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ALMOST EVERYWHERE CONVERGENCE AND
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F. J. MARTIN-REYES AND M. D. SARRION GAVILAN
Dedicated to Professor Alexandra Bellow
ABSTRACT. We study the almost everywhere convergence of the ergodic Cesaro-a averages R, o f =

7'5 Z;’___o A::‘.' T! f and the boundedness of the ergodic maximal operator My f = sup,en |Rn.o fl,
associated with a positive linear operator 7' with positive inverse on some L”(u),1 < p < 00,0 <a < 1.

1. Introduction

Let (X, F, u) be a o-finite measure space and let T be a positive linear operator
on some L?(u), 1 < p < oo (positive means that if f > 0 a.e. then Tf > 0 a.e.).
For every f € L”(u) we consider the averages

1
R.f=—— T'f, neN,
n+ 1 i=0
and the maximal operator
Mf = sup|R,fl.
neN

Akcoglu [1] proved that if T is a positive linear contraction on L”(u), 1 < p < oo,

then
p
f IMfIPdp < (——’1—) f LF1? du
X p—1 X

and R, f converges almost everywhere and in L?(u) for all f € LP(u). Actually,
one does not need to have a contraction to obtain the boundedness of M and the a.e
convergence of the averages R, f. In fact, it was shown in [16] thatif T: L”(u) —
LP(u),1 < p < oo, is apositive linear operator with positive inverse then the ergodic
dominated estimate

/X \MfI? dp < C /X 1P du
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holds for all f € L”(w) if, and only if, the operator is Cesaro bounded, i.e.,

sup [ 1R, f1rdu < [ 1f17 du
neNJX X

forall f € L”(u) and, in that case, the averages R, f converge a.e. and in L”(u) for
every f € L”(u). (A. Brunel [4] proved that this equivalence holds assuming only
that T is a positive linear operator on L”(u), 1 < p < 00.) It is worth mentioning
that by Theorem 4.2 in [8], a positive operator is Cesaro bounded in L” () if, and
only if, the averages R, f converge in L”(u) forall f € L7 (u).

The averages R, are the Cesaro-1 averages of the sequence {T" f}. In this paper
we are interested in studying the a.e. convergence of the Cesaro-a averages with
0 < a < 1, which are stronger processes of convergence [23]. The Cesaro-o
averages and the Cesaro-a maximal operator associated with T are defined by

n

1 o
Ruaf =5 AST'S

n j=0

and

My f =sup|Ryofl,
neN
where A% = @tl@n) 4pd g2 = 1. Note that R,,; = R, and M, = M. In his
thesis [11], R. Irmisch proved the following theorem which generalizes Akcoglu’s
theorem to Cesaro-o averages.

THEOREM A [11]. Let @ and p be such that 0 < a < 1 and ap > 1. Let

T: LP(u) — LP(u) be a positive linear contraction. Then there exists C > 0 such
that

f Mo fIP s < C f 117 du
b's X
and R,  f converges a.e. and in L”(w) for all f € LP(w).

In the limit case ap = 1, the result does not hold even if T is induced by an
ergodic measure-preserving transformation [5]. In this limit case, Broise, Deniel and
Derriennic [3] have obtained that a restricted weak type inequality holds for operators
defined by composition with a measure-preserving transformation. More precisely,
they obtained the following theorem.

THEOREM B [3]. Let (X, M, ) be a probability measure space and assume that
t: X — X is a measure-preserving transformation. Let Tf = f o t. Then the max-
imal operator M, maps the Lorentz space Ly;y,1(1t) into Lyja,00(t). Furthermore,
the sequence R, o f converges a.e. for all f € Ly;q,1(1). (See [10] for the definition
of the L, 4(11) spaces.)
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Other results related to the ones stated above can be found in [6].

Our goal is to study the behaviour of the maximal operator M, and the a.e. con-
vergence of R, ,f, 0 < a < 1, assuming that T is a positive linear operator on
L7 (u) with positive inverse, i.e., for the same class of operators considered in [16].
In Theorem 3.1 we give a sufficient condition for the boundedness of M, and the a.e.
convergence of the averages R, o f. As a corollary we obtain the dominated estimate
and the a.e. convergence of the averages R, , f in the following cases:

(1) T is apositive power bounded linear operator with positive inverse and pa > 1
(Corollary 3.3).

(2) T is a positive linear operator with positive inverse such that the operator T,
defined by T f = (Tf%)"* for nonnegative functions, is Cesaro bounded in
LP*(u), pa > 1 (Corollary 3.4).

(3) T = f ot where t: X — X is an invertible nonsingular transformation such
that T' is Cesaro bounded in LP*(u), pa > 1 (Corollary 3.5).

