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ON GEOMETRIC STABILITY AND POISSON MIXTURES

NADJIB BOUZAR

ABSTRACT. The purpose of this paper is to introduce a generalized notion of geometric stability for
distributions with support in Z, and R,. Several characterizations are obtained. A related concept of
geometric attraction is also studied. Importantly, Poisson mixtures are used to deduce results for the
R -case from their Z. - counterparts.

1. Introduction

The notion of infinite divisibility and the related concepts of self-decomposability
(or class L distributions) and stability derive their importance in probability theory
from the fact that they are solutions to general central limit problems (for example,
see Feller (1971) and Loeve (1977).) These concepts are also intimately connected
with stochastic processes with stationary independent increments (cf. Bertoin (1996)).
Other applications can be found in the area of R, -valued autoregressive processes;
see Pillai and Jayakumar (1994) and references therein.

Steutel and van Harn (1979) introduced an operation  © X for a Z  -valued rv X
(hereZ, ={0,1,2,...}))and @ € (0, 1) in such a way that © X is also Z-valued.
The authors viewed this operation as an analogue of the ordinary multiplication and
used it to define notions of self-decomposability and stability for distributions on Z .
Subsequently, van Harn et al (1982) and van Harn and Steutel (1993) introduced the
generalized multiplications O and O¢ (the definitions are recalled below). They
further extended the concepts of self-decomposability and stability for distributions
with support in Z and R and obtained some central limit-type theorems.

In a related context Klebanov et al (1984) introduced the class of geometrically
infinite divisible distributions. This led the authors to naturally consider the subclass
of geometrically strictly stable (gss) distributions. A rv X is said to have a gss
distribution if for any p € (0, 1), there exists a(p) € (0, 1) such that

N,

XZa(p) Y Xi, {8))
i=1

where {X;} is a sequence of iid rv’s, X; 4 X, N, has the geometric distribution with
parameter p, and { X;} and N,, are independent. Klebanov etal (1984) obtained several
representation theorems for gss distributions, including analogues of the canonical
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representations of classical stability. A theory of attraction has also been developed in
connection with geometric stability (for example, see Gnedenko and Korolev (1996).)

The purpose of this paper is to present a generalized notion of geometric stability
for distributions on Z and R... In order to arrive at the right definitions, we use the
generalized multiplications ©r and O¢ in lieu of the standard multiplication in (1.1).
We establish several characterizations of the © r and O c-geometric stability, including
representation theorems analogous to the ones obtained by van Harn and Steutel
(1993) for F-stable and C-stable laws. A related concept of geometric attraction is
also introduced and characterized. Poisson mixtures are used to deduce important
results for the R . -case from those for the Z -case. Several examples are mentioned.

In the rest of this section we briefly recall some definitions and results that are
needed in the sequel. For proofs and further details we refer to van Harn et al (1982)
and van Harn and Steutel (1993).

The following notation will be used. Py is the probability generating function (pgf)
of the Z . -valued rv X, ¢y is the Laplace-Stieltjes transform (LST) of the R -valued
rv Y. F = (F;; t = 0) is a continuous composition semigroup of pgf’s F; such that
F; # land 6p = —log F{(1) > 0. C = (C;; t > 0) is a continuous composition
semigroup of cumulant generating functions (cfg’s), C; = —log L, where L, is the
LST of an infinitely divisible rv such that §c = —log(—L/(0)) > 0. We denote by
Ur and U the infinitesimal generators of the semigroups F and C, respectively. The
related A-functions defined by

4 1
AF(z)=exp{— ]0 (Up(x))"dx], Ac(r)=exp{ f (Uc<x))“dx},

(1.2)
z € [0, 1), T > O satisfy

Ar(Fi(2)) = e 'Ar(2), Ac(Ci(v)) =e"Ac(r), t20. (1.3)

Let X be a Z,-valued rv and v € (0, 1). The generalized multiplication v ©f X
is defined in distribution by its pgf as follows:

Pyo,x(2) = Px(F;(2)), t=—Inv. (1.4)

Let X be an R-valued rv and v € (0, 1). The generalized multiplication v ©¢ X
is defined in distribution by its LST as follows:

Dvocx (t) = ¢x(Ci (1)), = —logv. (1.5)

2. Discrete geometric stability

Definition 2.1. A Z_-valued rv X is said to have an F-gss distribution if for any
p € (0, 1), there exists a(p) € (0, 1) such that

NP
XLa(p)Or Y X, @1
i=l
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where {X;} is a sequence of iid rv’s, X; Lx , N}, has the geometric distribution with
parameter p, and {X;} and N, are independent.

