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MAXIMUM PRODUCT OF SPACINGS METHOD:
A UNIFIED FORMULATION WITH ILLUSTRATION

OF STRONG CONSISTENCY

YONGZHAO SHAO AND MARJORIE G. HAHN

ABSTRACT. A simple unified formulation for generating an estimator of a univariate distribution (not nec-
essarily continuous) is proposed. It is a variant ofthe maximum likelihood method and also a generalization
of the maximumproduct ofspacings (MPS) method for estimating continuous univariate distributions. The
general formulation is then applied to monotone hazard rate families which arise frequently in applications.
It is shown that any asymptotic MPS estimator for any family of distributions with monotone hazard rate is
always strongly consistent (whether the setting is parametric or not). The MPS estimator of a distribution
function with a monotone hazard rate can be derived explicitly and’ is asymptotically minimax for the
Kolmogorov-Smirnov type loss functions.

1. Introduction

A typical statistical, problem is to make inferences about a distribution Fo,, based
on some random sample {X l, X2 Xn }, which can be regarded as independent
real-valued random variables having common, but unknown, distribution function
Fo,,. The common practice is to assume that Foo is in a certain family of distributions,
say in .T" Fo: 0 19}. To make inferences about Foo, one can apply the probability
integral transform (PIT) to the data, i.e., for each Fo

Fo" {X, X: XI {Fo(X), Fo(X:) Fo(X)l.

If Fo,, is continuous, it is well known that Foo (X l), Foo (X2) Foo (X,) are uniform
random variables. When Fo,, is known to be continuous, Cheng and Amin (1983) and
independently Ranneby (1984) proposed the maximum product ofspacings method,
which takes the estimator of Fo,, to be the F,, which maximizes the product ofspacings,
i.e.,

n n

H[F,,(Xi+l,n)- F,,(Xi,n) sup HtFo(Xi+l,n)- Fo(Xi,n)].
=o FoE.T" =O

When Fo,, is not known to be continuous, there might be ties in the data. Suppose
that in the n observations {Xi, < < n}, there are rn distinct values {Yj,m, < j <

rn}. Let Y0.,, -oct. Let lj denote the number of observations in (Yj_i., Yj,], i.e.,
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exactly lj of the observations {Xi, < < n are equal to Yj.,,. Since the observations
{Xi, < < n} are i.i.d., each of the lj tied observations has the same probability
of occurrence. The probability is about F.,,v.,,?.--’or._,.,) according to the model Fo.
Define mo =-- rn if Fo (Ym,n) = 1; and mo --- m + otherwise. Then Fo (Ymo.,,) =- 1.
In this case, it is natural to maximize the following product of spac,ings:

mo

( Fo(Yj,n) Fo(Yj_l,n) )l.isup
Fo _..T" .= lj

(1.2)

i.e., one can take the distribution F,, which maximizes the product of spacings in (1.2)
as the estimator of Foo. We will call this estimation technique the general maximum
product of spacings (MPS) method and an estimator so obtained will be called an
MPS estimator.

The MPS method does not require the distributions to have densities. The simple
unified formulation ofmaximizing (1.2) is well defined for any univariate distribution.
It generalizes the MPS method defined in (1.1) for continuous distributions and it
is asymptotically equivalent to the maximum likelihood (ML) method under very
general conditions. Cheng and Amin (1983) and Ranneby (1984) showed that the
MPS method can produce consistent estimators in the three-parameter lognormal and
Weibull families as well as normal mixture models, while it is known that the ML
method breaks down for such models due to the unboundedness of the likelihood
function. Unboundedness difficulties do not arise in the MPS method since the
product of spacings is always bounded. The general asymptotic behavior of the MPS
method has attracted the attention of many researchers. Among the results, Shao and
Hahn (1997) establishes that in any unimodal distribution family the asymptotic MPS
estimator of the underlying unimodal density is L consistent universally without
any further conditions (in parametric or nonparametric settings). In contrast, many
counterexamples exist for consistency of the maximum likelihood estimators (MLEs)
in unimodal families. Moreover, it is well known that a necessary regularity condition
for the consistency of the ML method is the local dominance condition in Perlman
(1972) (see also Le Cam (1953) and Wang (1985)). The general consistency theorems
for the MPS method obtained in Shao (1997) require much weaker conditions than
those Wald-type conditions for the MLE. In particular, the local dominance type
conditions are not necessary for consistency of the MPS estimators.