These results leave open the question of the equivalence between the ergodic
dominated estimate

f M f1P du < cf \fIP du
X X

and the uniform boundedness of the Cesaro-o averages

sup [ \Ruaf17 i <€ [ 1717 di.
neNJX X

Unlike the case o = 1, this equivalence does not hold for 0 < & < 1 even in the
good case ap > 1. In §3 we show an example for which the Cesaro-o averages are
uniformly bounded but the ergodic dominated estimate does not hold for M,,.

Taking into account this example, the following question arises: are there any
kind of Cesaro-o averages, let us say {R; ,}, such that the boundedness of M, is
equivalent to the uniform boundedness of {R; ,}? In §4 we answer this question in
the affirmative for operators T of the form Tf = g(f o t), where g is a positive
function and 7 is an ergodic invertible transformation, working in L”(w du) where
o > 0 and u is preserved by t (see Theorem 4.6, where we prove also that the
sufficient condition in Theorem 4.1 is equivalent to the boundedness of M,). The
averages that we introduce in §4 can be viewed as generalizations of the Ceséro -Hardy
averages defined for functions f on the integers by H, f (k) = A—J—k An_ ! ; f @)
ifk <nand H, f(k) = 0if k > n. ’

The statements and the proofs of the theorems need some notation and several
results that we establish in §2.

Throughout the paper the letter C means a positive constant not necessarily the
same at each occurrence. If 1 < p < oo then p’is the numbersuchthat1/p+1/p’ =
1. Finally, if A and B are measurable sets, A = B means that A equals B up to a set
of measure zero.
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2. Some previous results

We are going to need some results about the maximal operator m} associated with
the Cesaro-a averages of functions on the set of the integer numbers.

Definition 2.1. Let0 < o < 1, If a is a real-valued function on Z, we define the
Cesaro-a maximal function m}a by

> Axlali + j)

j=0

1
+a(i) = sup —
mga(i) ,,‘;‘3/4«

n

, i€l 2.1

LEMMA 2.2 [21]. Let w be a positive functionon Z,0 < a < land 1 < p < oo.
The following statements are equivalent:

(i) There exists a positive constant C such that

00 o0
Y [mia@] 0@ =€ Y la®)IPw), 2.2
i=—00 i=—00
for any function a on Z.
(ii) w satisfies the condition A;a (Z), orw € A;';a (Z), i.e., there exists a positive
constant C such that

1/p

s I/p k ,
(Zw(i)) (Zd'f"(t)(Aﬁ:,‘ ”) <CAy,. (23)

forallr,s,k € Zwithr <s <k.

Lemma 2.2 is a particular case of Theorem 2.16 in [21]. Alternatively, just look at
the proof in [19] and write it in the setting of the integers. Observe that if w(i) = 1
for all i then (2.3) holds if, and only if, pa > 1.

The following result states a relationship between the classes A;._a(Z) and the
classical ones A;,L (Z) = A,‘;l(Z); it also gives the analogue in our setting of the
implication w € A;,‘ (Z)=> we A,',*_g(Z) (see [20], [22], [16] and [14]).

LEMMA 2.3. Let w be a positive functionon Z. Let0 <« < l and p > 1.
M Ifw e A;-; «(Z) with a constant C, then there exists ¢ > 0, which depends

only on C, such that w € A;,L_e'a (Z). Furthermore, w is also in A;,‘ (Z) with the same
constant C.

Q) Ifap > 1andw € A;',,(Z), then w is also in A,’;a(Z).

We shall sketch the proof of this lemma (alternatively, one can look at the corre-
sponding proof in [19] and write it in the setting of the integer numbers).



596 F. J. MARTIN-REYES AND M. D. SARRION GAVILAN

Theorem 2.16 in [21] (see the proof of (ii)=> (iii)) and the fact that, for —1 < o < 0,
the coefficients A7 are decreasing as a function of n [23], give us (1) .

To prove (2) we simultaneously use the fact that if w € A+ (Z) with ap > 1, then
w € A} (Z) for some r with | < r < ap, together with Holder s inequality with
exponents y and y’, where y = l_—'

Analogous results hold for the operator

Do Axjai+ )|, i€z,

with the A;Q(Z) changed by the A;; «(Z) classes: a positive function w defined on
7 satisfies the condition A;;a (Z) if there exists a positive constant C such that

k 1/p
(Zw(i)) (Zw' (i) (A25))" ) <CAY,,

i=s

forallr,s,k € Zwithr <s <k
The following result characterizes the power functions of the form w, = (14 [i])”
belonging to the AH )(Z) classes. This lemma will be important in the next section.

LEMMA 24. LetO < o < l and ap > 1. Then w, € A (Z) if and only if
—l<y<ap-1.

