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A REMARK ON ALMOST EVERYWHERE CONVERGENCE
OF CONVOLUTION POWERS

VIKTOR LOSERT

ABSTRACT. We answer a question of [BJR] about pointwise convergence a.e. for convolution powers of
measures with expectation zero and finite moments of all orders s < 2. We compare the conditions that
appeared in the study of the strong sweeping out property for convolution powers.

Let (X, B, m) be a non—atomic probability measure space, t an invertible measure
preserving transformation on X. Given a probability measure yonZ and f € L?(X)
(p = 1),put (uf)(x) = E,‘("_l__oo w({k}) f(z*x). In [BIR], the question of pointwise
convergence a.e. of the convolution powers u" f has been studied (see also [B] and
[BC] for this and related matters). Animportant role is played by the quotient J%} ,
the angular ratio ({i(t) = Y_ u({k})e~>"* denotes the Fourier transformof u, t € R).
In [BJR], Th. 1.6, it was shown that lim u" f (x) exists a.e. for f € L”(X) (p > 1), if
|i()| < 1fort ¢ Z and the angular ratio is bounded. If u has a finite second moment
mo(u) = Zkz,u({k}) and the expectation E(u) = Y_ ku({k}) is zero, then u has
bounded angular ratio ((BJR], Prop. 1.9). In this special case (if in addition |1 (¢)| < 1
for t ¢ Z), it was shown in [B], Th. 5 that pointwise convergence a.e. holds even on
L'. On the other hand, for u with E(u) # 0, ma() < oo, it was shown in [BJR],
Th. 2.1, that the strong sweeping out property holds, i.e., rather drastic divergence
(see also [AB])). In [BJR] the question was raised about what happens with measures
having finite moments m;(u) forall s < 2 and E(u) = 0.

In the course of the investigations about divergence three conditions appeared.
First came

) =1
(AR i F o]
This is completely sufficient to describe the possible cases for measures with finite
second moments. (By [BJR] Prop.1.9 and Lemma 1.7, m;() < oo together with
E(u) # 0 implies (AR)).

Then a weaker condition (we call it (BJR)) was introduced in [BJR], Th. 2.2 (the
precise definition is given before Prop.3). In [AB], Th. 6.1, it was shown that (BJR)
is also sufficient to get the strong sweeping out property.

Finally, [BJR] suggested considering the condition

(UR) limsup ———— =

Received March 20, 1998.
1991 Mathematics Subject Classification. Primary 28D05, 47A35, 60F15, 60J15.

© 1999 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

465



466 V. LOSERT

By [BJR], Prop. 2.3, (AR) implies (BJR) and it is easily seen that (BJR) implies
(UR).

We consider the partial sums for E(u) and those for Y u({k}) and my(un). We
characterize (AR) (Proposition 1) and (BJR) (Propositions 3 and 4) in terms of the
asymptotic behaviour of these sums, thus avoiding the use of Fourier transforms
and facilitating the construction of various sorts of examples and counterexamples.
In particular, this is used to construct examples of measures u with E(u) = 0,
ms(n) < oo for all s < 2 and satisfying (BJR) (consequently, the strong sweeping
out property holds—answering the question of [BJR]). Examples of this type have
also been given by Chistyakov [C].

Although (UR) appears to be the decisive condition, (AR) is certainly the easiest
to work with (e.g., [C] mentions examples arising from distributions belonging to the
domain of attraction of certain stable laws). On the other hand, we show in Proposi-
tion 2 that for measures u with E(u) = 0, m;(u) < oo for some s < 2, condition
(AR) can never be fulfilled (i.e., examples as mentioned above are impossible if (AR)
is required, in particular, the measures of Examples 1,2 satisfy (BJR) but not (AR),
so (AR) is strictly stronger than (BJR)). Thus (AR) becomes rather insufficient to get
a complete picture for measures with my(u) = oo.

