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A REMARK ON ALMOST EVERYWHERE CONVERGENCE
OF CONVOLUTION POWERS

VIKTOR LOSERT

ABSTRACT. We answer a question of [BJR] about pointwise convergence a.e. for convolution powers of
measures with expectation zero and finite moments of all orders s < 2. We compare the conditions that
appeared in the study of the strong sweeping out property for convolution powers.

Let (X,/3, rn) be a non-atomic probability measure space, r an invertible measure
preserving transformation on X. Given a probability measure/z on Z and f L’ (X)
(p > 1), put (txf)(x) ":=-o Ix({k})f(rkx) In [BJR], the question of pointwise
convergence a.e. of the convolution powers l.tnf has been studied (see also [B] and
[BC] for this and related matters). An important r61e is played by the quotient I-I/(t)l
theangularratio(fz(t) lz({k})e-2ikt denotes the Fourier transform of/z, ).
In [BJR], Th. 1.6, it was shown thatlimlznf(x) exists a.e. for f LP(X) (p > 1), if
I/2(t)l < fort Z and the angular ratio is bounded. If/z has a finite second moment
m2 (#) k2/z ({k }) and the expectation E(/z) k/z (|k }) is zero, then/z has
bounded angular ratio ([BJR], Prop. 1.9). In this special case (if in addition I/2(t)l <
for Z), it was shown in [B], Th. 5 that pointwise convergence a.e. holds even on
L . On the other hand, for/z with E(/z) # 0, m2(/z) < , it was shown in [BJR],
Th. 2.1, that the strong sweeping out property holds, i.e., rather drastic divergence
(see also [AB]). In [BJR] the question was raised about what happens with measures
having finite moments m, (#) for all s < 2 and E(/z) 0.

In the course of the investigations about divergence three conditions appeared.
First came

Ift(t)
(AR) lim

,--,0 -I/(t)l
This is completely sufficient to describe the possible cases for measures with finite
second moments. (By [BJR] Prop. 1.9 and Lemma 1.7, m l(/z) < o together with
E (/z) -7/: 0 implies (AR)).

Then a weaker condition (we call it (BJR)) was introduced in [BJR], Th. 2.2 (the
precise definition is given before Prop.3). In [AB], Th. 6.1, it was shown that (BJR)
is also sufficient to get the strong sweeping out property.

Finally, [BJR] suggested considering the condition

It2(t) 1(UR) lim sup x.
,-0 -I/2(t)l
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By [BJR], Prop. 2.3, (AR) implies (BJR) and it is easily seen that (BJR) implies
(OR).
We consider the partial sums for E(/z) and those for #({k}) and m2(/z). We

characterize (AR) (Proposition 1) and (BJR) (Propositions 3 and 4) in terms of the
asymptotic behaviour of these sums, thus avoiding the use of Fourier transforms
and facilitating the construction of various sorts of examples and counterexamples.
In particular, this is used to construct examples of measures/z with E(/z) 0,
m.,(/z) < o for all s < 2 and satisfying (BJR) (consequently, the strong sweeping
out property holds--answering the question of [BJR]). Examples of this type have
also been given by Chistyakov [C].

Although (UR) appears to be the decisive condition, (AR) is certainly the easiest
to work with (e.g., [C] mentions examples arising from distributions belonging to the
domain of attraction of certain stable laws). On the other hand, we show in Proposi-
tion 2 that for measures # with E(#) 0, m., (#) < o for some s < 2, condition
(AR) can never be fulfilled (i.e., examples as mentioned above are impossible if (AR)
is required, in particular, the measures of Examples 1,2 satisfy (BJR) but not (AR),
so (AR) is strictly stronger than (BJR)). Thus (AR) becomes rather insufficient to get
a complete picture for measures with m2 (/z) o.

Finally, in Example 3 we give examples showing that (BJR) is strictly stronger
than (UR): measures/z with E(/z) 0, m.(/z) < o for some (arbitrarily given)
s < 2 that have unbounded asymptotic ratio but do not satisfy (BJR) (existence of
such examples was already mentioned in [BJR], p. 428).