Proof of Lemma 2.4. 'We shall give the proof only for the A;a (Z) classes. As-
sume that —1 < y < ap — 1. As in the classical case of Muckenhoupt weights
(see [9]) it can be proved that w, € A+ (Z). Then, by Lemma 2.3 (2), we have
w, € A,*,';a(Z). For the converse we shall need the following lemma.

LEMMA2S. (D Ifw € A’f;a (Z) then, for every natural number N, we have
()

Zl<—2N lijor < 00. i
Q) Ifwe A, pia (Z) then, for every natural number N, we have ZizZ N 9,,%,1 < 00.

This lemma is nothing but the translation to our setting of Lemma 4 in [17].
Therefore, we omit the proof.

Once we have Lemma 2.5 it is not difficult to prove the converse of Lemma2.4. As-
sume that o, € A+ «(Z). On one hand, by Lemma 2.5 (1), we have
Z,<_2N 1+ |t|)V|z|“°"’ < 00. Therefore ap — y > 1 or, equivalently, y < ap — 1.
On the other hand, by Lemma 2.3, we have v, € A+(Z) which is equivalent to saying
that w,, e A, (Z). Now applying Lemma 2.5 (2) as above, but with ¢ = 1, we

obtain p’' — y(l — p') > 1 or, equivalently, y > —1, which finishes the proof of
Lemma 2.4.
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3. The Cesaro-o ergodic averages for positive linear transformations with
positive inverse

Let (X, F, ) be a o-finite measure space. Let T be an invertible positive linear
operator on L?(u) = LP(X, F, n), with 1 < p < oo, and suppose that T-!is also
positive. Then, as is well known [12], T and T-! are Lamperti operators, i.e., they
separate supports, and they have the following properties:

(a) For each integer i, there exists a positive function g; such that

T'f=gSf andgy; =gSg,

where S is a positive multiplicative invertible linear map acting on measurable func-
tions.

(b) For each integer i, there exists a positive function J; such that
Jivj=0iS'J; and [, J;S' fdu = [y fdu.
(©) If h; = g; " J; then

/ T F1Phy d = f 1P . 3.1
X X

THEOREM 3.1. Let (X, F,u), p, T and h; be as above. Let 0 < o < | and
suppose that, for almost all x, the function h, defined on Z by i — h;(x) satisfies
A,’;a (Z) with a constant independent of x. Then we have:

(i) The maximal operator M, is bounded in L? ().
(ii) Forevery f € LP(u) the averages R, o f converge almost everywhere and in
LP(p).

Proof. We start with the proof of (i). It suffices to work with nonnegative func-
tions belonging to LP(u). Given L > 0, L € N, let M, ; denote the truncated
maximal operator defined by

Myrf = sup Ryaf.

0<n<L

For such a function f there exist pairwise disjoint measurable subsets of X, Ey, E|,
..., Er, such that

L
MoLf = Z XERjof.
=

For every i € Z, we have

L
T'(Marf) =Y T' (X5, Rj.af)- (3.2)
£
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Since T' is positive and separates supports, there exist pairwise disjoint measurable
sets, E; o, E;.1, ..., E; L, such that

T' (X Riaf) < X, T'(Riaf) < XEMar(T' ), j=0.1,....,L. (33
Adding up in (3.3) and using (3.2), we obtain

T' (Mo f) < Mo (T'f), i€ 3.4)

On the other hand, given N € N, and x € X, the definitions of M, ; and m;' imply

Mo (T' f)(x) = m3 (Gexon+)(@), i=0,1,...,N, (3.5)

where G xj0.~+L) is the function defined in Z by

[GxX[O.N+L1(j) =T/ f(x), ifj€ZN[0,N + L],
G xo.n+01(j) =0, if j ¢ ZN[0O,N + L].

Then, for fixed L > 0 and N > 0, using property (c) of the operator T, (3.4) and
(3.5) we see that

N
fx (Mo f0))" dpu(x) = f Z[T"(M,,,Lf)(x)]”h;(x)du(x) (3.6)

N+1

= N+1f2[m (Grxon+) D] hi(x) du(x).

Taking into account that 1 < p < oo and that, for almostevery x € X, h, € A+ VA
with a constant independent of x, Lemma 2.2 implies that there exists a posmve
constant C such that

Z[m (Gxxon+)®] hei) < € Z [Gixon+ui®] he),  (B.7)

i=—00

for almost every x € X. Now, using (3.6), (3.7) and property (c) of T, we obtain

A

N+L
fx (Mor ) dpt < +1 f [T £()1hi (x) dpa(x)

N+L+I

= fx LFOF dux). 38)

Letting N tend to oo in (3.8) gives

/X(Ma.Lf)"du = Cfxlf(X)]" du(x).