Finally, in Example 3 we give examples showing that (BJR) is strictly stronger
than (UR): measures u with E(u) = 0, m;(u) < oo for some (arbitrarily given)
s < 2 that have unbounded asymptotic ratio but do not satisfy (BJR) (existence of
such examples was already mentioned in [BJR], p. 428).

For measures p with unbounded asymptotic ratio that do not satisfy (AR) the
Fourier transform [i(¢) oscillates near ¢ = 0. (with phases of tangential and phases
of non-tangential approach). If 1 does not even satisfy (BJR) these oscillations get
very sharp.

Notation. a, = p({n}) forn € Z, ie.,a, > 0, Y o _ . a, = 1, and we will
always assume thata, > Oforinfinitely many n. Thenz(t) = fi(t) = }_a, e 2" =

x(t) +i y(t), with x(¢) = Y_a, cosnnt), y(t) = — Y a, sin(2wnt). We consider
the sums

IN=Y an sx= Y nan ty= 9 na, N=0,12,....

In|>N In|l<N In|l<N

For s € R, we denote by (s) the unique element from ]— %, %] such thats — (s) € Z

(e, (s) = 3 — {3 — 5}, where {t} denotes the fractional part of ).

LEMMA 1. Take z = x + iy, with |z| < 1. Then the following inequalities hold:

(a)li—_‘l>J.L|

I=lz| — 1—-x"

(b) Ifyzsl—x<1thenjlz_;|;%5%(l+ﬂ),
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Proof. (a)Weuse|z—l|>|y| -zl <1—x.
(b) Follows from 2 = 2 and |z — 1] < 1 —x + ||,

Since l —[z?°=1—-x>=y>>x—x>=x(1—x),x >0and | + |z] <2, our
claim follows.

COROLLARY.

. 1 1
(a) % > min (;:f_lz“ -1, m)

0-—1] _ . . : ol _
(b) }%% oo ifandonlyif lim,o 7555 = 00.

Proof. (2)If y? > 1 — x then 2L > T’l’ now combine with Lemma 1b.

(b) Since }irr(l) () =1, we get ’lmtl) x(t) =1, }m?) y(¢) = 0. Now apply (a) and
Lemma 1(a).

) . . . | a,(nt)| _
LEMMA 2. llml e = 0°  is equivalent to }1_13 =

Remark. In the same way, the equivalences in (b) of the corollary and Lemma 2
hold along sequences (t,) with ]in(‘)lo t, = 0. (The notation (s) is explained before
Lemma 1.)

Proof. We use these estimates:

xz
1 —cosx 7 for all x

2\? x2
1 —cosx > (—) -)-c—for x| <m,
b4 2

3
) x
0<x—sinx < Fforx >0
and

3
x_z
F —x¥for0<x <m.

=)}

Since y(t) = — Y_ a, sin(27 (nt)), we have

3
|y(t) —2nZan<m>l < %Zanmnz. ()
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From x(t) = )_ a, cos(2m (nt)), we get 1 — x(t) = Y_ an(1 — cos(27 (nt))), hence

8 an(nt)? < 1—x(t) <21 an(nt). @)
LIDoanl  x ol o om0l g
Thus b4 a,(nt)? 3 = 1—x(1) = 4 a,(nt)? 12

LEMMA 3. For|t]| < ilﬁ we have

ltswl _ _ 1 X aninn)l _ ltsnl+3rn
t2tN+%rN - Zan<nt>2 - tth

Proof. If |n| < N, then (nt) = nt, hence Y a,(nt) = tsy + Y. an(nt).

In|>N
Consequently
1
‘Zan(nt) —ts~| =5 3
Similarly
1
iy <Y an(nn)? <ty + g rw. @
This gives

| S an(nt)| _ sl — rN
2 an n)? = 2ty + 3rn
from which the first estimate follows. The second one is obtained similarly.

PROPOSITION 1.  The following statements are equivalent:

O lim {=f3 =00 (@AR).

oL _
(i) hm —xy = O°

(iii) llm = 00.

Ns
FN+N rn

Proof. (i) < (ii). By the corollary to Lemma 1.