For measures/z with unbounded asymptotic ratio that do not satisfy (AR) the
Fourier transform/2(t) oscillates near 0. (with phases of tangential and phases
of non-tangential approach). If/z does not even satisfy (BJR) these oscillations get
very sharp.

Notation. an /z({n }) for n Z, i.e., an > 0, -].n=-o an 1, and we will
always assume thatan > 0 for infinitely many n. Then z(t) =/2(t) an e-2rint

x(t) + y(t), with x(t) an cos(2rnt), y(t) an sin(2zrnt). We consider
the sums

rN= -an, StV= Znan, tN= n2an, N=0,1,2
Inl>N Inl<N Inl<N

For s , we denote by (s the unique element from 1/2, 1/2 such that s Is) Z
(i.e., (s) 1/2 s }, where {t denotes the fractional part of t).

LEMMA 1. Take z x + iy, with Izl < 1. Then thefollowing inequalities hold:

(a) > _!z!_
l-.Izl I-x"

(b) lfy2< l-x <l then Iz-ll < :(I-Izl +
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Proof. (a) We use Iz- 11 >_ lYl, 1-Izl _.< -x.
l/lzl and Iz 11 < -x + lyl(b) Follows from l_lzl2

Since Izl 2 x2 y2 > x x2 x(l x), x > 0 and + Izl _< 2, our
claim follows.

COROLLARY

(a) >_min-1,

(b) lim It)-l cx ifand only if ly(t)l Olimt0 l-x(t)

Proof. (a) If y2 > x then > , now combine with Lemma lb.
(b) Since lim (t) 1, we get limx(t) 1, lim y(t) O. Now apply (a) and

t---0 t-0 t----0
Lemma (a).

LEMMA 2. lim ly(t)l
to l-xt) o is equivalent to lim

I’a,,(nt)l
t--O a,, (nt)

(X).

Remark. In the same way, the equivalences in (b) of the corollary and Lemma 2
hold along sequences (tn) with lim tn 0. (The notation (s) is explained before

n--- (x)

Lemma 1.)

Proof. We use these estimates:

for all x

cos x > --for Ix _<

and

x
0 < x sin x < -7-for x > 0

x3 7t x2<_ for0<x<zr.
6 -6

Since y(t) , an sin(2zr (nt)), we have

ly(t) 2zr an (nt) <
2r3-- _an(nt)2 (1)
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From x(t) an cos(2zr (nt)), we get x(t) . an(l cos(2zr (nt))), hence

8 an (nt) 2 <_ x (t) <_ 2rr 2 E an (nt) 2. (2)

Thus " .an(nt)2 3 l--x(t) " an(nt)2 T"

LEMMA 3. For It < we have

tsvl 2 <
I_,an(nt)l

<
tsvl + 1/2

2 tv + 1/4 rv _, an (nt)2 2 tv

Proof. Iflnl <_ N, then (nt) nt, hence an(nt) tsr + an(nt).
Inl>N

Consequently

Similarly

an (nt) tsv < - rlv. (3)

2 tiv <_ an (nt}2 < 2 tN + - rN. (4)

This gives

,an(nt)l
>

Itsvl- 1/2rlv
_,an(nt) 2 t2tv + 1/4rlv

from which the first estimate follows. The second one is obtained similarly.

PROPOSITION 1. Thefollowing statements are equivalent:

(AR).

Proof. (i) (ii). By the corollary to Lemma 1.
(iii)=> (ii) By Lemma 3 and Lemma 2.
(ii) = (iii) We have fba cos(2rnt)dt (sin(2zrnb) sin(2rrna)) <

In the special case that N < Inl < 2N, a , b .! (= 2a), we can say
n 2rrna) that sin(2rrnb) sin(2rrna) sin(2s) sin(s). This(putting s 2-

is not greater than zero for n > 0, since y < Is _< zr, and nonnegative for n < 0.
Consequently

an(l -cos(27rnt))dt > an" + an 4-N rrln]Inl>N 2N>_lnl>N Inl>2N
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Since 4NI rl,ll _< ], the integral is at least r12v. It follows that there exists

]a-, ’[ such that a,(l cos(2rnt)) > r. For such a value we get
[nI<N

-x(t) > 8 - an(nt)2 + 8t2tN +
(bye2)) Inl<Nz’" 3 (by (4)) 3

tN rN>
(sinceS>_A) 2N2 3

> (try + N2rtv)
3N2

Furthermore

ly(t)l <
(by (!))