Then let L tend to oo to complete the proof of (i).
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Now we turn to the proof of (ii). It is clear that it suffices to prove the a.e.
convergence. Using Lemma 2.3, we see that h, € A,’,’(Z) for almost every x € X
with a constant independent of x. Then Theorem 2.1 of [16] implies that this is
equivalent to the uniform boundedness of the Cesaro-1 averages in L”(u), that is,

sup{||Rn.1ll, n = 0} < oo.

Furthermore, Theorem 2.1 of [16] (see also [8]) shows that for every f € L”(u) the
averages R, | f converge in the L”-norm. Therefore, the set of all functions of the
form h + f — Tf with h invariant and f simple is dense in L” (1) (see [7, Corollary
VIIL5.2]). The almost everywhere convergence of the Cesaro-or averages is clear
for the invariant functions. We shall prove it also for the functions f — T f with f
simple. Then, keeping (i) in mind, by the Banach Principle, the Cesaro-a averages
R, o f converge a.e. forevery f € L”(u). Hence, it only remains to prove the almost
everywhere convergence of the Cesaro-o averages for all functions of the form f —T f
with f simple and, clearly, this will follow from the next result.

PROPOSITION 3.2. Let A be a measurable subset of X with t(A) < oo and let
f = xa. Then

nlinglg Ryo(f—Tf)=0 ae. 3.9)

Proof of Proposition 3.2. We write R, o(f — Tf) as the sum of three terms:

noAeTh A
> e TS~ T f(x)

i=0

Rn.a(f - Tf)()C)

n  psa-—1 n+l po—1

= Aj{’ Tfx) =) A"X;" T f(x)

i=0 n i=1

Aa 1 T,,+| Aa l Aot 1 )
= S 0= f(x) + Z ( ”"') T f(x)

a—1

T"+' f@) 1-a Ae-]
T Tae T ae ; ntl—i
= An(x) - B,,(.X) + C,,(X).

T' f(x)

Clearly lim,_,» A,(x) = 0 a.e. Now, using Lemma 2.3, we see that there exists
& > Osuchthath, € A7 (Z) for almost every x € X with a constant independent
of x. Then part (i) of Theorem 3.1, which has already been proved, implies that the
maximal operator M, 7. associated with the transformation T, defined in L”~°(u)
by

p

T.o = g} So, = ,
P =899, r p—¢
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is bounded in LP~f(u) because the definition of T, and property (c) of the operator
T imply that for every ¢ € L”~%(u) we have

fx | Tip0)|" ™ hi(x) dpu(x) = /X |77 (¢"=77)|"hi(x) dintx) = /X lo(0)17~* dpu(x).

Then, keeping in mind that S is multiplicative and f is a characteristic function, we
have

_ T"‘“f(x)
B,(x) = T
_ (oe+ 1 +n) " f(x)
- n+1 Anti
_ a+1+n n+1
= GrDAT ])A"+Ign+|(x)S fx)

a+1+n 1, . i
= ot DAL )T [A" fin @SS (x)]

o+ 1+n ,
< Gy Men SOl

Since we have already seen that M, 7, is bounded in L”~°(u), we have M, 1. f (x) <
oo for almost every x € X. Then, using the fact that
im a+1+n _
n—oo (n + 1)(Ay, /P
we abtain lim,_, », B,(x) = 0 a.e. Finally,

)

a—1

l—a & A
G0 = Z Tl @

l—a & Aa_ ; \/r
T Z(;n e - [gf 0" f 0]

1/r
] n
[FZ f,','g,’(x)S'f(x)]
1 & l—a \" s
[AaZAZIf' (*:T:‘) ] ’ (3-10)
n ji=0

using the Holder inequality. The first factor of the last term of (3.10) is dominated by

(Mg 1. f (x))!/". Consequently, in order to show that C,(x) — 0 almost everywhere
it suffices to prove that

IA

I & I—a \
lim — Y A7) (-—-—-—"i—) =0. G.11)

n—00 Ag =
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Note that

A, oo asn— o0 3.12)
and that

n+| Az;l-—l (n-ll-?:i )" Aa—l (n+l—1 )’ _ Ag;l (n:;

a - — Aa
n+1 Aﬁ w1 — AR

An+l (n+2

An (%)

q

1—a\
— 0
(n+2) -

asn — oo. 3.13)

Then (3.11) follows from (3.12) and (3.13) using Stolz’s criterium. This finishes the
proof of Proposition 3.2.

COROLLARY 3.3. Let (X, F, ) be a o-finite measure space and let T be a pos-
itive linear operator on LP (). Suppose that T is invertible and that T~ is also
positive. If0 < a < 1,ap > 1 and T is power bounded, i.e.,

sup |[T"|| = C < oo, (3.14)

n>0

then h, € A;’; +(Z) for almost every x € X with a constant independent of x and,
hence, (i) and (ii) in Theorem 3.1 hold.