The remainder of the paper is organized as follows: Section 2 contains some gen-
eral remarks. Section 3 provides proof of consistency for families of finitely many
distributions. Section 4 deals with estimation of distributions with monotone hazard
rate which are widely used in applications. Any asymptotic MPS estimator for any
family of distributions with monotone hazard rate is shown to be always consistent
(parametric or nonparametric). The MPS estimator of a cumulative distribution func-
tion with a monotone hazard rate is derived explicitly and is asymptotically minimax
for the Kolmogorov-Smirnov type loss.
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2. Remarks on the unified formulation of the MPS method

The unified formulation in Section can be reformulated more precisely as follows:
Let X X. be an i.i.d, sample from Foo in .T, where .T {Fo" 0 (R)} is any
family of distribution functions defined on the real line R. Let XI,. < X2,. < <

X.,. denote an ordering of the sample. Define Yo,n -cx. For < k, define

Yk,. =- min {Xj,." Xj,. > Yk-l,n and m min{j" Yj,n Xn,n }. (2.1)

Define mo =- m if Fo (Ym,n) l; and mo m + otherwise. Then Fo (Ymo,n) 1.
Then for any Fo .T, 0 =- Fo (Yo,n) <_ Fo (V,n) <_ Fo (Y2,n) < < Fo (Ymo,.) 1.
For j mo, let lj #{i" Xi Yj,n, < _< n}. Define

mo

( Fo(Yj,n) Fo(Yj_l,n) )t,i79, Fo, X) l-[ (2.2)
lj

The maximum product ofspacings (MPS) estimator of Foo is defined to be F,, where

ft, ft, (X X,) such that

P,(Fo,,, X) sup Pn(Fo, X). (2.3)
F."

We also say that the MPS estimator of the parameter 00 is n when (2.3) holds. A
sequence F,, will be called an asymptotic MPS (AMPS) estimator of Foo, if

lim
7’. (F,,, X) > C for some C > 0. (2.4)n---- T’n (Foo, X)

Remark 2.0. Notice that Ranneby (1984) and Shao and Hahn (1994) called the
MPS method the "maximum spacing method", and its estimates the "MSP estimate"
or "MSE" respectively. On the other hand, Cheng and Amin (1983) used the name
"maximum product of spacings (MPS) method", which is adopted here.

Remark 2.1. Throughout the remainder ofthe paperwe make the basic assumption
that the family .T {Fo: 0 (R)} ofdistributions under consideration has the prop-
erty that each sample is contained in the support of Fo for each 0 (R). If not,
in the definition given above, (2.2) should be multiplied on the right-hand side by

Isupp(Fo)(Xi) since if {X X,} supp(F0) Fo is not qualified to be a can-
didate for the estimator of the true distribution. Here we assume x 6 supp(F0) if and
only if Fo(x + e) > Fo(x-) for every positive e. Since none of the ideas change,
this assumption simplifies our expressions.

Remark 2.2. Clearly

mjl(Fo(Yj,.)-Fo(Yj-I,n)).= lj
lj
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andn <_l+...+lmo_<n+l. So

mo ( Fo(Yj,n) Fo(yj_l,n) )lj79,,(Fo, X) H <
j=l lj nn

If .T" contains the empirical distribution function ln, then it is easy to see that
T’n (Fn, X) . Thus, the empirical distribution is an MPS estimator for the under-
lying true distribution function if.T" contains all the univariate distribution functions.

Remark 2.3 (Continuous distributions). When the distribution functions are all
continuous there are no ties in the data (with probability l). So Fo(Yi,n) Fo(Xi,n),
li for n < mo n + l, Fo(Yo,.) =-- 0, and Fo(Y.+I,.) I. Thus,

n+l
79n(Fo, X)-" l-ltFo(Xj,.)- Fo(Xj-,,n)].

j=l

(2.5)

Hence the MPS estimator is defined as F,, such that

n+l

FO, arg sup Z log[Fo(X,n) Fo(X-,.)].
Fo" j=l

This is the formulation (1.1) proposed by Cheng and Amin (1983) and Ranneby
(1984).

