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ABSTRACT. Suppose that (f, .AA,/z) is a a-finite measure space, < p < oo, and T: LP (/z) - LP (/z)
is a bounded, invertible, separation-preserving linear operator such that the two-sided ergodic means of
the linear modulus of T are uniformly bounded in norm. Using the spectral structure of T, we obtain
a functional calculus for T associated with the algebra of Marcinkiewicz multipliers defined on the unit
circle...

1. Introduction

Let (, .A4,/z) be a it-finite measure space and let T: Lp(/) Lp (/Z) be an
invertible, separation-preserving, bounded linear operator, where < p < oo. In a
previous paper [7], the dominated ergodic theorem of 17] (see Theorem 3.2 below)
was combined with the Banach space spectral theory of [3] and [4] to develop a
spectral representation for T in the case when the linear modulus TI of T is mean-
bounded. More precisely, it was shown in [7], Theorem (4.2), that if the ergodic
averages

N

(2N+ 1) -t E ITIn’
n=-N

N=0,1,2

are uniformly bounded in norm, then T is trigonometrically well-bounded; that is, T
can be represented as

T eit dE(t). (1.1)

Here E(.) is a projection-valued function defined on II with certain additional prop-
erties weaker than those arising from a spectral measure, and the integral exists as a
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Riemann-Stieltjes integral in the strong operator topology. In the setting of a general
Banach space 3, an integral representation of the form (1.1) gives rise to a BV()-
functional calculus for T. More precisely, if tp is a complex-valued function defined
and ofbounded variation on the unit circle ql’, then the integral f2or tp(eit) dE (t) exists
strongly as a Riemann-Stieltjes integral, and the mapping

rr

tp -- tp(T) tp(l)E(0) + tp(ei’)dE(t)

is a norm-continuous representation of the Banach algebra BV (q[’) in 3 which coin-
cides with the natural mapping when o is a trigonometric polynomial.

The aim of the present paper is to show that, in the special circumstances described
above (namely, when < p < o, and T: LP(Iz) ---> LP(Iz) is invertible, separation-
preserving, and has mean-bounded modulus), this functional calculus can be extended
by the same formula to the larger algebra 9Yt(ql’) of Marcinkiewicz multipliers on q[’,
thereby providing an ergodic analogue of the Marcinkiewicz multiplier theorem. A
similar result was obtained for an arbitrary invertible power-bounded operator acting
on an LP-subspace (where < p < o without any separation-preserving hypothe-
sis in [2], Theorem 1.4 (or, more generally, for such operators acting on UMD spaces
in [6], Theorem (1.1)(ii)). However, in the present context, where power-boundedness
is replaced by the weaker notion of modulus mean-boundedness on LP (/x), the more
detailed structure associated with the separation-preserving hypothesis is required.
In particular, the theory of Ap weights plays a crucial role. These considerations are
inspired by the dominated ergodic theorem of 17], and can be viewed as a contin-
uation of the spirit fostered for dominated ergodic estimates by the earlier work on
positive LP contractions in [1] and [14]. It should be remarked that the analogue for
E(.) of the Littlewood-Paley property for eP(Z) was established in [7], and this also
plays an important role in the present paper.

Throughout, symbols such as C(ct, fl will be used to denote a constant which
depends only on the exhibited parameters c, fl,.. The value of C(t,/ may
vary from one occurrence to another.

2. Trigonometrically well-bounded operators

In this section, the background material from Banach space spectral theory is
outlined. Denote by (X) the Banach algebra of all bounded linear operators from a
Banach space X into X, and let I be the identity operator on X. A spectralfamily in
X is a projection-valued function E(.)" IR ---> 3(X) with the following properties:

(i) E(,)E(r)= E(r)E()0 E(,)if . < r;
(ii) sup{llE(.)ll: . e ]R} < o;
(iii) E(.) is right continuous and has a left-hand limit E(,-) with respect to the

strong operator topology at each point , ]R;
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(iv) E(Z) I as Z -- x and E(Z) 0 as Z -cx, each limit being with
respect to the strong operator topology.

If, in addition, there exist a, b / with a < b such that E(Z) 0 for Z < a and
E(Z) I for Z > b, E (.) is said to be concentrated on [a, b].