Proof. We shall start by proving that, for almost every x, h, is a quasi-increasing
function on Z with a constant independent of x, that s, there exists a positive constant
C such that

hj(x) < Ch;(x), foralli, je Zwith j <iandae.x € X. (3.15)
Let A be a measurable subset of X with £(A) < oo and let i € Z. Since T' is

invertible, there exists f € L?(u) such that T' f = x,. This fact and property (c) of
the operator T imply

f hjdp = f T fIPhjdp = f \T"~ fIPdu, jeZ (3.16)
A X X
Now, (3.14) implies that

f T fIPdp < cf IfIPdu foralli,j € Z with j < i. 3.17)
X X
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Using property (c) of the operator T again, we deduce that

/Ifl”du=/ |T"f|f’h,~du=fh,~du. (3.18)
X X A

Then (3.15) follows putting together (3.16), (3.17) and (3.18).

Finally, we shall see that (3.15) implies that 4, € A;“;a (Z) for almost every x € X
with a constant independent of x. Let r, k and m be integers with r < k < m. We
may assume without loss of generality that r < m. Then, for almost every x, we have

k Vp fom A\ VP

(Z hx(i)> (Z he(i)'=" (Aﬁ,:})")

i=r i=k
k 1/p 1p m ) 1/p

< Chy(k)'/” (Zl) (ne)'") (Z(A:::&)”)
i i=k
A\ VP
i)

<Cm—-r+ ,)w(

i

m—r , 1/p
<Cm—r+1)r ( (A;,',_,)”) (3.19)
i=0
Since (see [23])
=" _niody ax-1,—2
"T T+ n o

and ap > 1 or, equivalently, 0 < (1 — a)p’ < 1, the last term is dominated by

m—r 1/p
Cm—r+n'? (f te=br dt) <CA:_,,
0

where the constant C does not depend on x, and therefore h, € A;a (Z) for almost
every x € X with a constant independent of x. Then by Theorem 3.1 we are done.

COROLLARY 34. Let T be as in Theorem 3.1 and let T be the operator defined
by Tf = g|"*Sf (f € L*?(w)), ap > 1,0 < a < 1.(Note that Tf = (Tf)V for
nonnegative measurable functions.) If T is Cesaro-bounded in L7 (), ie.,if

sup/
n Jx

forall f € L*P(u), then (i) and (ii) of Theorem 3.1 hold.

F+Tf+...+T 7"
n+1

du<C / 1 dp
X
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Proof. By Theorem 2.1 in [16], for almost every x, h, satisfies A;Lp(Z) with a
constant independent of x. By Lemma 2.3, this implies that, for almost every x,
h, satisfies A;'._H(Z) with a constant independent of x and, therefore, (i) and (ii) in
Theorem 3.1 hold.

As a consequence of Corollary 3.4, we immediately obtain the following result.

COROLLARY 3.5. Let (X, F, i) be a o-finite measure space and let t: X — X
be an invertible nonsingular transformation. Let Tf = fort1,0 < a < 1 and
pa > 1. If T is Cesaro bounded in LP*(u) then (i) and (ii) of Theorem 3.1 hold.

Remark 3.6. 'We observe that for « = 1, Corollary 3.4 tells us that the uniform
boundedness in L”(u), p > 1, of the Cesaro-1 averages associated with T is equiv-
alent to the boundedness in LP(u) of the ergodic maximal operator. This result,
which is a part of Theorem 2.1 in [16], could induce us to also think that in the case
0 < o < 1 the uniform boundedness of the Cesaro-o averages and the boundedness
of the ergodic maximal operator associated with them are equivalent. The following
example shows that, at least in the case max{1/p, 1/p’} < a < 1, this equivalence
does not hold.

Example 3.7. Let X = Z, the set of the integers, and let u be the counting
measure on Z. Let T be the operator defined for every real-valued function a on Z
by Ta = a o t where t is the invertible measure-preserving transformation on Z
defined by i — i + 1. Note that given 0 < o < 1, the operator M,, associated with
T coincides with the operator m} defined in the previous section. We know that this
operator is bounded in L?(u) if, and only if, p > 1/a. On the other hand, if p > 1
and q is a real-valued function defined in Z, we have

00 1/p 00 n_ pe-! pl/p
[Z (Rn,a|a|(i))p] = [Z (Z ;;’ |a(i+j)|) ]

j=—00 i=—o00 \j=0 n

n Aa—! 00 I/p
ZA—"( |a(i+j)1") = lall,,

j=0 i=—00

IA

i.e., the averages R, , are uniformly bounded in L”(u), p > 1. Therefore, at least

inthe case 1 < p < 1, the uniform boundedness of the Cesaro-a averages does not

imply the boundedness of the ergodic maximal operator M,,. However, if we want
to show the differences between the cases 0 < ¢ < 1 and & = 1 we have to see that
even in the “good” case ap > 1 the uniform boundedness of the Cesaro-« averages
and the boundedness of the maximal operator M,, are not equivalent.