(iii)= (ii) By Lemma 3 and Lemma 2.

(it) = (iii) We have fab cos2mnt)dt = 2ﬂ - (sm(27rnb) — sin(2rna)) < nlnl

In the special case that N < |n| < 2N, a = 4N, b = N(_ 2a), we can say
(putting s = 7% = 2mna) that sm(27mb) — sin(2wrna) = sin(2s) — sin(s). This
is not greater than zero for n > 0, since 7 < |s| < m, and nonnegative for n < 0.
Consequently

w 1 11
> a,(1 —cosQnnt)) dt > a,— + an (_. - _) .
/;LN I:L;N 2Nz|zn|>1v 4N |n|ZZ:N 4N m|n|
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Since iy — 7i < T2y the integral is at least Tiuiv' It follows that there exists

te ]4N s 2N[ such that )" a,(1 — cos(2mwnt)) > 2. For such a value ¢t we get

Inf<N
1 —x(t > 8 1?2 + = 8y + X
® (by () I,,,XS;V a0t} + 3 (by (4)) NT3
IN N
= 57\/_2 3
(since r>7)
2
z 3 N2 —(ty + Nry).
Furthermore
y(@)l < 2w+ Y gy
= n e n
(by (1)) 3
1 23 , 1
< 2 | Isntl + v ) + — | tvt" + =1y
(by (3) and (4)) 2 3 4
[snl ( )
< Tn—+ 0 +ry
(since 1<) N N2
This gives

YOI, Niswl
1—x(@) = tn+ Ny

+ o).

PROPOSITION 2.  Fix p with p > | and assume that p satisfies Y e InlPa, <
00,y 02 na,=0.
Then u cannot satisfy the condition (AR).

Proof. Recall the formula for partial summation: putting 8, = B,_; — B,, we
have
N N
D ¥nBr =Y (ut1 — Ya)Bu — yn41By + yuBu_1. &)
= n=M
Put g = ap, @p = a, +a_, forn >0andsy = Y |n|a,. Then forn > 0 we get
|n|>N
1, , 1
o, = —=(s,_, “‘Sn)-_-"z‘(tn—tn—l):rn-—l —In. (6)
n n
Now assume that property (iii) of Proposition 1 holds. Since }_ n a, = 0 implies that
SN = — Y nay, it follows that
[nij>N

lim — = oo. @)
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We will show that (7) is incompatible with a moment-condition Y |n|”a, < oc. For
¢ > 0 there exists M such that

Sy=cnry for n>M—1. 8

N
We assume that ¢ > pi_ffl- and M > p. Putoyy = ) a,n”. Then by (5) and (6),

n=M
N
oOMN = Z ((n+ Hr-t — n”“)s,’, — (N + D7 'sy + MP7's), .
n=M

Forn > M, we have
((n+ 1)~ —nPNys, = c((n+ 1P —nPynr,.

Since (1 +x)P~1 -1 > %‘((1 +x)? — 1) for0 < x < 1, it follows that for x = %,

—1
((+ 1P~ —nPVyn > "zp (n + 1) —nP).
Hence,
N p—1 N
Y ((+nr'—nrhs, > Y ((n+1)! —nP)r,
n=M 2p =

_ N
(by-:ZS)) B'z—p—lc (— Z (Fpp1 = r))(n + DP + (N + DPryyg — M”rM)
n=M

I

-1 N-1
”zp c(— > (n+1)"(rn+1—rn)+<N+1)"rN—M"rM-.)
n=M-1

_ N
(by (6)) Ez—plc (Z o+ (VD Mpm-l) '
n=M

Thus,

P > c(omn + (N + DPry = MPry_y) = (N + D" 'sy + M7~ s}, .

OMN =

By assumption, we have M — 1 — %’M = % — 1 > 0, hence, by (8),

MP'sh > eMPT (M = Doy = E—eMPry ).

