing no(k) if necessary we can assume that

c 26n0(kloglay(z)l < -y,lzl p, Izl >

Finally, let

and that

e-’y’x’dx <
2

26n0(k)

(5.1)

(5.2)

Gj U Ejn, rj U rjn’ "J U "JnUrjn"
n--n0(j) n--n0(j) n--n0(j)

We have constructed the required entire function h(z) and the sets Gj. So we
proceed in the same way as in Section 4.

Choose cut-off functions Xj, with bounded derivatives, that take the value on
Gj, vanish outside ’j, and such that the carrier of OX/O is contained in rj.

Let

if(Z) y aj(z)axj(z)/a.

Note that in the series Y X (z)aj (z) at most one term is non-zero at z.
In view of (5.1)-(5.2), the integral

ct(z)
-dzmd,l(w)

h(z)(w z)
c

is uniformly bounded independent of w.
Thus the entire function

f (z) X.j(z)aj(z) h(z)l (z)/zr

is well-defined. As we mentioned in the beginning of the section, from the properties
of h (z) it follows that 6f (aj) > 0. The theorem is proved.
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6. Further results

In this section we provide simple examples of the application of Theorem to
entire curves.
An entire curve is a mapping f: C pm whose components are linearly inde-

pendent entire functions. It is possible to study preimages of analytic sets of various
codimensions in pm, that is investigate solutions of systems of equations

Q(f(z)) =0,

where Q: pm cq is an analytic mapping (actually, a homogeneous polynomial
mapping).

However, in this note we restrict ourselves to the simplest case when Q is a
homogeneous linear function. In other words, if Z [Z0 Zm] E pm, then
Q(Z) jm=0 ajZ and we study zeros of linear combinations of the form

aj fj (z) (a, f (z)),

where a (a0, a am) is a non-zero vector. As before, the coefficients aj may
be functions of small growth (with no common zeros).

One defines the counting function Nf (r, a) and the Nevanlinna characteristic func-
tion for entire curves in the usual way. Hence the deficiencies 8f(a) are defined, too.

In what follows we will identify hyperplanes in pm and their normal vectors when
there is no danger of misunderstanding. The normal vectors will be considered as
points of pm.

Each system of rn hyperplanes in pm always has a common point. A system of q
hyperplanes in pm, q > m, is said to be in general position if no subsystem of rn +
hyperplanes has a common point. In other words, each system of p equations

(a),z)=0, k= rn+l,

has no solution in pro.
In our examples we will always have f0 1. Thus the hyperplane Z0 0 will

always have deficiency 1, and we exclude it from further consideration. Such curves
are direct analogues of entire functions. Another way to think of this is to consider a
mapping to Cm instead of pm (operate only in one chart of pm) and study preimages
of affine hyperplanes.

The defect relation for such entire curves looks similar to the one mentioned before:
for each system of hyperplanes in general position one has

f(a(k)) < m.

If no general position is assumed, the sum of deficiencies may be larger than m.
However it seems natural to think of rn as the "maximal sum of deficiencies".
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If we think of the most elementary replacement of the exponential function to
provide an example of a curve with maximal deficiencies, then it is

f (z) (1, ezp, zezp, z2ez zm-lezO),

which has m deficient hyperplanes

a() (0, 1, 0 0), a() (0, O, 1, 0 O) a(m) (0 O, 1),

each with deficiency 1.
Certain interesting examples of entire curves with given deficiencies have been

constructed by Ya. I. Savchuk; e.g., see 18].
In general it is not known, that if an entire curve has maximal sum of deficiencies

then its order is an integer. It is no longer true that the deficiencies are rational. The
corresponding example, due to A. Eremenko, has been communicated to the author
by B. Shiffman. However, since our aims are different, we will not consider the
corresponding problem in full generality.
We illustrate our methods by constructing an example of an entire curve of integer

order p with maximal sum of deficiencies for a given system of deficient hyperplanes
a amp in general position. We will actually construct a "componentwise" ex-
ample since our method allows us to control the rate of approximation.

In our considerations, the ak) can be small functions as well. The general position
condition for this case which we adopt here is that for every fixed z 6 C the set of
hyperplanes (a k) (z), Z) 0 is in general position. Actually, in the construction the
general position condition is not essential; it is assumed mostly for the sake of having
m as the sharp bound for the sum of deficiencies.

THEOREM 3. Let positive integers m and p, and mp vectors a) (z) whose com-
ponents are functions of at most minimal type with respect to order p be given.
Suppose that the system consisting of hypersurfaces defined by normal vectors a
and the hyperplane Zo 0 is in general position. Then there exists an entire curve

f: C -- pm, oforder p, such that each a) is a deficient vector with deficiency 1/p
so that the sum ofdeficiencies corresponding to all a equals m.

Let Hp(z) and the sets Gj, j p, be defined as in Section 3. Break
arbitrarily the set ofak) into m-tuples, so that to each j we associate m of vectors a <k)

which we denote by bjt, 1 m, j p. Each system ofm hypersurfaces
(bjl(Z), Z) O, 1 m, has a common vector d<J)(z). From the general
position condition it follows that dj) (z), j p, may be written in the form
(1, dj) dm)) with dJ) being entire functions of small growth.

Indeed, since d(j) is the solution vector in pm of a system of linear equations with
entire coefficients, it can be written as a vector of the corresponding determinants
formed from the coordinates of the bjl; hence all its coordinates are entire functions

of small growth. If d(oj) vanished, then the hyperplane Z0 0 would also pass through
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d(j), which would contradict the general position condition. Hence dj) # 0 and we
can divide through by it.

With the help of Theorem 1 construct a set of m functions f fm, so that
r/(J) in Gj From thefk corresponds to/9 deficient values k

r/(j) in a way that fk ,
estimates of Theorem it follows that the indicator of f (1, f fm) is in fact
max(Ha(z), 0) while

I(bjl, f)l _< Ceup-z) z E Gj m

which implies that each deficiency corresponding to bjl (and hence to a) is precisely
1//9, and thus their sum is m.

It may happen that the functions we constructed are linearly dependent. Then,
according to the remark in the end of Section 4, we can modify each of 3 so that they
become linearly independent while the deficiencies remain unchanged.

The theorem is proved.
Similar reasoning may be used to prove the following counterpart of Theorem 2

for entire curves.

and vectors a(z) a2(z)THEOREM 4. Let a positive number p >
whose components are functions of at most minimal type with respect to order p,
be given. Suppose that the system consisting of hypersurfaces defined by normal
vectors a and the hyperplane Zo 0 is in general position. Then there exists an
entire curve f: C pro, oforder p, such that each a is its deficient vector.

Clearly the next step would be to consider entire mappings Cn pm (or Cn

Cm) and the question of constructing the corresponding examples in that case. This is
also possible if we apply the above construction with respect to, say, z, considering
the rest of the variables as parameters. Since this would be essentially the same
argument, we omit the details and leave the precise formulation of the corresponding
result to the reader.
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