Theoretically ties in the data can happen with probability 0, however, in practice,
this may happen more often than expected due to rounding errors. If there are ties
in the data, (2.2) seems the most natural modification of (2.5) to handle ties in the
data coming from continuous distributions. (2.2) will give results asymptotically
equivalent to those of using (2.5) when there is no, tie in the data. For this reason
and for simplicity of exposition, we will assume that there is no tie in the data if the
underlying distribution is continuous.

In particular, if"consists of all the continuous distribution functions, then it is easy
to see that the "Fisher predictive distribution", i.e., F,, in .T" satisfying F,,(Xi,n)
i(n + 1) for < < n, is an MPS estimator. A special case is the Pyke’s modified
empirical F,, which is uniformly distributed on each spacing and satisfies F,,(Xi,.)
i/(n + 1). More specifically, Pyke’s modified empirical F,, on a finite interval (a, b]
is defined as follows:

F,,(x) i- + l(Xi-,n < x < Xi,.) (2.6)
n + i=l Xi,n Xi-l,n

where Xo,. a, Xn+ l,n b and I (.) is the indicator function. Note that any "Fisher
predictive distribution" F,, is strongly consistent by the Glivenko-Cantelli theorem
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and the fact that

sup IF,, x) lx)l 2.7)
x n+l’

where Fn (x) is the empirical distribution function.
The formulation of the MPS method does not require the distributions to have

densities. The following example might give some flavor for this method.

Example 2.1 (Estimation of median). Let X i, X2,..., Xn be i.i.d, from F0 in
.T, the class of all continuous univariate probability distributions, each with a unique
median. Since the MPS estimator is a "Fisher predictive distribution" which satisfies

F,, (Xi,n) < < n,
n+l’

itis strongly consistent, i.e., supxl IF,, (x)- F0(x)l 0ash +o. Furthermore,
suppose we want to estimate themedian A/[0 A4(F0) inf{x" Fo(x) > 2

l- }. Regard
the median as a functional A4 on ’, i.e.,

.A/l Fo =-- inf x" Fo x) > - YFo .T. (2.8)

Then the median 1 is a continuous functional, in the sense that 6 > 0, ld > 0,
such that

sup tFo(t) F(t)l < d =} I.Ad(F0) ./I(F)I _< (2.9)
tqR

(see Pollard (1984), p. 7). Since the MPS estimator is obtained by maximizing a
function, it has the invariance property when applied to functionals. Consequently, the
MPS estimator A/I (F,,) for A/lo is strongly consistent, i.e., lim,__, A4 (F,,) Ado.
In fact, .A4 (F,,) X ,,,,n if n is odd; .A/[ (F^0,,) X.,n, X. +l,,, if n is even. For
comparison, notice that it is not clear how to estimate .A//0 in the formulation of the
classical MLE since .T is not a dominated family.

Remark 2.4 (Discrete distributions). When the distributions are all purely dis-
crete with finitely many cell probabilities (rr rrk), i.e., multinomial, the MPS

over r ( ). This is equivalent to themaximizes the quantity 1-Ii__ ,,
" Consequently, the MPSclassical MLE which maximizes the quantity n’’ n’

method can also be viewed as a variant of the MLE in this sense.

3. Estimation for families of finitely many distributions

Since the definition of the generalized MPS method in Section 2 is simple, does
not depend on density versions, and does not involve taking limits, it is potentially
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applicable to any univariate family of distributions. Thus, it is instructive to see
how strong consistency of the MPS estimator might be proven. This can be easily
illustrated for a finite family of distributions each with at most finitely many atoms.

LEMMA 3.1. If jc is a finite family of distributions, each of which has at most
finitely many atoms, then maximiZing 79n(Po, X) yields a strongly consistent MPS
estimator.

Proof. Any distribution function F can be written as a unique convex combination
of a discrete and a continuous one, F ot Fd + (1 )Ft. with ct Y4 P(X zj),
where the summation is over all atoms zj ofthe distribution F. Let tO be a finite set and
let X, X2 Xn be an i.i.d, sample ith common unknown distribution in ,T"
{Fo" 0 tO, Fo Fod + Fo,., Fod multinomial}. Let Foo be the true distribution
function with jumps at Z {zl z}. For simplicity of notation, assume that
Fo,.(x) has subdensity fo(x) and let c Y=l(Foo(Zj) Foo(Zj-)). Then, when n
is large, for any Fo Foo,

Pn Po X) , y ej log Fo(z)- Fo(z-)
Foo (z) Foo (zj -)

+ log
Xi.,,Z

Fo(Xi,n)- eo(Xi-l,n)

Voo (X,.) Foo (X-,.)

