
ILLINOIS JOURNAL OF MATHEMATICS
Volume 40, Number 3, Fall 1996

SOME RESULTS ON THE TOPOLOGY OF FOUR-
MANIFOLDS WITH NONNEGATIVE CURVATURE

MARIA HELENA NORONHA

1. Introduction

One of the most interesting problems in Riemannian geometry is the study of the
topology of manifolds which admit a metric with nonnegative sectional curvatures.
Although many results are known, such as pinching theorems, in general the problem
is quite open. In the case that the curvature operator is nonnegative, the results of sev-
eral authors lead to a topological classification of such manifolds. This classification
can be found in [MN].

If the dimension of the manifold is three, the nonnegativity of the sectional curva-
tures implies the nonnegativity of the curvature operator because the Weyl tensor is
identically zero. If the dimension is four, the work of Walschap [W] gives a thorough
understanding of complete noncompact 4-manifolds with nonnegative sectional cur-
vatures. However, in the compact case this problem has only been solved so far under
additional assumptions (see IF], [HK], IS1] [$2], [Se], for instance) and the Hopf
conjecture remains unsolved: does S2 x S2 admit a positively curved Riemannian
metric?

It follows from Theorem 3 in [CG], that if M is a compact 4-manifold with non-
negative sectional curvatures then the universal covering M splits isometrically as

-4-k x Rk, where is compact. If k 1, the topological classification of compact
3-manifolds with nonnegative Ricci curvature in [H], implies that3 is homeomor-

phic to the sphere S3. If k 2, 2 is homeomorphic to S2 by the classical Theorem
of Gauss-Bonnet. Hence, if the fundamental group zr (M) is infinite, M is covered
either by R4 or by S4- x R for k 1, 2. Therefore, we consider in this paper the
case that/Q is compact with some hypotheses that will imply that is definite. The
description of the topology of will then follow from [Do] and [Fr].

First, recall that for an oriented 4-manifold, the bundle of exterior 2-forms A2

splits as the Whitney sum Aa A2+ A where A2 are the eigenspaces of the
Hodge operator. The Weyl conformal tensor W leaves A2 invariant and W+/-

will denote its restriction to A2,. It is known that a compact half-conformally fiat
manifold (either W+ 0 or W- 0) with nonnegative scalar curvature is definite
or Kihler in the conjugate orientation (see [L] or [N]). In Section 3 we generalize
this fact in Proposition 3.2. We obtain the same conclusion under the assumption that
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TOPOLOGY OF FOUR-MANIFOLDS WITH NONNEGATIVE CURVATURE 391

S11 W-l[2 for all points of M, where S is the scalar curvature. As in [N], we then
apply this proposition to obtain a theorem for compact 4-manifolds with nonnegative
Ricci curvature. We recall that a K3 surface is a complex surface with first Betti
number bl (M) 0 and first Chern class Cl 0. Denoting the dimension of the
subspace of harmonic 2-forms which are anti-self-dual by b-, we have the following
first result.

THEOREM 1. Let M be an oriented, compact 4-manifold with nonnegative Ricci
Scurvature. Suppose that II W-II2 _< for all points ofM. Then one ofthefollowing

holds:

(a) / is either homeomorphic to S4 or to the connected sum Cp2#...#CP2.
(b) / splits isometrically as S x R or S2 x R2 or S2 x S2.
(c) /1 is a K3 surface with a Ricciflat Kiihler (i.e., Calabi Yau) metric.
(d) M is a Kiihler manifold with the conjugate orientation and b(M) 1.

For the case of nonnegative sectional curvatures, we examine these relations be-
tween the norm of the components of the Weyl tensor and the scalar curvature S,
proving the next result.

THEOREM 2. Let M be an oriented, compact 4-manifold with nonnegative sec-
S Stional curvatures. Let us suppose that IIW/ll2 <_ or IIW/ll2 >_ for all points

ofM.

S [2 S(a) IfatsomepointofMwehavellW+ll2 < orllW+l > ,thenMisdefinite.
Itfollows that ifrcl (M) isfinite then the universal covering M is homeomorphic
to either S4 or to the connected sum Cp2#... #CP2.

(b) /fllW+ll2 s for allpoints ofM and zrl (M) isfinite, then one ofthefollowing
holds:

(i) M is homeomorphic to the sphere S4.
(ii) M is a locally a Riemannian product oftwo surfaces.
(iii) M is a Ki:ihler manifold biholomorphic to the complex projective space CP2.