Given a spectral family E(.) in X concentrated on a compact interval J [a, b],
an associated theory of spectral integration can be developed as follows. For each
bounded function o: J C and each partition 79 (Z0, Zl Zn) of J, where
we take Z0 a and Zn b, set

S(T’; tp, E) 99(Zk){E(Zk) E(Zk._)}.
k=l

If the net {S(P; 99, E)} converges in the strong operator topology of (X) as 79
increases with respect to refinement through the set of partitions of J, then the limit is
called the spectral integral of 99 with respect to E(.) and is denoted by fj 99(Z) dE(X).
In this case, we define fs 99(Z) dE (Z) by writing

99(Z) dE(X) =_ tp(a)E(a) + 99(Z) dE(X).

Denote by BV (J) the Banach algebra of functions 99: J C of bounded variation
on J, with norm

IIoll Io(b)l + varo.
It can be shown that the spectral integral fj o(Z) dE(X) exists for each 99 BV(J)
and that the mapping

o -- ,o Z dE(X)

is an identity-preserving algebra homomorphism of B V(J) into 3(X) satisfying

99(t)dE(t) < IIoll sup{llE(,)ll" ,
(See 2],Chapter 7 or the simplified account in [5], 2.) We shall also consider the

Banach algebra BV (qI’), which consists ofall " "i[’ C such that the function (t)
ap(eit) belongs to BV([0, 2zr]), and which is furnished with the norm IIPllvr
IIP IIt0..

Definition. An operator U 3(X) is said to be trigonometrically well-bounded
if there is a spectral family E(.) in X concentrated on [0, 2rr] such that U

fro,2, eix dE(X). In this case, it is possible to arrange that E(2r-) I, and with
this additional property the spectral family E (.) is uniquely determined by U, and is
called the spectral decomposition of U.
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This class of operators was introduced in [3] and their theory further developed in
[4]. We single out one result ([4], Corollary (2.10)) which has a crucial bearing on the
background to the present paper and illustrates the connection between trigonometric
well-boundedness and ergodic Hilbert transforms.

PROPOSITION 2.1.
invertible. If

Let X be a reflexive Banach space and let U 3(X) be

0<lkl_<N

k-I eikt Uk N6Nandt 6[O, 2r]] <cxz,

then U is trigonometrically well-bounded and the spectral decomposition E (.) of U
satisfies IIE(,)I! _< 3{1 + (2zr)- p} for all .

3. Modulus mean-bounded operators

We now describe how the theory of the previous section applies to the mean-
boundedness condition discussed in [17]. Let (f2, .A4,/z) be a measure space, let
< p < xz, and let .T" Lp (/Z) Lp (/z) be a bounded linear mapping. Then T

is said to be separation-preserving (or Lamperti, or disjoint) if, whenever f, g 6

LP(/Z) and fg 0/z-a.e., it follows that (Tf)(Tg) 0/z-a.e. This property can
be characterised by the existence of a (necessarily unique) positive bounded linear
operator IT I" LP (/z) -- LP (/z) with the property that, for every f 6 Lt’ (/z),

IT.fl ITI (Ifl) /z-a.e. on g2.

Further, if T is invertible and separation-preserving, then T- is also separation-
preserving, ITI is invertible, and ITI -I IT-I (see [7], Scholium (2.3)).
We begin by describing briefly some structural properties of separation-preserving

mappings shown by Kan [15] (see [7], 2, for a more detailed summary than that
presented here). The results in 15] are stated under the assumption that the underlying
measure space is a-finite. Accordingly, suppose from now on that (f2,
finite. Also, denote by ,e the characteristic function of a subset E of

In order to state the results needed from [15], we shall require one further con-
cept, namely that of a cr-endomorphism. Atr -endomorphism of the measure algebra
(f2, A/l,/z) is a mapping : A4 ---, A/[ (modulo/z-null sets) such that:

(i) (U.= E.) U.% (En) for every disjoint sequence E. I=l in .M’,
(ii) (f2\E) (f2)\(E) for all E 6 .A4;
(iii) if E 6 A4 and/Z(E) 0, then/Z(E) 0.

As noted in 15], [}4, a tr-endomorphism on A4 gives rise to a unique linear op-
erator, also denoted by , from the space of all complex-valued measurable functions
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on f2 into itself with the following properties:

(i) ((E) X,E for all E
(ii) if fn f/z-a.e., then (fn) (f)/z-a.e.