We shall work in the case 1/a < p < 1/(1 — @), thatis,ap > 1 and ap’ > 1,

and we shall see that there exist positive measurable functions w defined on Z for
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which the uniform boundedness of the averages in L”(wdu) does not imply the
boundedness of the maximal operator in L”(wdu). In order to find such a function
w, we shall make use of the adjoints of the averages R, o in L”(du) which will be
denoted by R, , and are defined for every function a on Z by

1 0
Ryoa() = - Al + ), iel.

n j=—n

The maximal operator associated with these operators is nothing but the operator m_
introduced in §2.

It follows from the results in §2 that our problem will be solved if we find a positive
measurable function w such that

o' P €A, (Z) and ¢ Al (D)

In fact, for such a function w, the analogue of Lemma 2.2 implies the boundedness
of the operator m; in L” ('~ dp) and, hence, the uniform boundedness of the
averages R, in the same space. Then, by duality, we obtain the uniform boundedness
of the averages R, o in LP(wdp). On the other hand, since w ¢ A,’;a(Z), the
maximal operator M, = m is not bounded in L?(wdp). To finish the example it
only remains to show a function  such that w'~? € AL, (Z)and w ¢ A;;a(Z). If
we take w,, (i) = (1 + [i])?, it follows from Lemma 2.4 that w,, satisfies the desired

properties if ap — 1 < ¥y < p — 1. Note that the example does not include the case
o = lsincethenap —1=p—1.

4. The Cesaro-o ergodic maximal operator associated with ergodic
transformations

Let (X, F, u) be a o-finite measure space which is nonatomic if u(X) < oo
and let T: X — X be an invertible ergodic measure-preserving transformation. We
shall work in this section with the Lamperti operator associated with 7 and a positive
measurable function g, i.e., the operator T defined for all measurable functions f by

Tf(x)=gx)f(rx).

Of course, this operator is a particular case of the one treated in §3. For that reason,
in what follows we shall use the notations introduced in §3.

For the operator T introduced above, with arbitrary positive g, we shall study
the characterization of the boundedness of the Cesaro-a ergodic maximal operator
in LP(wdu), where w is a positive measurable function (see the final remark). It
follows from the results of the previous section that if, for almost every x, the functions
he (i) = g; " (x)w(r'x)/w(x) satisfy A;a (Z) with a constant independent of x then
M, isboundedin L? (w du). The goal of this section is to show that the converse holds
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and that, actually, the boundedness of M, is equivalent to the uniform boundedness of
a countable family of some kind of Cesaro-« averages. In order to fix these averages
and to state the theorem we need to introduce some notations, definitions and a lemma.

Definition 4.1. If B is a measurable subset and x € Uli‘;ot"f B we define
np(x) = inf{k > 0: t*x € B}
and

_fsup{j =Lt x, ... vk gBY, if{j > 1t x, ..., t7x & B}#0,
L= 0, otherwise.

Observe that L z(x) can take the value +o00.

Definition 4.2. If B is a measurable subset we define the average Rp , f as

(A2 )P qe=l | Tif(x), ifx € UR VB,
R = ng(x) i=! ng(x)—i j=0
Baf () [0, otherwise.

Observe that
sup Rpo f(x) < M, f(x). @.1)
BeF

In fact, it can be proved that the equality holds. Moreover, we can obtain the equality
if we take the supremum over a countable family of measurable subsets. In order to
determine this countable family we need a definition and a lemma (see [13] and [2]).

Definition 4.3 [2]. Let k be a natural number. The measurable set B C X is said
to be the base of an (ergodic) rectangle of length k + 1 if ' B N 1/ B = @ whenever
i # j,0<1i,j <k. Insucha case the set R = ULor"B will be called an (ergodic)
rectangle with base B and length k + 1.

LEMMA 4.4 (13].  For every nonnegative integer k there exists a countable family
of bases of ergodic rectangles of length k + 1, {B®: n € N}, such that X = U,B®.
We shall denote by B the family {t*(B®)): k,n € N}.

Our first result in this section shows that the countable family B is enough to obtain
the equality in (4.1).