Although the assumption of the above theorem seems quite restrictive, it is verified
for all Kihler manifolds (with the natural orientation, IIW/ll2 s=). Moreover, if
we do not assume orientability and M has a parallel two-form, applying Theorem 2 to
the double cover of M we conclude that either M is locally a product of two surfaces
or M itself is orientable and M is biholomorphic to CP2. Therefore, Theorem 2
generalizes the results of Seaman in [S1 ].

Theorem 2 has other consequences too. As is pointed out in [HK], the known
examples of compact, orientable 4-manifolds with nonnegative sectional curvatures
(S4, CP2 and local product of surfaces with nonnegative sectional curvatures), admit
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metrics with a lot of symmetry. On a Riemannian homogeneous space, the scalar
curvature, II W-II and II W/ll are constant. Supposing the constancy of the norm of
only one component of the Weyl tensor W, Theorem 2 implies the following result:

COROLLARY 1. Let M be an oriented, compact 4-manifold with nonnegative
sectional curvatures. Let us suppose that the scalar curvature and II w-II are constant
on M. Then M is either definite or is locally a Riemannian product oftwo surfaces.

Comparing the norms ofthe components ofthe Weyl tensor we obtain the corollary
below.

COROLLARY 2. Let M be an oriented, compact 4-manifold with nonnegative
sectional curvatures. Let us suppose that IIW-II _< IIW/ll,

(a) Ifat some point ofM we have IlW-ll 2 < IIW+ll, then M is definite.
(b) If ll W-II2 II W/ll2 for all points ofM and re1 (M) is finite, then M is either

homeomorphic to S4 or is locally a Riemannian product oftwo surfaces.

The first Pontrjagin form of a 4-manifold is given by Pl (M) (llW+l 12 -IIW- 12)
dV. It then follows from Corollary 2 that an oriented compact, positively curved
Riemannian manifold with pl (M) 0 is homeomorphic to S4. Notice that in
S2 x S2 the first Pontrjagin class is zero. Therefore, Corollary 2 answers the Hopf
conjecture under the stronger assumption of first Pontrjagin form zero, instead of the
first Pontrjagin class.

As a concluding remark, let us point out that all the conclusions of Theorem 2 and
its corollaries hold assuming a weaker condition on the sectional curvatures. This
conditions is gij + Kmm >_ O, whenever Xi, Xj, Xm, Xn are orthonormal vectors of
the tangent space where Kij denotes the sectional curvature of the plane spanned by
{Xi, Xj} (see Remark 4.4).

2. Notations and preliminaries

Let M be an oriented Riemannian manifold of dimension 4, and let A2 denote
the bundle of exterior 2-forms and A2 Az+ A the eigenspace splitting for the
Hodge operator.

The Riemann curvature tensor defines a symmetric operator 9: A2 --> A2 given
by

1
(eij) " Rijlkekl

k,1

where {ei is a local orthonormal basis of 1-forms, eij denotes the 2-torm ei A ej and
gijlk (R(ei, ej)el, ek). The operator 9 can be decomposed as

+ + +
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with respect to the decomposition A2 A2+ q) A2_. This decomposition gives the
irreducible components of 9 (see [ST]). They are tr tr - , where S is the
scalar curvature, the traceless Ricci tensor + and the two components of the Weyl

stensor W+ and W- given by W+ ++ and W- 9- 12"
Let F" AZ(TxM) -- A2(TxM) be the Weitzenb6ck operator given by (see [$1])

(F(eij), ekl) Ric (ei, ek)Sjl + Ric (ej, el)Sit Ric (ei, el)Sj,

Ric (ej, ek)8il 2Rijlk,

where Ric denotes the Ricci curvature. This operator satisfies the well known
Weitzenbtick formula; e.g., A09 -div Vo + F(w). Moreover F is a symmet-
ric operator and A2+ and A2 are F-invariant (see [$2], Proposition 1). Then F=F.
and we can find a normal form (as in [ST] for the curvature tensor R) for F at each
point of M. Since this normal form will be used in the rest of the paper, we repeat
the arguments used in [ST].