We start out with a useful characterization of the F-gss property.

LEMMA 2.2. A Z,-valued rv X with pgf P has an F-gss distribution if and only
iffor any p € (0, 1) there exists a (= a(p)) € (0, 1) such that

P = PPED

= T—_—quF—r(z—);, t=—Ina. (2.2)

Proof. If X has an F-gss distribution, then by (1.4) and (2.1),

pP(Fi(2))
P(z) =P = Py (P(F = —— 2.3
(2) ™ X, @) = Py, (P(Fi(2)) = 7P(F.Q0) 2.3)
where p, X;, N,, and « are as in Definition 2.1., and t = —Ina. The converse
follows by (2.3) and a simple representaion argument. O

If X has an F-gss distribution, then by (2.3), forany p € (0, 1), X EA Z?’:”, Y,.(” )
where N, is geometric, Y\’ ) are iid with common pgf P[F,(z)], and N, and {Y,.(” )
are independent. Hence, any F-gss distribution is geometrically infinitely divisible
and necessarily infinitely divisible (cf. Klebanov et al (1984).)

The following proposition constitutes the main result of the section.

PROPOSITION 2.3. Let X be a Z,-valued rv with pgf P, 0 < P(0) < 1. The
Jollowing assertions are equivalent.
(i) X has an F-gss distribution;
(ii) H(z) = exp{l — 7,-%-2-)-} is the pgf of an F-stable distribution;
(iii) There exist 0 < y < f, and d > O such that

P(2) = (1+dAr(x)")"". (2.4

Proof. (i) = (ii) = (iii). If X is F-gss, then X is g.i.d. and hence, by adapting
Theorem 2 in Klebanov et al (1984) to pgf’s, H(z) = exp{l — F:z—.)} is an i.d. pgf.
It follows by Lemma 2.2. that for any p € (0, 1) there exists a(p) € (0, 1) such
that H(z) = (H(F;(2)))"/?,t = —Ina(p). This implies that H(z) is the pgf of an
F-stable distribution in the sense of van Harn et al (1982). By their Theorem 7.1.,
there exist 0 < y < ér, and d > O such that H(z) = exp{—d Ar(z)"}, from which
(2.4) is easily obtained.

(iii) = (i). If P(z) has the form (2.4), then by using (1.3) it can be shown that
(2.2) holds with a(p) = p'/” forany p € (0, 1). ]

COROLLARY 2.4. Any F-gss distribution is F-self-decomposable.
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Proof. Let P(z) be as in (2.4). We need to show that for any ¢t > 0, P,(z) =
P(z)/P(F;(2)) is a pgf (cf. van Harn et al (1982).) We have by (1.3)

P)=n+1=nU+dAr@)")", 2.5

where n = e € (0, 1). It can be easily shown that P,(z) is the pgf of a rv with the

representation Y LZI1E where I and E are independent, / is Bernoulli (1 — 1) and
E has pgf (2.4). O

As in classical stability, a theory of attraction can be developed in connection with
the F-gss property. Let {X,} be a sequence of Z . -valued iid rv’s and let {N,} be a
sequence of rv’s independent of {X,} such that for each n > 1, N, has a geometric
distribution with parameter 0 < p, < 1 and lim,_,» p, = 0. We will say that
the distribution of the X;’s belongs to the domain of F-geometric attraction of a
distribution with pgf P if there exist constants a,, a, > 1, such that the pgf of
an" Or Z,N="| X; converges to P. In this case, the sequence {a,} necessarily satisfies
lim,_, o, a, = 00.

This concept of geometric attraction has been studied in the case where the X;’s
are nonnegative rv’s and the operation is the ordinary multiplication (for example,
see Gnedenko and Korolev (1996), chapter 2.) It was shown that in this context the
only distributions on R with a nonempty domain of geometric attraction are those
distributions with LST

p(M=U+ct")!', >0 (2.6)

forsomec > 0and0 < y < 1(see Theorem2.5.2. and its consequences in Gnedenko
and Korolev (1996).) This results extends as follows to the discrete case.