This associated mapping has the important property that (fg) (f)(g) for
all measurable functions f, g: f2 -- C. The content of the following theorem is
established in [15], Theorem 4.1 and Proposition 4.1.

THEOREM 3.1. Let (g2, A/l,/z) be a ix-finite measure space, let <_ p < cx and
let T: LP() -- LP (Lt) be a separation-preserving bounded linear operator. Then
there exists a unique tr-endomorphism of (f, JA, tx) with thefollowing property:

(i) for each E .M with #(E) < oo, (E) {to 2: (Txe)(w) 0}.

Moreover, there is a unique measurablefunction h: 2 C satisfying thefollowing
conditions (ii) and (iii):

(ii) h 0 a.e. on
(iii) for each f Lp (lz), Tf equals the pointwise product h (f) a.e. on

If, in addition, T is invertible, then:

(iv) Ihl > 0 a.e. on 2;
(v) is a bijection, both as a cr-endomorphism on ./ and as a mapping

on the space ofall complex-valued measurablefunctions on f2.

For the remainder of the section, assume that T is separation-preserving and in-
vertible. For each j e Z, TJ is also separation-preserving and invertible and so has
the form

Tj f hj j(f) a.e. on f2 for all f LP(tz),

where hj and j are associated with T as in Theorem 3.1. It is straightforward to
check that, for j, k e Z,

j+k(f) j(kf) for all f LP(bt)

and

h+ h (Oh) a.e. on f2.

By the Radon-Nikodm theorem, for each j Z we obtain a unique non-negative
measurable function Jj on f2 such that

faJj(oo)(l’jf)(oo)d#(w)=faf(w)dtz(w)forallfLl(#).
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Each Jj is strictly positive a.e on f2 and

Jj+k Jj (aPj Jk) a.e. on f2

for j, k Z. Finally, notice that, for each j Z,

Irl j (f)= ITI (f)= Ihl .(dpjf)

for all f Lp (12).
Properties of the functions hj and Jj were used by Mart[n-Reyes and de la Torre

17], [18] to investigate when ITI satisfies a dominated ergodic estimate. Their work
involves the notion of a discrete Ap weight and applies in the case when < p <
Accordingly, suppose that < p < oo, that w {w}=_oo is a weight sequence
(in other words, each w is a strictly positive real number), and that C is a positive
constant. Recall that w is said to satisy the Ap condition with constant C if

< C(L- K + 1)p

whenever K, L Z with K < L. Notice that this implies that C > I. The basic
result of Mart[n-Reyes and de la Torre is as follows (see [17] and 18], Theorem
(2.4), together with the reasoning described in the remarks immediately following
Theorem (3.2) in [7]).

THEOREM 3.2. Suppose that < p < oo and that, as above, T is an invert-
ible, separation-preserving, bounded linear mapping of Lp (lz) onto Lp (bt), where
(fl, .A/l,/x) is a a-finite measure space. Thefollowing statements are equivalent.

(i) There is a constant B > 0 such that, for all f LP(At),

Mf)p dlz <_ B fn Ifl p d/z,

where M is the ergodic maximal operator defined on Lp (tx) by

N

Mf sup (2N + l)-’ ITfl.
N>O k=-N

(ii) The bilateral ergodic averages of IT{ are uniformly bounded; that is, there is
a real constant such that

sup
N>_0

N

(2N + 1)- ITI
k=-N
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(iii) There is a constant C > 0 such that, for #-almost all 09 2, the weight
sequence h o PJ o =_ satisfies the An condition with constant C

Furthermore, assuming that (ii) holds, the constant C in (iii) can be chosen to
depend only on p and 8.

Using this result and a transference argument involved in its proof, together with
the boundedness of the maximal discrete Hilbert transform on a discrete weighted
eP-space when the weight sequence satisfies the Ap condition (see [13], Theorem
10), R. Sato 19] was able to establish a maximal theorem for the ergodic Hilbert
transform associated with an operator T satisfying any of the equivalent conditions
(i)-(iii) in Theorem 3.2. In turn, Sato’s result was then combined in [7] with Pro-
postion 2.1 to establish the trigonometric well-boundedness of such an operator (see
[7], Theorem (4.2) and the reasoning indicated in the remarks immediately after its
statement). The outcome is stated in the following theorem (for examples thereof
where power-boundedness is absent, see [7], 4).