By the strong law of large numbers (SLLN) and the Information-type Inequality in
Shao and Hahn (1995),

] Fo(zj)- Fo%-)lim -1 log n(-0oTgn(P’ X)X) < Y(F(ZJ)j=I F(ZJ-)) log
Foo(Zj) Foo(zj-)n---o n

+(’-)fa(logfO(x)"’) fo(x)
dx.

By Jensen’s Inequality;

.lim nlog i,iX) S log

f fo (x

k

Since the family is finite, after finitely many steps, the MPS estimatorbecomes the true
value Foo. The assumption that Fo,. has a subdensity is not essential. Generalization
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can be made as in the proof of the Information-type Inequality in Shao and Hahn
(1995).

Remark 3.1. General strong consistency theorems for .T not finite can be formu-
lated by imitating the strong consistency theorems in Shao and Hahn (1997) using
the ideas in the proof of Lemma 3.1. It is relatively straightforward, thus will not be
performed here.

4. Estimation for distributions with monotone hazard rates

Families ofdistributions with monotone hazard rate are ofconsiderable importance
in reliability theory, survival analysis, and other applications. For a distribution
function F(x) with density f(x) on R, the hazard rate q (x) (also calledfailure rate)
is defined as

f(x)
q(x) for F(x) < 1. (4.1)

F(x)

The importance of the monotone hazard (or failure) rate property and more references
can be found in Barlow et al (1972) and Robertson et al (1988). The discussion below
focuses solely on the family of distributions with decreasing failure rate since the
other situations can be handled using the same ideas.

Definition 4.1. A distribution function F is said to have a decreasingfailure rate
(DFR) if R(x) log[l F(x)] is convex on its support [/3, oo), where/3 > -oo.

If F(x) has DFR and F(/3) > 0, then F is absolutely continuous on (/3, +oo). It is
easy to check that the derivative of the absolutely continuous part must be decreasing
on (/, oo), although it may have ajump at/3. Thus DFR is, in a sense, a generalization
of the decreasing density assumption.

Remark 4.2. In a nonparametric setting, Grenander (1956) applies the maximum
likelihood method to the distributions with decreasing densities very elegantly and
obtains the MLE as the smallest majorant of the empirical distribution function.
Similarly, explicit solutions for the MPS estimator have been obtained in Shao (1997).
For example, the MLE for the family of all distributions with non-increasing densities
on [0, 1] is the smallest concave majorant of the empirical distribution; the MPS
estimator for the same family is the smallest concave majorant of Pyke’s modified
empirical distribution. Monotone density can be regarded as a special unimodal
density. When the mode of the monotone density is unknown, the MLE is not proper
because of unbounded likelihood, but the explicit MPS estimator still exists and
is asymptotically minimax for the Kolmogorov-Smirnov type loss functions by the
arguments of Kiefer and Wolfowitz (1976). The strong consistency theorem given
below for the asymptotic MPS works for any family with DFR (parametric or not).
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THEOREM 4.1. Any asymptotic MPS estimatorfor any distribution with DFR is
strongly consistent, whether the setting is parametric or not.

Proof. For convenience, we assume that/3 is known. If the true underlying
distribution has no jump at/3, then the problem reduces to a family of decreasing
densities. Then by Theorem 4.1 of Shao and Hahn (1997), any asymptotic MPS
sequence is strongly consistent. Thus, assume the true underlying distribution has a
jump at/. It can be assumed that

XI,n Xt,.n < Xk+l,n < < Xn,n

is an ordered sample from the true distribution Foo. When maximizing

Nm ( Fo(Yj n) Fo(Yj_l,n) )lj79n(F’ X)
lj

only those distributions having ajump at/3 play a role (since those without ajump at
/3 will have T’n (F0, X) =_ 0 for n large enough). By the strong law of large numbers
and the proof of Lemma 3.1,

li- -1 (log T’,,(Fo X) log T’n (Foo, X))
n--+o n

< Fo,, () log
Fo (,6._..) + Foo ()) log fo (x)
Foo (fl) Foo (,6)

< 0 (by Jensen’s Inequality).

dx

Hence, when n is large enough, 79, (F0, X) < 79 (Foo, X). Define a distance on .T" as
follows:

d(Fo,, Fo2) IF0, () F02(/3)1 v e(Fo,, Fo)

where e(F0,, Fo) is the L6vy type distance between the derivatives of Fo, and Fo2,
i.e.,

e(Fo,, Foz) =--inf{e > O: fo, ((x-e)v+)-e <_ fo2(x) < fo, (x+e)+e, x (, )].