It follows that

”2 coun — (N +1D)P7's},  forall N > M.
p

OMN =
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Now, observe that
(N+ D" sy =N+ DY nay <Y nlay.
n>N n>N
By the moment—condition, the right hand side tends to zero for N — oo and we see
o0

that oy = Z a,nP satisfies oy > "——caM Since we assumed that "—c > 1,

this lmplles that om = 0; consequently o, = O for n > M and we arrive at a
contradiction.

Remark. (a) Similarly, it can be shown that (given any probability measure u on
Z) the property llm -A—’—N- = 00 is incompatible with a moment-condition }_ |n|”a, <
oo (for any p w1th p>1).

(b) In [BJR], 3.5, an example of a probability measure i on Z was given, satisfying
my(u) < oo, E(u) = 0 and (AR). Thus the bound for p in Proposition 2 is sharp.

Recall the notations of [BJR], p. 425: if I is a subinterval of R, then r =
inf{|L()| : t € I},if0 ¢ B < C, then |B|, denotes the measure of B, = 1z € B)
(with respect to normalized Lebesgue measure on the circle). Theorem é 1 of [AB]
says that if there exist intervals 7 (k) (k = 1, 2, ...) such that

(BJR) lim UL ENl, _

)

k=00 | — ¥r(k)

then (1) has the strong sweeping out property.

PROPOSITION 3. If sup H'% = 00, then the condition (BJR) is satisfied, in
N

particular (by [AB], Th. 6.1), it follows that the sequence (") has the strong sweeping
out property.

Proof. We have

1 1
1—x() < 2a%) a,nt)? < 27%(t%tn + -ry) forlt] < —.
(by (2)) 2 (by (4)) 4 2N

Now assume that %";‘r— c.Putl = [—ﬁ, 2—;,—] Clearly, r; > igfx(t).
Hence,

1\2
1—r; <sup (1 —x(t)) <2n? ((ﬁ) ty + er) SN2 (ty + Nry).

tel

Furthermore,

. 1
[a(),| = 5, sup ly(t) — y(t)l.

t,hel
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This can be estimated as follows:

ly®) —2mtsyl < Iy =21 Y _anint)| + 27| an(nt) — syl

23 1
< il a, (nt)2 + 2w - =rn
by .3 3 2
< 2773(21‘ +lr)+7rr
< —_ N+ =rN N-
wy@y 3 4

Consequently,

1 1 1 473 1\?2 1
—)=y(—=—)| = 27t —|syl— — [ — ) tvn + = -2
Iy(2N) ¥( 2N)I > ansNI 3 ((2N> ~+4rN) TN

21
z 7 (INsn| = colty + N2ry))

where the constant ¢y does not depend on N.

In combination, this gives

0], 2 (M
ty + N2ry

2
—m) > =) (¢ — o).

l—r, —7'(2

PROPOSITION 4.  If u satisfies the condition (BJR), then supy - iv ):/N = 00.

The proof of Proposition 4 needs more elaborate estimates and is postponed until
after the examples.

Remark. There does not seem to be an easy description of (UR) in terms of
the asymptotic behaviour of r,,, s,, t,. By the remark after Lemma 2, a probability

. . . . . n t
measure u satisfies (UR) iff lim sup ]_i'(),) = oo and iff lim sup ' : (f:)i' =
t—0 t—0 "

If (BJR) does not hold, then sup ;;‘% < oo. From this, one gets as a necessary
N

condition that (UR) (but not (BJR)!) should hold: lim sup NTZN’M = 00, i.e., the remain-
N

der ry must not go to zero too fast. But this is not sufficient. The outcome depends
on the behaviour of the sequences ((nt)),5 Ly For (UR) there should be ¢ such that
(nt) gets small, but not too small for sufficiently many » and then the distribution of
the signs in (nt) (and the relative size of a,, a_,) comes into play too. See Example

3 below, for how explicit examples of this behaviour can be obtained from this rather
sketchy description.