PROPOSITION 2.1. Let M be an orientedfour-manifold. Then for each x in M
there exists a positively oriented orthonormal basis {el, e2, e3, e4 of TxM such that
relative to the corresponding basis {el2, el3, el4, e34, e42, e23}, F takes theform

where

AB

0 82 0 B 0 /x2 0
0 0 83 0 0

Proof Let {Ctl, Or2, Or3} and {1,/32,/33} be orthonormal bases ofeigenvectors of
F+ and F- respectively, and ri and si, 1, 2, 3, be the corresponding eigenvalues.
Let us define the planes Pi and Pi+/- Therefore {P1 P2 P3 P, P2x

P(} is an orthonormal basis of A2(Tx M) and F(Pi) 8i ei -" [Zi Pi-I- and F(P)
ri+si Moreover since Pi P we have8i Pi+/- -]-Izi ei, where 8i and/Z 2

Pi /x Pi 0 P /x P which implies that Pi and Pi+/- are decomposable. We also
have P1 A P2 0 and hence P1 (q P2 {0}. Let el in P1 tq P2 be a unit vector and
e2 and e3 such that {e, e2} and {el, e3 are oriented orthonormal bases for P1 and P2
respectively. Choose e4 to complete a positive oriented orthonormal basis of TxM.
Then P el A e2, P2 el A e3 and e/x e4 is +’P3 or P3+/-. The matrix of F relative
to {el2, el3, e14, e34, e42, e23} is of the above type. []

It follows from the above proposition that the self-dual-2-forms

1 -(e12 d- e34), or2 ---(e13 e24), or3 ---(e14 d-- e23)
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are the eigenvectors of the symmetric operator F+ F: Az+ Az+ with corre-
sponding eigenvalues given by ri i 4- i and the anti-self-dual 2-forms

/1 ----(e12 e34), /2 --(e13 4- e24), 3 ---(e14 e23)

are the eigenvectors of the symmetric operator F- F" A2 ---> A2 with corre-
sponding eigenvalues given by si i ti

PROPOSITION 2.2. Let {el, e2, e3, e4} be the orthonormal basis ofProposition 2.1
Then the self-dual 2-forms ot, (2 and c3 are the eigenvectors of++ and the anti-self-
dual 2-forms , and 3 are the eigenvectors of -. Moreover if ), )2, )3 and
qg, q92, o3 are the corresponding eigenvalues oft_ and- respectively, we have

r 2(Z2 4- .3), r2 2(,k + .3), r3 2(. + 2),

s 2(q92 + o3), s2 2(q9 + o3), s3 2(o + qgz),

where ri and si denote the eigenvalues of F+ and F- respectively.

Proof We will show that (t(ci), otj) 0 and ((/3i),/3j) 0 for : j. For
simplicity, we will show that ((Cl), otz) 0 and the other ones are proved in similar
manner. Since (F(c), c2) 0, we have

(F(el2), el3) (F(el2), e24) + (F(e34), el3) (F(e34), e24) 0

From the definition of F we get

0 Ric(e2, e3) 2R1231 4- Ric(e, e4) 4- 2R1242 Ric(e, e4) 2R3431

Ric(e2, e3) 4- 2R3442 -2R1231 + 2R1242 2R3431 4- 2R3442

Now, the eigenvalues L and 0 are given by

1
,k 7(K2 + K34) R1234,

1
Ol -(K12 4- K34) 4- R1234,

z

(2.3) ,k: (K13 4- K24) 4- R1324, go2 (K13 4- K24) R1324,

1
.3 7(K14 4- K23)- R1423,

1
o3 (K14 4- K23) 4- R423,

where Kij denotes the curvature of the plane {ei, ej }. On the other hand, from the
definition of F we have

1
r (F(cl), c1) 7(Ric (el) + Ric (e2) 4- Ric (e3) 4- Ric (e4) 2K2 2K34z

4-4R1234) K13 4- K24 4- K14 4- K23 4- 2R1234.
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Using the first Bianchi identity, we conclude

rl (F(Otl), al) K13 d- K24 2R1324 -+- K14 d- K23 2R1423 2(,2 -t- ,3).