PROPOSITION 2.5. Assume §r = 1. A distribution on Z.. has a nonempty domain
of F-geometric attraction if and only if it is F-gss.

Proof. By definition, a gss distribution is in its own domain of attraction. Con-
versely, assume there exist {X,} and {N,} (as defined above) such that the pgf
of a, oY Z‘,,N_l X; converges to a pgf P. By Theorem 8.4.(i) in van Harn et al
(1982), a,; ! 21', X; (note we are back to ordinary multiplication) converges in dis-
tribution to an R, -valued rv with LST ¢. Since the X;’s are obviously also R -
valued, this implies that ¢ has the form (2.6). By Theorem 8.4.(i) in van Harn et

al (1982), P(z) = ¢(0Ar(2)) for some 6 > 0. The conclusion follows then from
Prop 2.3. O

Remarks. (1) The assumption §r = 1 in Prop. 2.5. can be achieved for any
semigroup of pgf’s F; such that 7 > 0 by a change of time scale (see Remark 3.1.
in van Harn et al (1982).)
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(2) The distribution with pgf (2.4) has been studied extensively by van Harn and
Steutel (1993) and Prop. 2.3. and Prop. 2.5. add to other characterizations obtained
by these authors.

(3) An F-gss distribution for the standard semigroup F;(z) =1 —e™" + ™'z (for
which 8r = 1 and Ar(z) = 1 — z) has a pgf of the form P(z) = (1 +d(1 —2)")~',
0 <y < 1,and d > 0. This distribution is also known as the discrete Mittag-Leffler
distribution (cf. Pillai and Jayakumar (1995).) We refer to van Harn et al (1982) for
a more general class of semigroups.

3. The R, -valued case via Poisson mixtures

Definition 3.1. An R, -valued rv X is said to have a C-gss distribution if for any
p € (0, 1), there exists a¢(p) € (0, 1) such that

Ny
XZa(p)Oc Yy Xi, 3.1
i=I

where {X;} is a sequence of iid rv’s, X; Lx , N, has the geometric distribution with
parameter p, and {X;} and N, are independent.

Similarly to the discrete case (see Lemma 2.2.), a R -valued rv X with LST ¢ has
a C-gss distribution if and only if for any p € (0, 1) there exists & (= a(p)) € (0, 1)
such that

b= POC()
—q¢(Ci (1))
Equation (3.2) implies that any C-gss distribution on R, is geometrically infinitely
divisible and hence, infinitely divisible. In general, one can use the same techniques
of proof as in the previous section to derive characterizations of the C-gss property.
Rather than doing this, we will use the Poisson mixtures approach of van Harn and
Steutel (1993) to deduce results for distributions on R from their Z, -counterparts.
Let N, (-) be a Poisson process of intensity A and T be an R -valued rv independent
of N, (-). The Z,-valued rv N, (T) is called a Poisson mixture. Its pgf is given by

t=-—Ia. (3.2)

Prn,1)(2) = ¢r(A(1 = 2)), (3.3)
where ¢ is the LST of T. For every A > 0, F® = (F; ¢t > 0) with
FP@=1-r""'Cc,(0(1 = 2)) (3.4)

is a continuous composition semigroup of pgf’s with §rw = 8¢ (cf. van Harn and
Steutel (1993).) Moreover, the A-function, A;, of FV satisfies

Ay (2) = Ac(A(1 = 2))/Ac(Q). (3.5)
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PROPOSITION 3.2. Let X be an Ry-valued rv. Then X has a C-gss distribution if
and only if for any X > 0, N\(X) has an F»-gss distribution.