PROPOSITION 4.5. With the above notations and assumptions we have

sup Rg o f(x) = M, f(x) for almostevery x € X.
BeB
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The uniform boundedness of the averages {Rgo: B € B} is equivalent to the
boundedness of the Cesaro-a ergodic maximal operator. This fact is part of the
following theorem which is the main result in this section. It shows also that for oper-
ators induced by invertible ergodic measure-preserving transformations the converse
of part (i) in Theorem 3.1 holds.

THEOREM 4.6. Let (X, F, u), t, g, w and B be as above. Let 0 < a < 1 and
p > 1. The following statements are equivalent:

(1) There exists C > 0 such that

f \Ma fPwdp < C / flPwdu
X X

forall f € LP(wdu).
(2) There exists C > 0 such that

S“P/ [RpoflPwdu < C/ [fIPwdu
BeBJX X
forall f € LP(wdp).
(3) For almost every x € X the function h,(i) = g; " (x)w(z'x)/w(x) satisfies
A;,L; «(Z) with a constant independent of x.

Proof of Proposition 4.5. LetX' = MU, B®. Then (X \ X’) = 0. Therefore,
it suffices to prove that the equality holds for every x € X’. Assume that x € X' and
m € N. Then there exists B{™ such that x € B!™. If B = t™(B{™) then B € B and
ng(x) = m. Therefore Ry o f(x) = Rpof(x) < supg.p Rp o f(x) which proves
the proposition.

Proof of Theorem 4.6. 1t is obvious that (1) implies (2), and (3) = (1) follows
from Theorem 3.1. Therefore we only have to prove that (2) = (3). In order to prove
this implication we follow ideas of Rubio de Francia (see [9] for instance). For that
reason we need to compute the adjoint of Rp 4.

LEMMA 4.7. Under the assumptions of Theorem 4.6, if B is a measurable sub-
set and Rp o is bounded in L?(wdu) then the adjoint of Rp is the operator
R} LP (wdp) — LP (wdp) defined by

Lp(x)
bl () =wT (ALY (Z M—(gjhw)(t—’x)> XUz, t-iB-
=0 j4nawx
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Proof of Lemma 4.7. Let By = {x € Ujf’ior‘fB: np(x) = k}. By the definition
of Rp o and since t preserves the measure 4 we obtain

l
fx (Reaf) hwdp = f . (x)Z(g,hw)(r fx)Z Az Xm0 du).
St

k=j

For fixed x and j, the sum

00 Azl—l
> A7 —Lxp,(z77x)
Py

is not zero if there exists k > j such that t=/x € By. In this case, it is clear that there
exists only one value of k with that property and k — j = ng(x). Notice also that, for
each x, the j’s satisfying T7/x € Bjin,) are exactly the j’s such that j < Lg(x)
(see Definition 4.1). Therefore

Lg(x)

f Rp o f (Dh(x)w(x) dp(x) = / f) Z (grhw)(z ™/ x)-Gres Ao dp(x),
X ux,t B Jj+np(x)
and the lemma follows.

Proof of (2) = (3). Assume that (2) holds, i.e., the family {Rg,: B € B} is

uniformly bounded in L”(wdu). By duality, the family of the adjoint operators
{R},: B € B}isuniformly bounded in L? (w du). Therefore, there exists a constant

C > Osuchthat forall B € B,
1/p
([ IRB,afI”wdu)
X

Cllfllpwap forevery f e LP(wdu) 4.2)

"RB,af"p,wdu

IA

and

, 1/p
NR}, o fllpwa = ( /x IR}, fl”wdu)

Clfllpwau forevery feLP (wdu). 4.3)

IA

For every B € B, let us consider the sublinear operators Pz and Qp defined, on
every measurable function f, by

Pof = (Rouds”)"" and 0sf = (Ry1117)"

It is clear from (4.2) and (4.3) that the family of sublinear operators {Sp = Pp +
Qp: B € B}isuniformly bounded in L”' (w du). Now let f be any positive function
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in LP” (w d ) and define

hg=) =L !
= @Oy
where Sg) is the i-th power of S and C is aconstant such that || Sz|| < C forall B € B.
Then hp € LPP (wdp), hp is positive (hg = f > 0), |hsllppwan < 20 fllpp wdp
and
Sghg <2Chp a.e.

Since Pp and Qp are positive sublinear operators, it follows that
Pghp <2Chpg a.e. and Qghp < 2Chpg aee.,

which is the same as

Rpohly < 2Chp)” ae. (4.4)
and

b.ohh < 2Chp)” ae. 4.5)

Letug = hhw and vg = hg. By these definitions w = qu};”. Therefore

Wk () = g " up( vy P (' x) = g7 up (e x)(gi (x)vp('x)! 7.
_ 4.6)
Once we have the functions w(x)h, (i) factorized in this fashion, we are going to
prove that (3) holds, i.e., there exists a positive constant C such that

X Ur 4 n AP

(Zw(x)hx(i + r)) (}: (@@ +r)' 7 (A22))’ ) <CA?
i=0 i=k

for almost every x € X and all , k and n in Z with0 < k < n.