Similarly we obtain

S1 IF(ill), ill) g13 q- K24 q- K14 K23 -2R1234 2(2 3)

r2 (F(ot2), 0t2) K12 + K34 q- K14 -+- K23 2R1324 2(.1 + .3)

(2.4) $2 (F(/2), f12) K12 "if- K34 q- K14 + K23 + 2R1324 2(tpl + 3)

r3 (F(ct3), or3) Kl2 -k- K34 q- K13 + K24 + 2R1423 2(X1 + X2)

$3 (F(fl3), 13) K12 + K34 at- K13 q- K24 2R1423 2(q)l + q92). I-’]

SFrom the proof of Proposition 2.1 we conclude that ri q- 2i si + 2q)i "if,
where S is the scalar curvature. Therefore we can state:

PROPOSITION 2.3.
vature S by

The WeitzenbOck operator is given in terms of the scalar cur-

S S S S
F+ z.qt: 2W+ and F-=--2,t-= 2W-

2 * 3 2 3

3. Four manifolds with nonnegative Ricci curvature

In this section we prove Theorem 1, stated in the introduction. The result will
follow from Proposition 3.2 below and Theorem 3 in [CG].

LEMMA 3.1. Let II W+ll denote the norm ofthe components W+ ofthe Weyl tensor
s 12 sand S the scalar curvature. If lIW/ll2 <_ (lIW-I <_ -), then F+ (respectively

F-) is nonnegative if S >_ 0 and is nonpositive if S <_ O. Moreover a strict inequality
implies F+ (respectively F-) strictly positive or strictly negative.

Proof. Let W/, 1, 2, 3, be the eigenvalues of W+. We claim that (W/)2 _<
2 W+ [2711 In fact, since trace of W+ is zero, we have

(W)z (W + Wff)z= IlW+]l2- (W)2 + 2W:W:
It follows from the discriminant of the characteristic polynomial of W+ that

(Wi): 4WfW: > 0

Swhich substituted in the above equation implies the claim. Now if ll W+ll= we
have

2 W+ 2
$2

(w/)2 _< ll II _< - for/ 1,2, 3.

This together with Proposition 2.5 concludes the proof of the lemma.



396 MARIA HELENA NORONHA

It is well known that a compact half-conformally flat manifold (either W+ 0
or W- 0) with nonnegative scalar curvature is either definite or Kihler with the
conjugate orientation (see, for instance, [L], Proposition or [N], Proposition 2.4).
We generalize this result proving the following proposition.

PROPOSITION 3.2. Let M be an oriented, locally irreducible, compact four di-
smensional manifold with nonnegative scalar curvature S and such that [[ W-l[2 <

for all points of M. Then either M is definite or Kiihler with the conjugate orienta-
tion. In the latter case either M is covered by a K3 surface with a Riccifiat metric or
b(M) 1.

Proof. Let G be the restricted holonomy group of M. Since M is locally ir-
reducible, so is G. Therefore the universal covering t (with the covering metric)
has the irreducible holonomy group G and M is also irreducible. Recall that in [B],
Berger proved that if for some x /f/, G acts irreducibly on Tx, then either r is
locally symmetric or G is one of the following standard subgroups of SO(4): SO(4),
U(2), or SU(2).

If r is locally symmetric so is M. Then by Corollary 4 in [D], M is half-
conformally-fla and the result follows. If G=SU(2), Berger also proved that r is
Ricci-flat and then has the Calabi-Yau metric (see [Y]).
We were left with two possibilities for G, SO(4) or U(2). Hence the restricted

holonomy group of M is either SO(4) or U(2) and these are the only two possibilities
Sfor the holonomy group H of M. The assumption that IW-II2 <_ , implies, by

Lemma 3.1, that F- is nonnegative. Integrating by parts the Weitzenb6ck formula
over M yields

(3.3) (Am, w) (Vw, Vw) + fu(F(o ), co)dV

where (,) is the inner product on AZ(M) given by

where dV is the volume form ofM and (,) is the naturally induced inner product on the
Sspace of2-forms AZ(TxM). If IIW-[I2 < for some point p in M, F- is positive on

a neighborhood of p and then (3.3) implies that there are no harmonic anti-self-dual 2-
forms and M is definite. Therefore ifw is an anti-self-dual harmonic 2-form, we have
IIW-II2 s. Since F- is nonnegative, we conclude that (Vto, Vto) 0 and then
to is parallel; i.e., to is left invariant by H. By the holonomy principle, if H SO (4),
since the sphere S4 has the same holonomy, the existence of to would give rise to a
parallel and hence harmonic 2-form on S4, implying that the second Betti number
b2(S4) > 0, which is a contradiction. If H U(2), since the complex projective
space CP2 has the same holonomy and b2(CP)2 we conclude b- (M) 1, using
again the holonomy principle.
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ProofofTheorem 1. As we observed in the introduction, if if r (M) is infinite
then A is either R4 or splits isometrically as S4-k x R4 for k 1, 2. If rl (M) is finite
and the restricted holonomy group G of M is reducible, then/ splits isometrically
in the product of two surfaces each of them homeomorphic to the sphere S2. If G is
irreducible, the result follows from Proposition 3.2.