It is easy to show that (.T’, d) is a compact metric space. By the above arguments, for
any Fo jr which is different from Foo, there exists some positive e0 such that

Foo() log
Fo() + eo f fo(x) + eo dx < O.

Voo + Vo,, ) og
Voo (/)

So there exists some positive integer No such that whenever n > No,

T’,(Go, X) < 79n(Foo, X), Y/Go - ba(Fo, Co) =- {Go: d(Go, Fo) < Co}.
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For any positive 3, .T" bd (Foo, ) is compact and bd (Fo, co): Fo E .T" bd (Foo, r)
is an open cover. Thus, there exist finitely many small open balls which cover
.T" bd(Foo, 3). Hence when n is bigger than N, the largest of those finitely many
No’s, necessarily

7. Fo X) < P. Fo,, X), VFo bd Foo

Maximizing 79n (F0, X) over Fo " yields some distribution in the neighborhood of
the true distribution, which implies strong consistency.
When/ is unknown, the proof is similar to the proof of the unimodal densities

with unknown modes as in Shao and Hahn (1997), which we do not repeat here.

Roeder (1990, 1992) adapted the MPS method for simultaneously estimating pa-
rameters and providing goodness-of-fit tests in some semiparametric mixture models.
The generalized formulation of the MPS method in Section 2 treats the parametric,
nonparametric and semiparametric problems in a unified way. For instance, Theo-
rem 4.1 remains valid for the estimation of a distribution function in a family which
can be parametric, nonparametric or semiparametric, as long as they have monotone
failure rates. In particular, when nothing is known about the underlying distribution
function except that it has a monotone failure rate, the problem is in a semiparametric
setting if we view the possible jump height of the distribution at its mode as a one-
dimensional parameter and the monotone subdensity as infinite dimensional. We also
have the following:

THEOREM 4.2. The MPS estimator ofa distribution with a monotone decreasing
(or increasing)failure rate is, explicitly, the least concave majorant (orgreatest convex
minorant) of Pyke’s modified empirical distribution function and is asymptotically
minimaxfor the Kolmogorov-Smirnov type lossfunctions.

Proof. If the underlying distribution F0 has a decreasing failure rate (DFR),
then R(x) log[l F0(x)] is convex on its support [, cx), where > -cx.
If F0(/) 0, then F0 has a decreasing density on [//, cx). Remark 2.3 and Shao
(1997) imply that the MPS estimator for F0 is the least concave majorant (LCM)
of the Pyke’s modified empirical distribution (as given in (2.6)), i.e. the smallest
concave distribution function which is no less than the Pyke’s modified empirical
distribution. When F0() > 0, denote the number of ties of the data at/ by bn, then
the MPS estimator for F0() is b,/(n + 1), and the MPS estimator for Fo(x) is still the
LCM of the Pyke’s modified empirical distribution. The asymptotic minimaxity of
the MPS estimator for the Kolmogorov-Smirnov type loss functions follows directly
from Kiefer and Wolfowitz (1976) and Shao (1997). The situation that F0 has an
increasingfailure rate can be handled in the same way. I"1
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5. Concluding remarks

The simple formulation proposed in Section 2, although widely applicable, cer-
tainly should not be recommended blindly. The interest in general procedures is that
they may provide reasonably good solutions, while better formulations and solutions
can often be tailor-made for specific situations (since additional knowledge is avail-
able). We study the MPS estimator as a variant of the MLE with the hope that most
of the asymptotic optimalities of the MLE in regular parametric cases (in the sense of
Cram6r) will follow and that the MPS method may work well when the ML method
fails. The MPS method is intended for non-regular likelihood problems and certainly
not an approach suggested to replace the maximum likelihood method in general. For
other issues such as the calculation of confidence intervals and the handling of certain
censored samples by the MPS method, the reader is referred to Cheng and Traylor
(1995) and its ensuing discussions.
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