Let r, k and n be in Z with 0 < k < n. Notice that if n = 0, the above inequality
holds for every x € X with any constant C > 1 and, hence, it suffices to prove it in
the case n > 0. Observe, also, that if we define X’ as in the proof of Proposition 4.5,
ie., X' = N U, B®, then for almost every x € X’ and all r € Z we have t"x € X’
and, therefore, for fixed r, we have that, for almost every x € X', there exists B € B
such that np(t"x) = n. Applying (4.5) to '+ x with k < i < n, we obtain

| Lp(r"“x)

- i+r—j i+

Ay D ﬁ(gjua)(t' r=ix) < 2C)up(r'*'x) ae.
j=0 Jj+np(ti*'x)

Now observe that ng(t'*"x) = n —i and Lg(t'+"x) > i since n > 0. Therefore, we
have

S . .
AST Y (gup) (T x) < 2C)Pup(t™'x) ae.,
j=0 j+n—i
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or, changing the variable,
A"_'Z Aa ——@i—up)(T'*x) < QC)Pup(r™x) ae.
1=0
Since 0 < k < i, we obtain
Aa 1 i 1+r .y < 20)” i+r
- ;Aa (8i—up)(r'*x) < 2C) up(x™*'x) ae.

Multiplying by g_i+r) (t/+x) = g7, r ! (x) and taking into account that

I i+ i
+r 8—i+n (T X)gi4r—4n (T x)

= g_q4n (@' x) = gL (x),

x)

g—i+n (T X)giI(T

we get, for all i € Z with k < i < n and for almost every x, the inequality

k

1
A ;‘a—g,:,‘,(x)ug(r'“x) < QO g} ()up(r'*x). 4.7
1=0 “*n-l

Now leti € N with 0 < i < k. Applying (4.4) to T"+ x and keeping in mind that
ng(r"*x) = n — i we obtain

A°‘ ZA‘,’,’_, jg,(r""ix)vg(t’*i*jx) < 2C)" vg(t™tx) ae.
n—i Jj=0
Changing the variable, we have

1 , , .
G ZA"‘ Jla-i@H )up(xx) < 20)" vp(™Hx) ae.

n—i |=i

Since i < k we have

A"’ ZA“I, g-i (T x)vp(z"x) < 2C)" vp(r"x) ae.

n—i |=k
Multiplying by g, (x) we obtain, for all i € Z with 0 <i < k and almost every x,
the inequality

Aa 3 AT g s () < QO g (s ). (48)
n—i |=k
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By (4.6) and (4.8),

k 1/p
(Zw(x)hx(i + r)) 4.9
i=0

k . I/p
= (Zg,l',(X)ue(r’+’x)(gi+r(x)v3(t'*’x))"”)

i=0

i=0 1=k

k 1/p n 1y
<2C (Z g:,(x)ug(r”’x)(A::_,)"") (Z Az:,'g,+,<x)v3(r'+'x)>

for almost every x. On the other hand, by (4.6) and (4.7),

n I/p
(Z(w(x)hx(i +r)'=r (A:::,.‘)"’) (4.10)
i=k

n 1/p'
= (Z(&Tr(x)w(f'”x))"” (A5)" "'Aﬁ:,-'gi+r(x)v3(r'+’x)>
i=k
k

" -1/p
y ' 1
=2 AL Bitr ()Up (1) —— g (Dup(r'tx) .
i=k An—l

1=0
Multiplying (4.9) and (4.10) we get

k I/p n
(Zw(x)hx(i + r)) (Z(w(x)hx(i + r))'-"’(A‘::,-‘V”)
i=0 i=k

k IV —~1p
2 : i 1

< (2C)2( gi__‘_lr(x)uB(-['+fx)(Ag_i)l"") (E AT'gl—-{-lr(x)uB(TH-rx))
i=0 n—l

1=0

1/p

for almost every x, and, finally, since the coefficients A%_. increase [23], we obtain
y y n—i

1/r

k py
(Zw(x)hx(i+r>) (Z(w(x)hx(i+r>)'“"'(Az:,-')"’) < QCYAY ae.,
i=0 i=k

which proves (3).

Remark 4.8. Assume, for a while, that g = 1 and t is an invertible measurable
transformation which is nonsingular with respect to a finite measure v. If 0 < @ < 1
and the Cesaro-« averages R, o f converge a.e. for every f € L”(dv), then the same
happens for the Cesaro-1 averages. Then it is known (see [15]) that the measure v is
equivalent to a finite measure u which is preserved by t. That is the reason why we
have worked with the measures wdpu.
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