This gives

(by (3) and (4))

(since t_<)

27r3 )22rrl an(nt)l + --- an(nt( ) 2zr3( t2 )2rr sv + -rv + --- v + -rv

Islo( tr )+

ly(t)l Nls:l< 3zr + O(1).
-x(t) tlv + N2rtv

PROPOSITION 2. Fix p with p > and assume that lz satisfies on=-c ]nlPan <
0, n=- n an O.

Then lz cannot satisfy the condition (AR).

Proof. Recall the formula for partial summation" putting/n Bn-! Bn, we
have

N N

+ (5)
n=M n=M

Put co ao, cn an + a-n for n > 0 and s: In lan. Then for n > 0 we get
Inl>N

an -(s’n sn) (tn tn rn- rn (6)
lrl - -I

Now assume that property (iii) of Proposition holds. Since n an 0 implies that
sN , n an, it follows that

Inl>N

lim
sty

=o. (7)
No NrN
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We will show that (7) is incompatible with a moment-condition [nlPan < cxz. For
c > 0 there exists M such that

s: _> c n r. for n >_ M- 1. (8)

N
We assume that c > and M > p. Put aMV Otnn p. Then by (5) and (6),

n=M

N
Mp-iaMN ((n -+- 1) p-I np-I) sn (N + 1)p- SN_. "+" SM-I

n=M

For n > M, we have

((n + 1))p-I np-I) s’. > c((n + 1)p-I np-) n r..

Since (l + x)p- > ((l + x)p l) for 0 < x < I, it follows that for x ,
((n + 1)p-- nP-)n >

p l((n + 1) p -riP).
2p

Hence,

N

(by (5))

(by (6))

Thus,

O’MN
p-I
2p
c(aMV + (N + I)PrN MPrM_) (N -Jr- 1) p-I s -I- Mp-I

SM_.’

By assumption, we have M _=2M > 0, hence, by (8),p p

Mp-I SM_ > cMp- (M- l)rM-i >
p-I
cMPrM_I.
P

It follows that

for all N > M.
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Now, observe that

(N + I)P- so (N + I)P- n otn < nPotn.
n>N n>N

By the moment--condition, the right hand side tends to zero for N x and we see

that trot otn p satisfies crt > 2epCCrt. Since we assumed that 2epC > 1,
n=M

this implies that crt 0; consequently otn 0 for n > M and we arrive at a
contradiction.

Remark. (a) Similarly, it can be shown that (given any probability measure/x on

Z) the property ulrn u_tN o is incompatible with a moment-condition Y InlPan <

cx (for any p with p > 1).
(b) In [BJR], 3.5, an example of a probability measure/x on Z was given, satisfying

m (/x) < cx, E (/z) 0 and (AR). Thus the bound for p in Proposition 2 is sharp.

Recall the notations of [BJR], p. 425" if I is a subinterval of , then rt
inf{I/2(t)l l},if0 B c__ C, then IBIp denotes the measure of Bp {’z B}
(with respect to normalized Lebesgue measure on the circle). Theorem 6.1 of [AB]
says that if there exist intervals I (k) (k = 1,2 such that

lim
I/2(1(k))1 ,(BJR)

k rt

then (/z") has the strong sweeping out property.

PROPOSITION 3. If sup INsul
t+O2’r ’ then the condition (BJR) is satisfied, in

particular(by [AB], Th. 6.1 ), #follows that the sequence (#’) has the strong sweeping
out property.

Proof. We have

x(t) < 27r 2 an(nt)2 < 2r2(t2tN + ro) forlt[ <
(by (2)) (by (4)) 2N

Now assume that t/N2rl’Ns’ul _> C. Put I [ 2o’l -"]2o" Clearly, rt >_ infx(t).tzt
Hence,

l_rt<sup(l_x(t))<2r2((l)2 ) 2
,t " to+-ro (to+N2ro).