THEOREM 3.3. Suppose that (f2, .A/l,/z) is a a-finite measure space, < p < ,
and T: LP(#) LP(#) is an invertible, separation-preserving bounded linear
operator such thatfor some real constant 8,

sup (2N+I)-t ITIk
N>O k=-N

Then T is trigonometrically well-bounded. Furthermore, there is a constant C(p, 8)
such that.the spectral decomposition E(.) of T satisfies the estimate IIE(.)II _<
C (p, 8) for all .

The spectral decomposition occurring in this result gives rise to a strongly count-
ably additive spectral measure on a a-algebra associated with the dyadic decompo-
sition of qI’. To be more precise, for j 6 Z, let tj be the jt, dyadic point in (0, 2re)
defined by

2J-:rr if j < 0,
tj= 2zr-2-Jrr ifj >0

and put

ooj eii, Fj {el’: tj <t < tj+l}.

Define the dyadic a-algebra Ea of q to be the a-algebra of subsets of T generated
by the family D, of subsets of qI’ consisting of the arcs Fj (j 6 Z) and the singleton
sets {w} (j s 2;) and {1 }. Note that each element of Ea can be expressed in a
unique way as a (countable) union of mutually disjoint members of Dr. We have the
following result ([7], Theorem (5.10) and Corollary (5.11), together with the proof
of Lemma (5.5)).
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THEOREM 3.4. Suppose that T satisfies the hypotheses of Theorem 3.3 and that
E (.) is the spectral decomposition ofT. Then there is a uniquely determined strongly
countably additive spectral measure (.) defined on the a-algebra Ed such that, for
jZ,

’(r) E(t)- E(t),

and

g(lwj}) E(tj)- E(t-),

E ({1}) E(O).

Furthermore, there is a constant C(p, z) > 0 such that, whenever {crj }j> is a se-
quence ofmutually disjoint elements of Ed satisfying q t.Jj>crj and f Lp(#),

]
I/2

j>l

As explained in [7], this can be viewed as an ergodic analogue of the classical
Littlewood-Paley theorem for the (unweighted) bilateral sequence space et,(Z). Its
proof hinges on a version of the Marcinkiewicz multiplier theorem applicable to a
weighted space e.p (w) which, in turn, is a consequence of Kurtz’s weighted version
16] of the corresponding classical theorem on (see below for further details).
There is also a version of the classical vector-valued M: Riesz theorem valid in the

context of Theorem 3.3.

THEOREM 3.5. Let T and E (.) be as in the statement ofTheorem 3.3. Then there
is a constant C(p, z) with thefollowing property. For all sequences {aj }j in [0, 2rr)
and all sequences {gj }j in Lp (#),

j=l

Proof. Apart from the stated dependence of the constant C(p, z) used here, this
is [7], Theorem (6.7). However, the proof of [7], Theorem (6.7), does in fact establish
the dependence of the constant used here on p, alone (by taking account of the final
sentence in the statement of each of the present Theorems 3.2 and 3.3).

As mentioned above, the proof of Theorem 3.4 relies on a weighted version of the
discrete Marcinkiewicz multiplier theorem. We end this section by recording this and
a useful convolution theorem for multipliers in the setting of discrete weights, since
both results will be needed in the next section. For each j Z, let Aj denote the
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closure in T of the dyadic arc rj and let 9X() denote the Banach algebra of functions
o: "/[’ ---> C such that

IIollar sup Io(z)l + sup var (o, Aj) < X:.
zql" jZ

The classical Marcinkiewicz multiplier theorem states that, for < p < x, each
o e 93t(ql’) is a multiplier for ep (Z), with multiplier norm dominated by
C(p)llollg0r). Elements of ff)t(q[’) are therefore referred to as Marcinkiewicz multi-
pliers.
Now let w {tok}k=- be a weight sequence, and, for < p < x, let eP(w)

denote the corresponding weighted sequence space consisting of all complex-valued
sequences x {xk }k=_ such that

IIx Ile,,to Ix p
wk < .

k-’--x

A function L (q[’) with inverse Fourier transform pv is said to be a p-multiplier
for ep (w) if:

(i) for each x {x ep}=_ in (to) and each j Z, the series

(pV,x)(j)=_ E v(j_k)xk
k--’---o

converges absolutely;
(ii) the mapping S: x eP(w) ---> pv , x is a bounded linear maping of eP(w)

into itself.