APPLICATION. Assume that u is concentratedon W = {£wy : k =1,2,...} C
Z where 0 < wy < wy < ---. Put oy = u({—wi, wy}). Let K = {ky < kg <
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-} € N. Assume the following regularity conditions: there exists ¢, d > 0 such that
Fup < €Oty |Sw | = dwpay, ty, < c w,%ak forallk e K (i.e., the size of the
sums is governed by the leading term).

Under these assumptions we will show that llm (“—"*— + ‘-‘)—k-’i—l) = 0 implies

sup [;;/'—4_'\’—;,’";];; Wy <N <wpy, ke } = oo (in parttcular, by Prop. 3, property
(BJR) holds).

Proof. Forwy < N < wi4y, we have ry = ry,, SN = Sy, tn = ty,. Hence

INSN| > Nd Wi Ok d Wy N g1 -
tn+ N2y =~ cwlog + N2cayy T ¢ \N w o ’
(@ If ak < G’L consider N > %i (assuming wi4+1 = 2). Then
wy N agy Wy wert { we )2 Wy
—_ —. <2 + ( ) =3
N  w o W1 Wi\ Wit Wi+

and the right-hand side tends to zero.
(b) If /o > o consider N with /ot < Rt <2 joil

Wi 4 ak
this is os51ble as soon as %t < 1y > 2) Then
o 4 k

wy N agy Ot O Okt pt1
—_—t— — <2 + . =3 [—,
N Wy [v7% 277 [+ 73| (4773 (07

and the right hand side tends to zero again.

Remark. If sy, | < c weou ( /"‘;—‘:i + w—"k’i-i) for k € K (and the regularity con-

ditions for r,, and t,, stay true), then the converse follows from similar computations,
ie.,

INsn|
sup{m.wk§N<wk+|, keKt <o
This is applicable, in particular, if

.. k+1 w,
[Su, | < cwroy fork € K and hmmf(—+— + ——-k—> > 0.
(o7% Wi+1

Examples. (1) If 1 < p < 2 is fixed, there exists u satisfying the condition of
Proposition 3 (i.e., (BJR) holds) and having the properties

o0 o0
Z na, =0, Z |n|”a, < oo.

n=-—00 n=-00
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Explicitly:  Choose @ with p <« < 2. Thenu = [ Z1+1>2
Put

w,, = m! m=1,2,..)
a Y
wy
Wi,
form = 0 (mod u)
awm
A—wyyp = m_+l
a, =0 otherwise.
(y > Ois chosen so that )_a, = 1.) Then wyau, — Wmtid—w,, = 0, hence
Y.na, = 0. Forn = w,, m = 0(modu), we have n’a, = -t , and for
n = —w,4+, we get
n|a, = (m + l)”"—y— <t holds for large m
n = wi P = X ge m.

W

Hence ) |n|”a, < oc.

Put X ={m : m = 0 (modu), m > 0}. We check the conditions for (BJR)
specified above. For m € K, we have the following:

o
= Y — [ wu . = —
(a) rw,. = Qp, and awm+u - (wm’_:_") awm = m+]awm - awm+l = awm‘
|n|_>_wm+|

8
==

Hence Tw,, = A—wyq * 2.

k=0
(b) s’w,,, = Wy ay,,-
2—a w’Z"— ‘:l < w’Z" " . 2 l
(c) w? nQu, =Y W, % <y gy < —2q,, . since (2—a)u > 1.
This gives
2 _ 1 2 2 awm 1 2—«
wm+la‘wm+| - (m + ) m + 1 y(m + )wm

m+ 1 ra o2
y (m + ])u(2—a) wm+u — wm+u awm+n'

o0
Hence ty,, < w2aw, -2 Y. &
k=0

-

[ TR — a—"mil p— 1 -
(d) Ay gy m+1 0'

. —
(e) Wyt m+1

- 0.
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(2) There exists u satisfying the condition of Proposition 3 (i.e., (BJR) holds) and
having the following properties:

o0 o0
Z na, =0, Z n|’a, < oo forall | <p<2.

n=-—00 h=—00

Explicitly: Put

w,, = m!
K={%k=12..)