Furthermore,

sup ly(tl) y(t2)l.
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This can be estimated as follows"

ly(t) 2rr sN[ <

(by (I),(3))

ly(t) 2rr a.lnt)l + 2zr a.lnt} sNl
2zr
3 an(nt)2 + 2r.-rlv

2r3( )< t2tu+ ru +terN.
(by-4)) 3

Consequently,

lY(-)- Y(--)I >_ 2zr lsl- -- - tv + rN
2r

> N--- (INsvl- co(tv + N2rv))

2rr FN

where the constant co does not depend on N.

In combination, this gives

2 ( INsul )2I(I)1 > co > (c co)
-rt :r 2 tN + N2rN -PROPOSITION 4. If lz satisfies the condition (BJR), then suPN IN,,NI

tN+N2rN

The proof of Proposition 4 needs more elaborate estimates and is postponed until
after the examples.

Remark. There does not seem to be an easy description of (UR) in terms of
the asymptotic behaviour of r., sn, t.. By the remark after Lemma 2, a probability

t)’(t)tmeasure/z satisfies (UR) iff limt_0sup i-xtt) oo and iff limt0sup Ia,,a"(nt)l(nt) (X).

If (BJR) does not hold, then sup t+v!_ < o. From this, one gets as a necessary
N

condition that (UR) (but not (BJR)V) should hold: lim sup- oo i.e. the remain-
tNN

der rN must not go to zero too fast. But this is not sufficient. The outcome depends
on the behaviour of the sequences (/nt/).> +/- 1. For (UR) there should be such that

--t2t

(nt} gets small, but not too small for sufficiently many n and then the distribution of
the signs in (nt) (and the relative size of a., a_.) comes into play too. See Example
3 below, for how explicit examples of this behaviour can be obtained from this rather
sketchy description.

APPLICATION. Assume that # is concentrated on W {q-w, k 1,2 c_
Z where 0 < Wl < tOE < "’’. Put otk- /z({-wk, w}). Let/C {kl < k2 <
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c_ N. Assume thefollowing regularity conditions: there exists c, d > 0 such that

rwk <_ c/, ls >_ d wkotk, tuk < c w2otk for all k IC (i.e., the size of the
sums is governed by the leading term).

Under these assumptions we will show that lim ( +) 0 implies
klC \ t w+ !

IVsNI "w < N < k 1C o (in particular, by Prop. 3,sup tN+N2r 1/3k+l, property

(BJR) holds).

Proof For Wk < N < l/)k+l, we have rN rw, SN Swk, tN --twk. Hence

Nd wt d wk NINsl >
tv + N2rv c wot + N2cotl+l c 113k Olk

w+, (assuming > 2) Then(a) If < considerN > -- w+lO/k 1/3k+l

N + <2 + =3 wk

w a wk+ w w+ wk+

and the right-hand side tends to zero.

(b) If /-- > w....x_ consider N with
V

< 2Vk k+l ffk

(this is possible as soon as < w > 2). Then
k

N
<2 + =3

and the right hand side tends to zero again.

/’/+’ +) for k /C (and the regularity con-Remark. If Isu, < c wt \V /’

ditions forr and tw stay true), then the converse follows from similar computations,
i.e.,

sup "w <N<w+, k <.
t + N2r

This is applicable, in paicular, if

ls,lcwfork and liminf + + >0.
k k+

Examples. (1) If < p < 2 is fixed, there exists/z satisfying the condition of
Proposition 3 (i.e., (BJR) holds) and having the properties



474 V. LOSERT

Explicitly:
Put

Choose, with p < ct < 2. Then u 2_-Z--d] + > 2.

aw t113m

aw,,,
a_w,,,/ m+l

an --0

(m 1,2

for rn __. 0 (mod u)

otherwise.

(y > 0 is chosen so that Y a,, 1.) Then Wmaw,,,
na,, 0. For n win, rn =_ 0(modu), we have
n w,,+ I, we get

Wm+la-w,,,+i 0, hence
_r_ and fornPan n-t

InlPan (m + 1)p- ?’ < .?’ holds for largem
//Jm Um

Hence
Put /C {m rn 0 (modu), rn > 0}. We check the conditions for (BJR)

specified above. For rn 6/C, we have the following:

(a) r, Inl----,,+, and a,,,,,+,,
!

aw,,, < ---L-a <
m+l Wm "--maw,,,+l aw,,,.