The required weighted version of the Marcinkiewicz multiplier theorem, essen-
tially due to Kurtz 16] (see also [7], Theorem (5.1) and [8], Theorem (5.5)), can now
be stated as follows.

THEOREM 3.6. Suppose that < p < cx, w is a weight sequence satisfying the
Ap condition with constant C, and o 9Jt(q). Then o is a multiplierfor ep (w), and
the corresponding operator S on ep (w) satisfies

where K > 0 is a constant depending only on p and C.

The following result will also be needed.

PROPOSITION 3.7. ([7], Theorem (5.2).) Supose that < p < c, w is a weight
sequence, is a multiplierfor ep (w), and l L (q). Then II , ap is a multiplierfor
e (w) and
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4. Spectral integration of Marcinkiewicz multipliers

We are now in a position to establish the main result of the paper.

THEOREM 4.1. Let T, 8 and E (.) be as in the statement of Theorem 3.3. Then,

for each tp 93t(T), the spectral integral fr (eit) dE(t) exists. Furthermore, the
mapping

tp tp(T) =_ tp(eit) dE(t)
,2rr]

is an identity-preserving algebra homomorphism of92tt(T) into B(Lp (lz)) and there
is a constant C(p, 8) such that

o(T) C(p, 8) o

for all tp 93t(T).

The proof of Theorem 4.1 hinges on the following basic estimate.

LEMMA 4.2. Under the hypotheses of Theorem 4.1, there is a constant C(p, 8)
such that

(eit) dE(t) < C(p, 8) IIoll<r)
,2r]

for all tp BV (T).

Once Lemma 4.2 has been proved, Theorem 4.1 is a consequence of the following
Banach space result, together with the bound for the spectral decomposition given in
Theorem 3.3.

THEOREM 4.3. Let U be a trigonometrically well-bounded operator on a Banach
space X with spectral decomposition F(.). Suppose that there is a constant C > 0
such that

tp(ei’) dE(t) <_ C llll,r)
,2zr]

for all tp BV(T). Then,for each tp 9Yt(T), the spectral integral fr (eit) dF(t)
exists. Furthermore, the mapping

o -- o(U) - o(eit) dF(t)

is an identity-preserving algebra homomorphism ofgJt(T) into (X) satisfying

IIo(U)ll <_ {3C + IIf(0)ll} IIollr>
for all tp
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Notation. Suppose that F(.) is a spectral family in a Banach space concentrated
on [0, 2zr], tp: ql" C is bounded, and 7:’ (0 n) is a partition of [0, 2zr].
Write

8(79; tp, F) tp(eix) {F (Zk) F (Xk_)}
k=l

for the corresponding Riemann-Stieltjes sum of the formal expression
ft0,2zrl (eit)dF(t). Thus, in the notation of 2, S(T’; o, F) 6’(79; q, F), where

(t) qg(eit) for 0 < < 2yr. It is also convenient to define

tP79 tP(eix
k=l

where Zk is the characteristic function relative to "It" of the arc {eit" .k-i < <
Notice that o, BV(q), o,lltr) _< 311oll<r)if o 991(T), and that

8(79; tp, F) f[o,:] tpT(eit) d F(t).

ProofofTheorem 4.3. Fix x e X, q9 ff)t(T) and e > 0. Choose dyadic points
tN and tt in (0, 2zr) with t/v < tt such that

II{F(t) F(0)}x + {I F(tt)}xll <

and write x y + z + F(0)x, where

y {F(tt) F(tv)}x and z {F(tv) F(0)}x + {i F(tl)}x.

Thus Ilzll < . Let 79 be a partition of [0, 2zr]. With the notation introduced before
the start of the present proof, we have

IIS(T’;o,F)II fto,2rr] ’(eit)dF(t)[I
_< c I1o,11) _< 3C IIolltr), (4.1)

and so

II8(7; o, )zll 3C

Also,

8(79; t#, F)F(0)x 0.

