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FLUCTUATIONS OF ERGODIC AVERAGES

STEVEN KALIKOW AND BENJAMIN WEISS

ABSTRACT. We discuss universal estimates for the probability that there are many fluctuations in the
ergodic averages of L functions. Our methods involve an effective Vitali covering type of theorem and
are valid for Zd actions, for any d N. For nonnegative functions we get an exponential decay for the
probability of a large number of fluctuations.

It was E. Bishop who first showed that one can give universal estimates for the
probability that there are many fluctuations in the ergodic averages of L functions.
His motivation was the desire to find a version of the ergodic theorem that would be
valid in a constructive framework. This work is described in his book Foundations

ofconstructive analysis [B].
Bishop’s proof relies quite heavily, both on the linear ordering of Z and on the fact

that he deals with one sided averages. In order to extend these results of Zd-actions it
was necessary to develop a new method which gave new results even for d and
which we shall now proceed to describe.
A real valued sequence {s(1), s(2) s(n)} is said to fluctuate at least N-times

across the gap (c,/3) if there are N indices j(0) < j(1) < j(2) <... < j(N) < n
such that for odd k, s(j (k)) < , while for even k S(j (k)) > . We also speak of the
sequence having at least N-fluctuations. For E. Bishop’s theorem, let (X, B,/x, T)
be a probability space with T o/z =/x and let f be an L t-function. Then we have:

THEOREM (E. BISHOP). Let Enlv denote the set of x for which the sequence

T- _, f x) has at least N-fluctuations across o < . Then
0

kt(E) _<
() -a)N"

This is an exact analogy of Doob’s upcrossing inequality for martingales and
indeed Bishop proves a very general lemma from which both Doob’s inequality and
the above follow. For integrable functions one cannot improve on the above, as simple
examples show. However, if f is bounded, or even only semibounded, say f > 0,
then our techniques yield:

THEOREM 1. Suppose that f > 0 and 0 < < fl < cx. Then there exist
constants c > O, c2 < that depend only on fl/ot such that

(*) /z(Ev) < c(c2)v for all n,
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m-I }nTwhere E, as above, is the set ofx where the sequence - f( x) has at least
0

N-fluctuations across ot < .
Note that the analogous result for martingales was proved in 1962 by L. Dubins

[D-1962].
This and most of the other results that are contained in this paper were obtained

by us in 1993-94. At that time the only other work in this general direction that we
were aware of was the paper of J. Bourgain [Bo] that dealt with other types of norms
on the sequences of ergodic averages. Quite recently there has been a resurgence of
interest in these matters. We refer to several recent publication and preprints, [Kh],
[JKRW] and [CE] which give many more results of this general type. Our methods
are rather different from what can be found in these papers and give results that are
not contained in them. Since both [Kh] and [JKRW] also devote some attention to
martingales we should point out that our methods work in the martingale context just
as well. In fact we re-proved the main results of L. Dubins by these methods before
learning of his work from D. Gilat.

1. Effective Vitali covering

We will write out a proof for dimension 2 but it is obvious that all statements and
proofs carry over to any dimension. In addition, squares can be replaced by circles, or
rectangles-as long as the ratio of the sides remain bounded-however in order to show
how simple the ideas are we will keep to squares. For the sake of convenience we
will call half the side length of a square its radius. Throughout this section, n and N
are fixed integers with N >> n. Let f2v [-N, N] x [-N, N] C Z2 and normalize
the area so that the area of g2N is 1, thus if S C g2N the area of S is ]SI/(2N + 1)2.
Denote this area by ,k (S), so

X(S) --ISI/(2N + 1)2.

We call le the e-enlargement of a square C if e is the square concentric to C with
radius equal to e times the radius of C.

THEOREM (EVC). Let B C f21v with n, N, r > 2 fixed. Assume that to each
p B there are associated squares A (p) An(p) such that:

(1) p Ai(p) C 21v, < < n.
(2) For all < < n the r-enlargement of Ai(p) is contained in Ai+l(p).

Set

U Ai (p),Si
pB

l<i<n.
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Then there is a disjoint subcollection ofthese squares such that

(a) the union oftheir (1 + r4_2)-enlargements together with Sn \ SI covers all but
at most (8/9)n of Sn;

(b) the measure ofthis union is at least (1 (8/9)n) times the measure of S.