Hence r,,,, < a-w,,,+,. 2. p..
k=0

(b) sw,,, =Wm aw,,,.
2-or

(c) w2 2- < w,,,+,, < w,,,+,, since (2-ct)u > 1.,haw,,, Y llOm Y m’=" Taw,,,+,,

This gives

2 (m "q"l 2 2 aw,,,
UOm y (m + 1) wZm-awm+a-w’"+ rn +

m+l 2-a < 2< g
(m + 1)ut2-a) tm+u Wm+u aw,,,+,,.

Hence tw,,, < wZmaw,,, 2. Y ..
k=0
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(2) There exists # satisfying the condition of Proposition 3 (i.e., (BJR) holds) and
having the following properties:

nan =0, InlPan < forall <p <2.

Explicitly: Put

/C {2k" k=l,2

aw,,,
2-

113m

aw,,,
a_w,,,/ m+l

an --0

for rn 2k e/C

otherwise.

The estimates are done as in (1).

(3) If < p < 2 is fixed, there exists/z with unbounded asymptotic ratio (i.e.,
lim sup It(,)-II , property (UR)), but not satisfying (BJR) and having’the prop-

t--O
erties

Construction. Assume that wt > 1, w w+l and w+ > 2 w for k sufficiently
large. Then, taking it can be shown by computations similar to those in

LOk+

Lemma 3 that an(nt) tswk and an(nt>2 t2tu,. Hence by the remark to
Lemma 2, the asymptotic ratio is unbounded as soon as

[Swk ]Wk+l
sup o.

tw

Applying Proposition 4, we have only to show that this is compatible with the first
condition given in the remark before Example (with/C N).

Explicitly: Choose ct with p < ct < 2, put ck u,v-- for k N and balance

w-/-2- (this is possible, since the right side is smallera_, and au, so that su, y ,+
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than ct,+w,+ < c,w,). Then the condition from the remark before Example is
fulfilled:

s,,, wot./t*---+

ru,, < F W+l < c
n--’--0

Thus,

tw, <_ F w2- 2n(-2) < c WkOt.
n--0

Is,lw,+ >_
tw, c Wk

and the asymptotic ratio is unbounded when sup --if-, o. Hence, for example, one
can take, w k!.

Before proving Proposition 4, we show an auxiliary result.

LEMMA 4. Ifm2(#) o, then lim. ,vtt)2 0.
t--0 l-x(t)

Proof. Take E > 0 and choose N N such that r rv an < E. Put
Inl>N

ZI"- ane-2rintand z2 ane-2rtint, zj xj +i yj
--r

inl<_N
"t"

Inl>N

(for j 1,2; everything depends on which is omitted for brevity). By (2), we can
estimate 1-x by E an(nt) 2. For It[ < this equals E ann2t2. For

Inl<N Inl<N
x2, we get -; a, (nt) - and for It < (with M > N) this is bigger than

N<lnl
a,,n2t. Since m2(#) 0, it follows that there exists to > 0 such that7

N<InI<M

Xl < "[2(1 X2) for Itl < t,,.

By definition, y (l-r)y +ry2and l-x (l-r)(l-xt)+r(l-x2) > ’(l-x2).
Since Izl <_ 1, we have lYI _< v/2 (1 xj) and this gives

y2 _< 2 y2 + 2 r2y22 < 4 (1 x) + 4 r2(l x2)

< 8r2(1 --X2) _< 8r(l -x) < 8(1 -x).
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Remark. If m2(/z) < oo, it is easy to see (e.g., by de l’H6pital’s rule) that

y(t)2 2 E()2

lim---------
-0 x(t) m2(#)

ProofofProposition 4. Assume that sup INsNI < o. First, we claim thattN+N2rN

y(t)2 o(1 x(t)) for -- 0. (9)

If m2(/.t) oo, (9) was shown in Lemma 4. Next, we give an argurooent for the case
ml (/x) < cx. As before, puttxn =/x({-n, n}). We define y(t) an sin(2rrnt),