Furthermore, if 7 contains the points t/v and tt, then

(4.2)

(4.3)

,.q(79; tp, F)y S(W; , Fo)y,
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where t(t) tp(eit) for tlv < < tM, V is the partition 79 1"3 [tv, tM] of [tN, tt],
and F0 is the spectral family obtained by restricting F(.) to {F(tt+) F(tlv)}X. The
spectral family F0 is concentrated on [tv, tM]. Since p has bounded variation on
[ts, tM], the integral fttN,t+l (t)dFo(t) exists in the strong operator topology. It
follows that

f
S(T’; tp, F)y --> (t) dFo(t)y in norm as P increases

N,tM]

by refinement through the partitions of [0, 2r ]. (4.4)

Since x y + z + F(0)x, it can be seen from (4.2), (4.3) and (4.4) that

{,5(7:’; +p, F)x: 79 is a partition of [0, 2r]} is a Cauchy net in X.

Hence in view of (4.1), the spectral integral f[0,2,l (eit)dF(t) exists and satisfies

tp(eit dF(t) < 3C IIolltnr>,

which immediately yields

+p(eit) dF(t) tp(ei’) dF(t) + tp(1)F(0)
,2rr] ,2zr]

< {3C + IlF(0)ll} IIoll<nr),

Finally, the stated algebraic properties ofthe mapping +p --> f[0,2zr] tP (eit) d F(t) are
easily deduced. In particular, for the multiplicativity property, we utilize the defining
properties of a spectral family listed in 2 together with the uniform boundedness of
Riemann-Stieltjes sums in the present context, as exhibited in (4.1). This completes
the proof of Theorem 4.3.

We shall present two different proofs of the basic estimate given in Lemma 4.2, one
based on the transference of weighted multiplier inequalities and the other on more
operator-theoretic considerations. Both approaches have as their basis the discrete
version of Kurtz’s Marcinkiewicz multiplier theorem for Ap weights (Theorem 3.6).
The first transfers this directly, whilst the second obtains the result from Theorem 3.4
(whose proof ultimately relies on Kurtz’s result) and Theorem 3.5.

The transference approach to Lemma 4.2. Suppose that T, a and E(.) are as
in the statement of Theorems 3.3 and 4.1. The aim is to transfer norm estimates
for convolution operators from appropriate weighted spaces eP(w) to LP(Iz) via
the representation n ---> Tn of Z in Lp (/x). This representation is not necessarily
uniformly bounded, and so the classical transference approach of Calder6n [9] and
Coifman-Weiss (see [11], Theorem 2.4) is not applicable. However, the special
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structural features arising from the separation-preserving property of T do permit an
adaptation of the Coifman-Weiss technique, as was first observed in 17] and has also
been used in [18], 19] and [7].

Given o BV(), define o*" C by

*(t) 2-1 { lim (ei’,) +
s--- + S-t--

lim (ei") }
LEMMA 4.4. ([5], Theorem (3.10)(i).) For each o BV(q),

(1 -Ikl (n q- 1)-1) ’(k)T --> o(t)dE(t)
k=-n ,2zr]

in the strong operator topology of(LP()), as n - o.

The key transference estimate is as follows.

LEMMA 4.5. There is a constant C(p, 8) such that

Ilf[o’,2zrl
tp* (t)dE(t) < C(p,

for all o BV(q).

Proof. For each non-negative integer n, let g’n denote the nth Fej6r kernel for T,
so that (k) (n + 1)-2 Ikl for Ikl < n and (k) 0 for Ikl > n. By Lemma
4.4, it suffices to establish the existence of a constant C(p, 8) such that

(4.5)

for all tp B V (’I1") and all n >_ 0.
Fix tp 6 BV(72) and n >_ 0, and let f LP(Iz). For L 6 N, denote by X.,n the

characteristic function relative to Z of {k 6 Z: ]k] _< L + n}. Using the structural
properties of T and the associated notation discussed in 3, we have

p

t(k)(k)Tkf dlz

j (k)(k)T f
k=-n

n(k)(k)*j(hk)*j+lf Jj du
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= (2L+l)-lf
j=-L

n

n (k)(k)hj+k dPj+kf Jj Ihjl -p d- gn’(--k)hj_kj_kf
p

k=-n

Jj Ihjl- dz.