We remark that the Ai (p) in the theorem need not be centered at p. Also note that
(a) and (b) are really two separate results. During the proof we will call the squares
of the form Ai (p) for some p B the i-th level squares. Such a square will be called
maximal if it is not properly contained in any other i-th level square. Clearly Si is
also the union of the i-th level maximal squares.

Proofofthe EVC Theorem. Using the standard Vitali covering argument we can
find a disjoint collection of maximal n-th level squares, An(p), that covers at least
1/9 of Sn. Call this collection of squares Cn and let Un denote the union of Cn. Now
we would like to restrict to (n l)-level squares that are disjoint from Un, but need
not cover all of Sn- \ Un. The main point in the proof is the following:

(.) Ifan An- (p) has a non empty intersection with Un then it is contained in the
(1 + )-enlargement ofsome square An (p’) in

Assuming this, we restrict to those maximal (n l)-level squares that are disjoint
from Un, and cover 1/9 of their union by disjoint squares. This collection is called
Cn- and its union Un-l. Analogous to (,) we now have:

(**) lfan An-2 (p) has a non-empty intersection with Un UUn- then it is contained
in the (1 + 4_2)-enlargement ofthe square which it intersects.

Again assuming (**) we restrict attention to those maximal (n 2)-level squares
that are disjoint from Un t_J Un- and cover at 1/9 of their union by disjoint maximal
squares, calling the collection Cn-2 and its union Un-2. We continue in the same way
using the obvious generalization of (**) to get Cn-3, Un-3, and so on up to C and U.

Clearly the union of all the (1 + r_-)-enlargements of all the C,i, < < n,
together with Sn \ S covers all but (8/9)n of Sn and the measure of that union is at
least (8/9)n times the measure of S. This will establish (a) and (b) once we
verify (.), (**) and their generalizations. They are consequences of the claim that if

Ai (p) N Aj (q) y J, < j,

then the (1 + r4_--)-enlargement of Aj(q) contains Ai(p). To see this set

d distance between the center of Ai(p) and the center of Aj(q)
d radius of Ai (p)
d2 radius of Aj (q).
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If our claims were to be false that would mean that the width of the new strip in
the enlargement, (r4_-)d2 would be less than 2dl, which gives

rdl >_ 2dl + 2d2.

But for the intersection to be non-trivial, d < dl + d2 and it would follow that the r-
enlargement of Ai (p), would contain Aj (q); thus by the hypotheses of the theorem,
Ai+(p) D Aj(q) contradicting the maximality of Aj(q) since + < j. This
completes the proof of the theorem. [3

An important corollary of this result which in fact will be our main tool is an easy
consequence of part (a):

Corollary. Suppose in addition to hypotheses (1) and (2) we assume"

(3) Measure (Sn) < 10 measure (S).

Thentheunionofthe(1 + r4_2)-enlargementscoversatleast(1- 10. ()n)ofS,.
2. Exponential decay for nonnegative functions

Our goal here is to show that if f > 0 and Amf(x) represent the average off(Tux)
as u ranges over the square [-m, m] x I-m, m] for a Z2 measure-preserving action
{Tn" u Z2} then for any fixed 0 < ot </ < 1, there are constants c, c2 (c2 < 1)
depending only on ct// such that

#{x" the sequences A’m f(x) has more than N successive downcrossings from

above/ to below ct < C c.
To gain a better understanding of the argument we shall first establish the theorem
without taking care to estimate c2. Later we will see how it converges to as
tends to 1. This estimate will be important for our application to ,-fluctuations but
we postpone a discussion of it.

Our first observation is that because the function f is nonnegative if Anf(x) >
while Amf(x) <_ ot with m > n then m/n > ’. It follows that by skipping
every L downcrossings we can assume that we get the rapid growth of the size of the
squares as required in the proof of the effective Vitali covering theorem. Clearly this
L depends only on c//5 and the desired r (cf. (r) in the EVC theorem).