14

awm = 1
Wy,

form=2 ek

Ay,

a_wm+l = ;—n——"*‘—l
a, =0 otherwise.

The estimates are done as in (1).

3)If 1 < p < 2is fixed, there exists u with unbounded asymptotic ratio (i.e.,
lim sup 'l"_(l' L:,')l = 00, property (UR)), but not satisfying (BJR) and having the prop-
t—=0

erties

00 00
Z na, =0, Z |n|”a, < oo.

n=-—00 n=-—0oo

Construction. Assume that w; > 1, wy | wiy and wiy > 2 wy for k sufficiently
1

large. Then, taking ¢t = L it can be shown by computations similar to those in

Lemma 3 that 3 a,(nt) = ts,, and }_a,(nt)? = t*t,,. Hence by the remark to
Lemma 2, the asymptotic ratio is unbounded as soon as

Sw;, | Wk
Suplwkl +1 =00

tuy

Applying Proposition 4, we have only to show that this is compatible with the first
condition given in the remark before Example 1 (with £ = N).

Explicitly: Choose o with p < o < 2, put a4 = ;‘% for k € N and balance

2—o
a_,, and a,, so thats,, = ¥4 / %é,: (this is possible, since the right side is smaller
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than a4 we+) < agwy). Then the condition from the remark before Example 1 is
fulfilled:

Qg+1
Swy, = WO | ——

(477

9

ry, =< yw]:'.] § ZW < COky s

o0
ty, <y Wi Z 2"@=D < cylay.
n=0
Thus,

-
[Sw, | Wi+ 1 S l Wit 1 2
tw, “c Wy
and the asymptotic ratio is unbounded when sup -“i,ffki = 0o. Hence, for example, one
can take, w, = k!.

Before proving Proposition 4, we show an auxiliary result

LEMMA 4. Ifmy(u) = oo, then "m 1“1)«) 0.

Proof. Take € > 0and choose N € Nsuchthatt =ry = ) a, <e€. Put

|n|>N

= 1_ Z ame 2mntand = — Z an e—-2mnt 7 =X +ty,
R R TN

(for j = 1, 2; everything depends on ¢ which is omltted for brevnty) By (2), we can
estimate 1 — x; by T~ 3" a,(nt). For |t| < 5% this equals ;= " a,n?#% For
Inl<N In|<N
I —x2, weget 1 3" a,(nt)? and for || < 5 (with M > N) this is bigger than
N<|n|

1> a,n??. Since my(n) =

00, it follows that there exists ¢, > 0 such that
N<|n|l<M

1—x <121 —=xp) for |t| <t,.

By definition,y = (1—-t)y;+ty;and | —x = (1=7)(1 —x|)+7(1—x3) > t(1—x3)
Since |z;| < I, we have |y;| < /2 (1 — x;) and this gives
Y <2yi 42775 <41 —x) + 47201 —xp)

< 8721 —x)) <8t (1 —x) <8e(l —x).
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Remark. 1If my(u) < oo, it is easy to see (e.g., by de I’Hopital’s rule) that

yo?  _ 2Em)?
01 —x(t)  my(u)

Proof of Proposition 4. Assume that sup #%’;—,’i-'r? < oo. First, we claim that

y(®)* =o(1 —x(t)) fort — 0. )

If ma () = oo, (9) was shown in Lemma 4. Next, we give an argurgent for the case
m(un) < 0o. As before, puta, = u({—n, n}). Wedefine y(¢t) = }: o, sin(2rnt),

n_

sn= Y Inla, = Z na,. Then limsy = m;(u). By partial summation,
In|<N n=1

N N
tv=) nlan =~ 5+ N+
n=1 n=1
Hence lim ; ty = —m; (1) + m (1) = 0. Furthermore,

o0 o0
Nry=N Z a,.ﬁZna,,-—)OforN—)oo.

n=N+1 N+1
This entails
N§
im —— = oo, (10)
N—oo ty + N2ry
hence, by our initial assumption,
.5
lim -~ = oo. (10"
Isn|