4. Nonnegatively curved four manifolds

In this section we investigate some conditions on compact four manifolds with
nonnegative sectional curvatures which imply the nonnegativity of F+ or F- or both.

LEMMA 4.1. Let M be an orientedfour dimensional manifold with nonnegative
sectional curvatures. Ifthere exists a point p in M such that the operator ++ (or -)
has one nonpositive eigenvalue, then R- (respectively 91) is nonnegative at p.

Proof Using the notation of Section 2, let us suppsoe that after reordering the
basis {Cl, c2, or3} we have )v < .2 < )v3. If )Vl < 0 then (2.3) implies that R1234 >_ 0
and hence Pl > 0. In order to show that 992 > 0 and 993 > 0, we consider the planes
P and P+/- ul-/2 The proof of Proposition 2.1 shows that there is an

01 t’P2 andorthonormal basis {fl, f2, f3, f4} of the tangent space such that f12 ,/

f34 al-/3a Hence the sectional curvatures K (fl f2) and K(f3 f4) are given by

K(f, f2) ) + P2 + (9(otl), ]32)

K(f3, f4) ,1 - 992- (q}(O/1), 2)

Since 0 < K(f, f2) + K(f3, f4) )l + 992, if )1 < 0 then P2 >_ 0. In a similar
manner we show that 3 >_ 0. t

LEMMA 4.2. SIft > 0 (or- > O) then IlW+[I2 (respectively [IW-II2

Proof. Since )Vl + .2 + 3 1/4, we have

S2.21 + ,22 + ) + 2)Vlk2 + 2)Vl)V3 + 2)v2k3 g-"
SBut .2 + )22 + . IiW+ll2 + and therefore

S2

2)Vl)V2 + 2)Vl)V2 -+- 2)v2)v3
24 IIW+l12"

The nonnegativity of ++ implies the result.
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Remark4.3. Notice that the proofofLemma 4.1 shows that if (or- has one
negative eigenvalue, then 9- (respectively t++) is positive at p. We want to observe

sthat in Lemma 4.2 the positivity of 9++ (or 9-) implies IIW/ll2 < (respectively
sIW-II2 < ). This is turn implies in Lemma 3.1 that F+ (respectively F-) is

positive.

Remark 4.4. The proof of Lemma 4.1 shows that the result still holds if instead
of nonnegative sectional curvatures, we assume

(*) K (Xi Xj) A1- K (Xm, Xn) 0, whenever Xi Xj, Xrn, Xn are orthonormal vec-
tors of the tangent space.

Since condition (*) implies the nonnegativity of the scalar curvature, Remark 4.3
also remains true. Now we prove Theorem 2 and its corollaries using the above
lemmas and remarks. It then follows that all our results hold under the weaker
assumption (*), as we claimed in the introduction.

SProofofTheorem 2. First, let us suppose that II W+112 . Then F+ is non-
snegative; if there is a point p in M such that IIW/ll2 < we have that F+ is
spositive at p. This implies that b(M) 0. If IIW/ll 2 >_ , then it follows from

Lemma 4.2 and Remark 4.3 that 9 has at each point of M a nonpositive eigenvalue
s(otherwise IIW/ll < ). Then Lemma 4.1 implies - is nonnegative and there-

s sfore II W-II2 _< and F- is nonnegative. If II w+112 > for some point p, then
sII w-II= < at this point. This implies that F- is positive at p and then b(M) 0.

The classification of [Do] and [Fr] for definite, smooth, simply connected compact
4-manifolds finishes this part of the proof.

If IIW/ll2 s= for all points of M, we claim that this fact implies that II w II 2 _<
s
2q. If not, 9- would have a negative eigenvalue at some point p, implying by

sLemma 4.1 that t is positive at p and therefore IIW/ll 2 < at p, contradicting

IiW/ll2 s=. If Zrl (M) is finite and the restricted holonomy group G is reducible, the

universal cover M splits isometrically and M is locally a product of two surfaces. If
G is irreducible, we proceed as in the proof of Proposition 3.2, using the possibilities