Technically, we will carry out the proof by estimating the size of the set where N
downcrossings take place along orbits of the action. To carry this out we introduce:

Ev,t {x" the sequence {Amf(X)" 0 <_ m < M} undergoes at least N

downcrossings from above fl to below t }.
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The set whose measure we are trying to estimate is [,.J EN,t so that it will suffice

to get an estimate for fixed EN,t that is independent of M. To do this we will choose
W to be very large compared to M, fix an x0 X and define a set

c [-w, w] x I-W, w]

by declaring that u B if both coordinates of u do not exceed W M in absolute
value and Tuxo E1v,l. The first condition ensures that the squares centered at n
over which the downcrossings are taking place lie within [- W, W] x [-W, W]. Any
upper bound for the relative density of B will give the same upper bound for the
measure of EN,ta because of the invariance of the measure under the action T. This
is essentially the content of the easy direction of A. Calderon’s transfer principle. For
the reader’s convenience we give a brief description of this.

By the invariance of the measure/z under Tu we have the equality

E f lEN.’u(Tux)dlz(x) (2W -I- I)2#(EN,M).
lul<_W
lu21<_W

Divide both sides by (2W + 1)2; then we see that pt(EN,M) is estimated by an upper
bound for the relative density of B plus M/W. Letting W tend to infinity gives the
desired result.

Each time we want to use the EVC in the form of the corollary we must check
to see if conditions (2) and (3) are satisfied. For (2) we merely skip in steps of size
L. If (3) doesn’t hold, then by applying the standard Vitali coveting argument we
get disjoint squares of the highest level with a total area increase of 10/9 over the
previous stage. The main interest is in o//3 close to so we might as well assume
fl/t < and then we don’t need to carry out any complicated argument-we just
record this increase and proceed to the next step. It follows without loss of generality
that we may assume that both (2) and (3) of the EVC hold.

Now, fix r and n for use in the effective Vitali covering (EVC), then L as above,
and divide N into groups of nL successive downcrossings. These r and n depend on
t/fl and will be specified below. Using the first group we can replace B by Bi which
is a union of disjoint squares over each of which the average of f is above/3 and
the normalized area or k-measure of Bl is almost that of B. Next we apply the EVC
to B using the next group of nL downcrossings, to obtain B2, a union of disjoint
squares over each of which the average of f is now below c. Furthermore B2 almost
covers B.
We would like to say that this forces the ,-measure of B2 to have increased over

that of B by a factor of essentially fl/ot. We would be correct in this assertion if the
squares in B were to lie completely within the squares of B2. We do not know this,
and so we argue as follows.

Let S denote one of the squares of B2, with radius 2e and let OrS denote those
points within (10/r) e of the boundary of S.
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Lemma. Ifa square S’ from B intersects S \ OrS then it is contained in S.

Proof. This follows immediately from the fact that only maximal squares were
used and the squares of B2 come from a higher level than the ones in BI.

There are now two possibilities. Either most of B lies within B2 or the bound-
aries of the squares in B2 contain a significant fraction of B. The latter possi-
bility immediately gives ,(B2) >_ 2)(B) while the former would give essentially
)(B2) >_ (fl/ot).(Bi) except for small errors controlled by l/r and (8/9)k.

The next step is to apply EVC again to get B3, a union of disjoint squares over
which the averages of f are >_/ with )(B3) being not much less than .(B2) so as
not to lose what was gained in the previous step. After that all succeeding steps are
carried out in the same way with a minimum gain of essentially//c every two steps.
Since we never can exceed a X-value of l, this gives the desired exponential upper
bound for

After this qualitative discussion we must now specify the choice of constants. Let
us do this in terms of the distance between//ct and 1, so set /c g. Our
expansion being only + we cannot afford to lose more than a 1/K fraction when
using EVC and when seeing how much might be in OrS. This dictates that r should
be large compared to K, say r 103 K2 and n should be chosen in a similar way
so that 10. (8/9)n IlK2. Finally this dictates a choice of L on the order of
10. K log K so that the order of magnitude of c2 as a function of K is

where c3 is some universal constant not less than 10-4. This discussion gives the
following theorem.

THEOREM. If (X, B, , {Tu" u Z2}) is a probabili preseing action ofZ2,
f 0 a nonnegative B-measurablefunction, and An f(x) represents the averages
off(T,x) as u ranges over I-n, n] x I-n, n], thenfor universal constants c and c2

l-wehaveandfor

{x" the sequences An f(x) fluctuates more than N-times across the inteal

3. Estimates for integrable functions

A numerical sequence {bj is said to have N y-fluctuations if there are increasing
indices n(l), n(2) n(2N), such that for < < N,

Ibnt2i-I)- b,,t2i)l >_ Y.