From Theorems 3.2 and 3.6, together with Proposition 3.7, we see that there is a
constant C(p, 8) such that,/x-a.e, on

ten *"(-k)hj-k dPj-kf

Hence

n (k)(k)rkf
k=-n

P

< (2L + l)-lC(p i)p I1oll p Ikflp Jk dlz
k=-L-n

C(p, ,z)p I1oll p<r) (2L + 2n + 1) (2L + 1)-l f Iflp d/z.
Ja

Letting L -- cx, we conclude that

n(k)(k)Tkf _< C(p, a)IIoll<r)Ilfllp.
k=-n p

This establishes (4.5) and completes the proof of Lemma 4.5.

COROLLARY 4.6. There is a constant C(p, 8) such that

(eito )dE(t) < C(p,
,2n]

whenever p E BV(), and p is continuous on T\ }.
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Proof. If p BV(T) is continuous on T\{I}, then p(eit) p*(t) on (0, 2zr).
Hence, using the left continuity of E(.) at 2zr, we see that

o(ei) dE(t) o*(t) dE(t) + oE(O)
,2n] ,2n]

for some a C with lal _< 211o IIT). The result now follows from Lemma 4.5 and
the bound for E (0)II given in Theorem 3.3

Completion offirst proofofLemma 4.2. Let o BV (’Jl’) and fix a partition 79
(ko kn) of[0, 2rr]. For0 < E < min{3+k--3k_l" 2 < k < n}, defineo," ---> C
so that:

(i) o, (eit) qg(ei’ when 0 .o < < 3+t;
(ii) qg(eit) qg(eixk) when .k- + E < < 3+k, for 2 < k < n;
(iii) o,(eit) is linear as a function of on [3k_1, ,kk_ + ], for 2 < k < n.

Then {+p, is a norm bounded set in BV (ql’), and o, ---> o, pointwise on qt" as ---> 0.
Hence, by [12], Theorem 17.5 (see also [5], Proposition (2.10)),

f[ (eit f[o, )dE(t) ---> oT:,(eit)dE(t) ,S(T’; o, E) + qg(I)E(0)
,2hi ,2r]

in the strong operator topology as e -- 0. Furthermore, each o is continuous on
qI’\{ and

Since

] o, (e’) dE(t) < C(p,a) llo,
,2rr]

for all > 0 by Corollary 4.6, we deduce that

IIS(7; o, E)II _< C(p, )IIolltor),

and hence that

io,2nl (eit) dE(t) < C(p’ ) IlcPlI(T)

This completes the proof of Lemma 4.2.

An alternative approach to Lemma 4.2. An alternative way to prove Lemma 4.2
is to apply the following result concerning trigonometrically well-bounded operators
on subspaces of LP-spaces, together with Theorems 3.4 and 3.5.
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THEOREM 4.7. Let X be a closed subpace of LP(v), where v is an arbitrary
measure and < p < cx, and let U" X --> X be a trigonometrically well-bounded
operator with spectral decomposition F(.). Suppose that there are positive constants
t, and y such that:

(i) for all sequences {aj }j=l in [0, 2rr) and all sequences {gj }jl in X,

.j=l
LP(u) LP(v)

(4.6)

(ii) whenever f X, and 0= uo < u < u2 < < uL- < uL 2zr is a
partition of[O, 27r with uj a dyadic divisionpoint of(O, 27r for < j < L- 1,
then

/ Ilfll<,) _< IF(0)fl2 + I(F(uj) F(uj-))f]2

j=l
LP(v)

(4.7)

Then

qg(eit) dF(t)
,2n’]

</3- y (2 + 3t) q9

for all o BV(q).

Proof Let 79 (,ko, ,k Zn) be a partition of [0, 2zr], and let o BV (ql").
Choose dyadic division points tv and tt in (0, 2rr) such that tN < ,kl and tt > .n-,
fix g e X and let gm {F(tm) F(tm-)}g for N + < m < M. Then

M

S(P; 0, F)g tp(eiX’){F(tlv) F(0)lg q-- ,S(79; o, F)gm
m=N+l

+ tp(l){l F(tM)}g.