Proof. Assume that X is C-gss with LST ¢. It follows by (3.2) and (3.4) that for
allA > 0and p € (0, 1), and some & = (x(p) € (0, 1),

o1 =-2) = id (k (] _ F’W(Z)))

1-g6 (2 (1-FP@))’

Combining (3.3), (3.6), and (2.2) shows that N, (X) is F*)-gss. Conversely, let 0 <
T < Ay < A,. Since Ny, (X) and N, (X) are F*)-gss and F*2- gss respecuvely, for
any p € (0, 1), there exist t;, t; > 0 such that ¢(t) = PHC (7] Po(C,y (1))

t=—Ina. (3.6)

—q¢(C,, (1)) —_ T—q(Cpry (1))’
equivalently, ¢(C;, (7)) = ¢(C,, (7)) = Fr%?i?? This 1mpql|es ‘that C,, (1’3 ='Cp, (1),
and hence by (1.3),e™" = e™"2, ort| = t,. Since A; and A, are arbitrary, we conclude
that X is C-gss. O

COROLLARY 3.3. Any C-gss distribution is C-self-decomposable.

Proof. If X is C-gss, then by Prop. 3.2, for any A > 0, N,(X) is F¥-gss,
and hence F®-self-decomposable (by Corollary 2.4). The conclusion follows by
applying Theorem 5.2. of van Harn and Steutel (1993). [m]

PROPOSITION 3.4. Let X be an R -valued rv with LST ¢. The following asser-
tions are equivalent.
(i) X has a C-gss distribution;
(i) v (r) = exp{l — 5%} is the LST of a C-stable distribution;
(iii) There exist 0 < y < ¢ and d > 0 such that

é(t) =1 +dAc()")™". (3.7

Proof. (i) = (ii). If X is C-gss, then by Prop. 2.3. and Prop. 3.2., for any
A >0, y(A(1 —2)) =exp{l — W('Il——'ﬁ} is FM-stable, and (ii) then follows from
Theorem 5.2. in van Harn and Steutel (1993).

(i) = (iii). Again by Theorem 5.2. in van Harn and Steutel (1993) and Prop.
2.3, for any A > 0 we have

Py, (2) = (1 + dy Ax(2)™) ™ (3.8)

for some 0 < ¥, < 8rw (= 8¢) and dy, > 0. From (3.3) and (3.5), forany 0 < 7 < A
we have

¢(0) = (1 + dAcA) P Ac(t)?) ™. (3.9
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This implies that forany 0 < t < A; < Ay,
dy, Ac(A) ™M Ac(T)™ =dy, Ac(h) ™2 Ac(T)2. (3.10)

Letting T = X in (3.10), we have d,, = dy,Ac(A2)7"2Ac(A1)"2. This in turn
implies that (Ac (7)) " is a constant function of 7,0 < 7 < A; < A;. Now
Ac(7) is strictly increasing. Hence y,, = y,,, and since A, and A, are arbitrary,
ya (= y) is constant. Using (3.10), we obtain that dy Ac (L)~ (= d) is also constant.
The conclusion follows from (3.9).

(iii) = (i). By combining (3.3), (3.5), (3.7) and Prop. 2.3, we easily conclude
that for any A > 0, Ny (X) is F»-gss. O

C-geometric attraction is defined similarly to its F-counterpart introduced in the
previous section (with O and pgf changing respectively into ©®¢ and LST.)

PROPOSITION 3.5. Assume 8¢ = 1. A distribution on R, has a nonempty domain
of C-geometric attraction if and only if it is C-gss.

Proof. By definiton, any C-gss distribution is in its own domain of C-geometric
distribution. To establish the converse, we note that if a distribution has a nonempty
domain of C-geometric attraction, then by (3.3), (3.4), and (3.6), for any 1 > 0, the
corresponding Poisson mixture has a nonempty domain of F®-geometric attraction.
Since 8¢ = 8pw = 1, the conclusion follows from Prop. 2.5. and Prop. 3.2. O

Remarks. (1) As in the discrete case, the assumption §¢ = 1 in Prop. 3.5. can be
achieved for any semigroup of cgf’s C, such that §¢ > 0 by a change of time scale.

(2) The semigroup C of cgf’s defined by C;(t) = e~ 1, corresponds to the ordinary
multiplication. In this case, Ac(t) = t and §¢ = 1 and a C-gss distribution has LST
¢(t) = (1 +dt”)"',0 < y < 1,d > 0. This distribution is known as the
(continuous) Mittag-Leffler distribution (cf. Pillai (1990) and also Fujita (1993).)
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