N n=l

N E II’tlan nOln" Then limN ml(/z). By partial summation,
Inl<_N n=l

N N

tN n2Otn _,gn + (N + 1) gN.
n=l n=l

Hence lim tN = --m(/x) + m (/.t) 0. Furthermore,

N rN N otn < j- n Otn --> O for N
n=N+l N+I

This entails

NgN
lim o, (10’)
N tN -I- N2rN

hence, by our initial assumption,

lim
SN

O. (0")
Isl

In particular, E(/z) 0. For m2(/z) < cx, (9) now follows from the remark above
or from [BJR], Prop. 1.9 (2), but we give yet another argument. Since x(t)

an COS(2zrnt), wehavex(t)+y:(t)2 < l,hencey(t)2 < l-x(t)- < 2(l-x(t)).
n-----0

As in the last part of the proof of Proposition 1, for It < we get

ly(t)l _< 27rlSNtl + O(t2tN + rN)

and similarly

lY(t)l > 2rlgNtl- O(t2tN -I-rN).

For < < -, it follows from (10’) that t2tN + rN O(gNt), hence by (10")

ly(t)l IsNtl + o(gNt)
< o(1) for t ---> 0 (which implies N -->

lY(t)l IgNtl O(gNt)
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This gives (9). As a consequence,

1 2) 1 (t)2) (t) for 0.I/2(t)l (1 I/2(t)l (,) (1 x x

Now assume that I (k) are intervals satisfying

lim
I(t(k))lp

k--o rl(k)

In particular, rtk) --> O. This gives II (k)l ---> 0. After passing to a subsequence
and translating, we may assume that I (k) tends to {0} for k -> cxz. Put r inf{x(t)

I }. Then it follows from the above that

for k ---> o.rt(k) rtk)

If J denotes a subinterval of the circle, it is easy to see that

Idl - supllzl- z21" zl, Z2 J} for J {1}.

This gives,

I/2(I)1 sup{It2(q) -/2(t2)1 t, t2 I} + 0(1 rt) for ! {0}.

Since Ix(t) x(t2)l _< 2 (1 r), we get

I/(t) -/2(t2)1 < lY(h) y(t2)l + 2 (1 r) for t, t2 t.

Thus I/2(1)lp lY(1)I + O(1 rt). This gives

ly(l(k))l
lim o (11)
ko rl(k)

(where III denotes the length of a real interval I). By symmetry, we can assume that
I (k) [0, o[, hence I (k)

_
[0, [ for large k.

We assume that I [u v] with 0 < u <We proceed with an estimate for rt.
v < 1/2. Put N [] (where [s] denotes the integer part ofs ). Define

ON -tN -- (no)2an + rN
Inl<_N

and if fn (S)2ds"fln "(’i[ n 2d
n I-’

If In > N, we have In 11 >_ 1, hence (by elementary computations)/, > 6" For all n,

wehavefln >_ 1/4(nv)2andforlnl <_ N we have the estimate /n >_ (n Ill)2 >_ 8 ()2
(using Inll _< and III > ). This gives

,fII"- an (nt)2dt >_ ClPN
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(for some c > 0 independent of N, I; one could take c 8)" Using (2), we
conclude that

l-r >8sup an(nt)2 > 8cpN. (12)
tel

Next, we want to estimate ly(l)l. By (1) and (2), for t, t2 e I we have

ly(tl)- y(t2)]- 2:rr ]an((ntl)- (nt2))] + O(1-

NPut M [7] (observe that N > 3 and assume t < t2. If t - (nt) has no jump
between tl and t2, then (nt) (nt2) n (t t2) If Inl < M, then Inll < I1 <

Thus, if there is a jump between t and t2, then I(nv) >_ , hence

(nt) (nt2) n (t t2) O((nv)2).
Since (nv)Ean _< PN O(l rl), this gives

Inl<_M (1

ly(t) y(t2)l 2zrlst(t t2)l + O(1 r).
Since III < < , we get

2zr
ly(1)I _< Isl + O(1 r). (13)

Now it follows from (11) and (13) that

lsl --. o for k --* o,
rttk)

hence by (12), -lsMI/ (where N N(k) [It] and M M(k)

uk.__..2]). But since M > ff we have P,v > 6 -tM + rM), and we arrive at a
contradiction to our initial assumption.
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