Since {F(tu) F(0)}g 0 as N --+ -o and {I F(tt)}g --+ 0 as M o, it
suffices to establish the inequality

M

8(79; 0, F)gm
m=N+l LP(v)

_</-y(2 + 3a)lloll<ar)llgll,<) (4.8)

If m is such that no partition point ,k lies in the interval [tm-, tin], then
8(79; tp, F)gm tp(eixj)gm for some partition point ,kj. Suppose on the other hand
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that m is such that ’n[tm_, tm] IXr,,, ’rm+l ’s.}. Then a straightforward
calculation gives

S(79; tp, F)gm o(eiX"’+’)gm
Sm

+ 10(eixk) o(eiXk+’)lF(k)gm,
k

which can be written more succinctly as

"Sm-where Ak(p (p(eixk) qg(eixk+’ ). Notice that z..=r., IAeol _< vartt.,_,,.p and
IA.ol _< 211oll(r). We then have the chain of inequalities

Sm

1S(79; tp, F)gml < IIoll(r) {Igml + 2 IF(.sm)gm[} d- IZXol IF(k)gml
k=rm

_< II,p II<) gm -F 2 F(..gm)gm

+ Y IAol IAol IF()gml2

k=rm k=rm

_< IIplI(T) {Igml + 2 [F(.sm)gm[}

+ (llollmttr)) /2 Y IAol IF(,kk)gml2

k=rm

valid pointwise on the underlying measure space. Denote by J the set of integers m
in [N + 1, M] such that "Ptq[tm_, tin] is non-empty. Taking account of the fact that
,5(79; o, F)gm o(eixj)gm for some partition point .j when 79tq[tm_, tin] is empty,
we now have the pointwise inequality
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Using (4.6) and (4.7), we deduce from this estimate that

LP(v)

LP(v)

Hence

18(79; tp, F)gml2

m=N+l
LP(v)

_< 2r’llolltr>(l + )llgll,,t> + cllolltrll Ig,,,I2
mJ

_< y(2 + 3c)llollgtrllgll.,,to>.

LP(v)

(4.9)

M S(P; o, F)gm inWe can apply the first inequality in (4.7) to the vector Era=N+!
place of f, and to the partition (uo, ul ut) of [0, 2rr] specified by 0 < tv <

tv+ < < tM < 2r. In view of the definition of the vectors gin, this procedure
gives

m=N+l Lt’(v)

< /-! IS(P; 0, F)g,n[2

m=N+l
LPlv

(4.10)
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The required inequality (4.8) follows from (4.9) and (4.10). This completes the
proof of Theorem 4.7.

Remarks. In order to emphasize its ergodic operator theory framework, all our
results leading up to the establishment of Theorem 4.1 have been designed so that
when applied to its context, they can furnish the claimed domination of the norm for
the functional calculus of 9X(ql’) by a constant C (p, 8) involving any uniform bound
for the ergodic averages of IT I. This has required due attention to the nature of the

constants figuring in all our computations. In this regard, the calculations used above
to establish Theorem 4.7 have been based on those for the power-bounded case which
appear in the proofs ofLemmas 3.1 and 3.12 in [2]. A slightly more abstract approach
to the proof ofTheorem 4.7 would be to express the square function inequalities (4.6)
and (4.7) in terms of Rademacher averages, and then to parallel the Banach space
arguments of Lemma (4.3) in [6].

Notice that (4.6)implies IIF(0)II _< c. Combining Theorems 4.3 and 4.7, we
arrive at the following umbrella theorem for transferring the Marcinkiewicz multiplier
theorem to Lebesgue subspaces in the presence of transferred versions of the vector-
valued M. Riesz property (4.6) and the Littlewood-Paley property (4.7). This circle
of ideas abstracts the classical derivation of the Marcinkiewicz multiplier theorem.

THEOREM 4.8. Assume the hypotheses of Theorem 4.7. Then, for each
9X(q), the spectral integral f2or tp(eit) d F(t) exists. Furthermore, the mapping

o --> o(U) -= ]
,2rr]

o(eit) dF(t)

is an identity-preserving algebra homomorphism ofPX(q) into 3(X) satisfying

II0(U)ll {3fl-tY(2 + 3u) + clllqgllqr)

for all q9
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