sfor G described in [B]. Notice that now we have IW-II= _< and then F is a
nonnegative operator. If G is SU (2), M has the Ricci-flat metric. Then the scalar
curvature is identically zero andwe conclude from Proposition 2.5 that the Weyl tensor
is identically zero; i.e., M is conformally flat. The assumption that Zrl (M) is finite
excludes this case, since we would conclude that M is covered by R4. Therefore
G cannot be SU(2). If/ is symmetric space then is an _analytic Riemannian
manifold ([He], p. 222, Proposition 5.5); this implies that if M is irreducible then
M and M are locally irreducible. By Corollary 4 in [D], M is half-conformally fiat.
If the second Betti number b2 0, M is conformally flat. Conformally flat, locally
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irreducible and locally symmetric manifolds have constant sectional curvatures and,
since M is oriented, in this case we have M isometric to S4. If b2 > 0 then there
exists an harmonic 2-form o which is parallel, implying that M is Kihler manifold.
A K/ihler manifold with nonnegative scalar curvature that is locally irreducible and
locally symmetric space is isometric to the complex projective space CP2. Therefore,
the only remaining cases are the ones whose holonomy group H is either SO (4) or
U (2). Again using the fact that F is a nonnegative operator we consider the following
cases"

(i) If b2 > 0, then there exists a harmonic 2-form 09 which is parallel, implying
again that M is K/ahler manifold. Then the holonomy group is U(2) and then the
second Betti number b2 1. Now, let J denote the complex structure and p the
Ricci form given by p(X, Y) Ric(X, JY). Since p is closed (see [KN], vol. 2,
p. 154) and b2 1, it follows from the Hodge Theorem that p cw + q,, where c is
a real number and 4 is an exact form orthogonal to o. Now (p, o) c(co, o), where
(; is as in (3.3). On the other hand, (p, w) ft S dV which implies that c > 0
(because S is nonnegative and not identically zero). Since p and cw are homologous,
by Yau’s solution to the Calabi conjecture (see [Y]), M admits a Kihler metric with
positive Ricci curvature. This in turn implies that M is simply connected, by a result
of Kobayashi in [K]. Then H2(M, Z) Z and, by a result of Whitehead [W], M
is homotopy equivalent to CP2. A result of Yau [Y] implies that a K/ahler manifold
homotopy equivalent to CP2 is biholomorphic to CP2.

(ii) If b2 0, let us consider the universal covering/. If b2(/) > 0, it follows
from part (i) of this proof that/ is biholomorphic to CP2 and therefore cannot
cover M. Then, b2(M) 0 and by Freedman’s solution to the Poincare conjecture

is homeomorphic to the sphere. Since M is oriented, we conclude that M is
homeomorphic to S4.

SProofof Corollary 1. IfllW+ll 2 _< and for some point in M we have W+ <
S S
2, the result follows from Theorem 2. If IIW/II2 > for some point p in M, it
follows from Lemma 4.2 that t++ has one negative eigenvalue. Now, from Lemma 4.1

sand Remark 4.3 we conclude that II W-I[2 < at p. Now the hypothesis imply that
sIIW-II2 < for all points of M. Therefore F- > 0 and then (3.3) shows that

b-(M) 0 and M is positive definite.

SProofofthe Corollary 2. First, suppose that IIW+ll 2 > for some point p in
M. It follows from Lemma 4.2 that has one negative eigenvalue. Now, from

sLemma 4.1 and Remark 4.3 we conclude that II W-II2 < which implies that F-
sis positive at p. For the points in M such that IIW/ll2 _< , the hypothesis in (a)

simplies that II w-II2 _< . Therefore F- is a nonnegative operator that is positive on
a neighborhood of p. Now (3.3) shows that b-(M) 0 and M is positive definite.

S SIf ][W+II2 _< for all points of M and IIW-II2 < for some point p, we conclude
again that b- (M) O.
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Now suppose that II W-II2 II W+ll2 for all points of M. Recall that the first
Pontrjagin form pl(M) on an oriented 4-manifold is given by pl (llW/ll2

IIW-112)dV, where dV is the volume form of M (see for instance [AHS], p. 428).
Therefore, we have pl(M) 0 and Lemmas 4.1 and 4.2 imply that IIW-II 2

sIIW/ll2 _< . If Zrl(M) is finite, considering all the possibilities for restricted
holonomy group G in Theorem 2, we conclude that the only possible cases now
are S4 or local Riemannian product of two surfaces, since p (M) 0 implies that
the signature of M is zero which excludes the possibility of being biholomorphic
to CP2.
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