486 STEVEN KALIKOW AND BENJAMIN WEISS

The advantage of y-fluctuations over (ct,/)-crossings is the observation that for the
sum oftwo numerical sequences to have N y-fluctuations at least one ofthe sequences
must have at least N/2 y/2-fluctuations. From this simple observation it follows
that if we can get estimates for nonnegative Ll-functions then we automatically
get essentially the same estimates for all L functions. Now suppose that f is a
nonnegative L I-function and we want to estimate the size of the set where An f(x)
has N y-fluctuations. For any level v we could use the maximal ergodic theorem to
estimate the set

V {x" for some n, Anf(x) > v}

by [Ifll/v. Then the interval [0, v] could be divided into 2v/y intervals of size
y/2 and then on at least one of them, say on (or,/3), {Anf(x)} would have at least
y/ 10. N/v downcrossings. Anyone of these could be estimated by our earlier results
and it remains only to choose v in the best way possible. The worst case is when
the (or,/3) is at the very end in which case for//c we get essentially a constant
divided by v. Recalling the estimate for the rate of exponential decay this dictates a
choice of N/3/(log N) up to constant factors and we then get the following theorem:

THEOREM. There is a constant c so thatforany integrablefunction f in a measure
preserving %2 action, (X, 13, #, T), for all y > O, N N we have

lz{x {Anf(x)} has at least N, y-fluctuations} <

([Ifl[,) ,/3< c. /N (logN)

For a fixed (or,/3) we can improve the exponent 1/3 to 1/2 (but we still need the
logarithmic terms). For this we must reexamine the proofthat we gave for nonnegative
functions. Since f is no longer nonnegative it is convenient to fix the interval (or,/3) to
be (- 1, / ). In order to find squares that grow at a definite rate so that the methods
of EVC would be applicable we proceed as follows. Suppose that the number of
fluctuations of An f(x) across (- 1, + 1) is M2 and denote by ei (x), < <_ M2, the
radii of the squares at level i. Divide the places where these crossing are taking place
into M equal groups. For each such x there are two possibilities"

(I) e(i+l)M(X)/eiM+l (X) >_ 2 for all 0 < < M.
(II) e(i+l)M(X)/eiM+l (X) < 2 for all 0 < < M.

At least one of these must hold for at least half of the x’s where there are more
than M2 fluctuations. In case this happens for (I), we will be able to use EVC. It turns
out that case (II) is even easier! Focus on M successive fluctuations across (- 1, + 1)
where the size of the largest square is no more than twice the size of the smallest at
each x. Using the very first step of EVC we can get disjoint squares of the Mth level
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that cover at least 1/9 of the set of x’s where we have more than M2 fluctuations.
On each such square we see that there must be a mass of fl that is proportional to
M-times the area of the square, since each time we go between and -I- or and
-1 new mass of lfl must outbalance the previous average. This gives an immediate
upper bound for the measure of such x’s as- f /M.

We have glided over the reduction that we discussed in detail before about how
to estimate the measure of a set by computing averages along an orbit. Returning
now to the dichotomy let us see what happens in case (I). Skipping every e0 steps we
get an expansion rate of 2e’’. The proof now proceeds as before in the case of (a,/)
fluctuations for nonnegative functions. There are several points to observe.

1. Our goal at each step is to show that there is a quantity ofnew mass of fl almost
equal to the measure of the set B, where the fluctuations are taking place. Since the
measure of B doesn’t get bigger each time the amount of error that is allowable in
EVC must now be small compared to M the number of times the procedure will be
carried out. This means that r should now be chosen large compared to the number
of fluctuations. Such a requirement introduces only a further logarithmic term in the
estimate.

2. If condition (1) of the EVC fails to hold, we get an increase in the measure of
the set B, by simple disjointification. If this were to happen log N times we would get
our target estimate for the measure of B directly. We can therefore assume without
loss of generality that (1) always holds.

3. The argument involving maximal squares and the r-boundaries of the squares
is valid here as well so that if we are not covering completely almost all of the squares
of the previous stage there would be a definite increase in the measure of the set B.
Once again this can only happen a logarithmic number of times and may be ignored.
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