In particular, E(u) = 0. For my(t) < 00, (9) now follows from the remark above
or from [BJR], Prop. 1.9 (2), but we give yet another argument. Since x(t) =
00

3" @, cos(2mnt), we have x (£)>+7(¢)* < 1,hence y(t)? < 1 —x(£)* < 2(1—x(?)).
n=0As in the last part of the proof of Proposition 1, for |¢| < 2—'ﬁ we get
Y@l < 2z|snt| + Oty + 1)
and similarly
15| = 27 |5nt| — Oty + ry).
For 7 <t < 5%, it follows from (10) that ¢ty + ry = o(3nt), hence by (10”)
ly®O _ lsntl +oGnt)
YOI ~ Isnt] — o(snt)

=o(1) for ¢t — 0 (which implies N — 00).
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This gives (9). As a consequence,

1
1= 1aml~ 5 (1 2 0]p) ) 2 (1=x@®?) ~1=x(@ fort—0.
Now assume that I (k) are intervals satisfying

lim lad &y _
k— 00 1—r,(k)

In particular, 1 — r;) — 0. This gives |I (k)| — 0. After passing to a subsequence
and translating, we may assume that / (k) tends to {0} fork — oo. Putr; = inf{x(z) :
t € I}. Then it follows from the above that

1 —rig~1=rpy, fork— oco.

If J denotes a subinterval of the circle, it is easy to see that

1
e ~ E;Sllp{lzl —z2l:21,22€ J} forJ — {1}.

This gives,

N 1 o N

(D, ~ o sup{li(t) — ()| : ti, t € I} + Ol —rp) for I — {0}.
Since |x(t;) — x(22)| < 2(1 —ry), we get

la@t) — p@)] < ly@t) —y@)l+2(0 —r;) fort,n el
Thus |i(1)], ~ 5= |y(I)] + O(1 —r}). This gives

lim Iyd &Nl _
k—o00 ] _rl(k)

(1

(where |I| denotes the length of a real interval 7). By symmetry, we can assume that
1(k) € [0, oo[, hence I (k) < [O, -_i;[ for large k.
We proceed with an estimate for 1 — r;. We assume that I = [u, v] with0 < u <

< % .PutN = [| ll] (where [s] denotes the integer part of s € R). Define

1 1 24 1 2
ov =gty + 3 ety and o= f it = o | (5)ds

If|n] > N, wehave |nI| = 1, hence (by elementary computations) 8, > %. For all n,
wehave B, > §(nv)?>andfor|n| < N wehavetheestimate 8, > 15 (n |I])? > & (%)?
(using |n]] < 1and |I| > 5). This gives

1
mfzan(nﬂzdt > cipn
1
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(for some ¢; > O independent of N, I; one could take ¢; = ). Using (2), we
conclude that
1 —ri28sup) an(nt)> = 8cipn. (12)
tel

Next, we want to estimate |y(/)|. By (1) and (2), for #{, t, € I we have
() = )| =27 |3 an((nn) — (nea))| + O(1 = 1.

Put M = [%] (observe that N > 3 ) and assume ¢; < t;. If ¢t — (nt) has no jump
between #| and 5, then (nt) — (nt2) = n (t) — t). If |n| < M, then |nI| < &l < 1.

3
Thus, if there is a jump between t| and 1,, then |(nv)| > é, hence
(nt;) — (nt)) —n (t; — ) = 1 = O({nv)?).

Since Y (nv)2a, < pv =_O(1 —r}), this gives
In|<M an

ly(t) — y(t)| =2x|su(ti — )| + O(1 —r)).

Since |I| < & < 7, we get

M
2w
ly(D)] < o lsul + 001 —r)). (13)
Now it follows from (11) and (13) that
7|S1t4| — oo fork = o0,
=i

hence by (12), o |sul/pn — oo (where N = N(k) = [ﬁ] and M = M(k) =

[XL]). Butsince M > ¥, we have py > & (35tm + ru), and we arrive at a
contradiction to our initial assumption.
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