A REMARK ON ALMOST EVERYWHERE CONVERGENCE OF CONVOLUTION POWERS

Viktor Losert

Abstract

We answer a question of [BJR] about pointwise convergence a.e. for convolution powers of measures with expectation zero and finite moments of all orders $s<2$. We compare the conditions that appeared in the study of the strong sweeping out property for convolution powers.

Let $(X, \mathcal{B}, m$) be a non-atomic probability measure space, τ an invertible measure preserving transformation on X. Given a probability measure μ on \mathbb{Z} and $f \in L^{p}(X)$ ($p \geq 1$), put $(\mu f)(x)=\sum_{k=-\infty}^{\infty} \mu(\{k\}) f\left(\tau^{k} x\right)$. In [BJR], the question of pointwise convergence a.e. of the convolution powers $\mu^{n} f$ has been studied (see also [B] and [BC] for this and related matters). An important rôle is played by the quotient $\frac{|\hat{\mu}(t)-1|}{1-|\hat{\mu}(t)|}$, the angular ratio $\left(\hat{\mu}(t)=\sum \mu(\{k\}) e^{-2 \pi i k t}\right.$ denotes the Fourier transform of $\left.\mu, t \in \mathbb{R}\right)$. In [BJR], Th. 1.6, it was shown that $\lim \mu^{n} f(x)$ exists a.e. for $f \in L^{p}(X)(p>1)$, if $|\hat{\mu}(t)|<1$ for $t \notin \mathbb{Z}$ and the angular ratio is bounded. If μ has a finite second moment $m_{2}(\mu)=\sum k^{2} \mu(\{k\})$ and the expectation $E(\mu)=\sum k \mu(\{k\})$ is zero, then μ has bounded angular ratio ([BJR], Prop. 1.9). In this special case (if in addition $|\hat{\mu}(t)|<1$ for $t \notin \mathbb{Z}$), it was shown in [B], Th. 5 that pointwise convergence a.e. holds even on L^{1}. On the other hand, for μ with $E(\mu) \neq 0, m_{2}(\mu)<\infty$, it was shown in [BJR], Th. 2.1, that the strong sweeping out property holds, i.e., rather drastic divergence (see also [AB]). In [BJR] the question was raised about what happens with measures having finite moments $m_{s}(\mu)$ for all $s<2$ and $E(\mu)=0$.

In the course of the investigations about divergence three conditions appeared. First came

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{|\hat{\mu}(t)-1|}{1-|\hat{\mu}(t)|}=\infty \tag{AR}
\end{equation*}
$$

This is completely sufficient to describe the possible cases for measures with finite second moments. (By [BJR] Prop.1.9 and Lemma 1.7, $m_{1}(\mu)<\infty$ together with $E(\mu) \neq 0$ implies (AR)).

Then a weaker condition (we call it (BJR)) was introduced in [BJR], Th. 2.2 (the precise definition is given before Prop.3). In [AB], Th. 6.1, it was shown that (BJR) is also sufficient to get the strong sweeping out property.

Finally, [BJR] suggested considering the condition

$$
\begin{equation*}
\limsup _{t \rightarrow 0} \frac{|\hat{\mu}(t)-1|}{1-|\hat{\mu}(t)|}=\infty \tag{UR}
\end{equation*}
$$

Received March 20, 1998.
1991 Mathematics Subject Classification. Primary 28D05, 47A35, 60F15, 60J15.

By [BJR], Prop. 2.3, (AR) implies (BJR) and it is easily seen that (BJR) implies (UR).

We consider the partial sums for $E(\mu)$ and those for $\sum \mu(\{k\})$ and $m_{2}(\mu)$. We characterize (AR) (Proposition 1) and (BJR) (Propositions 3 and 4) in terms of the asymptotic behaviour of these sums, thus avoiding the use of Fourier transforms and facilitating the construction of various sorts of examples and counterexamples. In particular, this is used to construct examples of measures μ with $E(\mu)=0$, $m_{s}(\mu)<\infty$ for all $s<2$ and satisfying (BJR) (consequently, the strong sweeping out property holds-answering the question of [BJR]). Examples of this type have also been given by Chistyakov [C].

Although (UR) appears to be the decisive condition, (AR) is certainly the easiest to work with (e.g., [C] mentions examples arising from distributions belonging to the domain of attraction of certain stable laws). On the other hand, we show in Proposition 2 that for measures μ with $E(\mu)=0, m_{s}(\mu)<\infty$ for some $s<2$, condition (AR) can never be fulfilled (i.e., examples as mentioned above are impossible if (AR) is required, in particular, the measures of Examples 1,2 satisfy (BJR) but not (AR), so (AR) is strictly stronger than (BJR)). Thus (AR) becomes rather insufficient to get a complete picture for measures with $m_{2}(\mu)=\infty$.

Finally, in Example 3 we give examples showing that (BJR) is strictly stronger than (UR): measures μ with $E(\mu)=0, m_{s}(\mu)<\infty$ for some (arbitrarily given) $s<2$ that have unbounded asymptotic ratio but do not satisfy (BJR) (existence of such examples was already mentioned in [BJR], p. 428).

For measures μ with unbounded asymptotic ratio that do not satisfy (AR) the Fourier transform $\hat{\mu}(t)$ oscillates near $t=0$. (with phases of tangential and phases of non-tangential approach). If μ does not even satisfy (BJR) these oscillations get very sharp.

Notation. $\quad a_{n}=\mu(\{n\})$ for $n \in \mathbb{Z}$, i.e., $a_{n} \geq 0, \sum_{n=-\infty}^{\infty} a_{n}=1$, and we will always assume that $a_{n}>0$ for infinitely many n. Then $z(t)=\hat{\mu}(t)=\sum a_{n} e^{-2 \pi i n t}=$ $x(t)+i y(t)$, with $x(t)=\sum a_{n} \cos (2 \pi n t), y(t)=-\sum a_{n} \sin (2 \pi n t)$. We consider the sums

$$
r_{N}=\sum_{|n|>N} a_{n}, \quad s_{N}=\sum_{|n| \leq N} n a_{n}, \quad t_{N}=\sum_{|n| \leq N} n^{2} a_{n}, \quad N=0,1,2, \ldots
$$

For $s \in \mathbb{R}$, we denote by $\langle s\rangle$ the unique element from $\left.]-\frac{1}{2}, \frac{1}{2}\right]$ such that $s-\langle s\rangle \in \mathbb{Z}$ (i.e., $\langle s\rangle=\frac{1}{2}-\left\{\frac{1}{2}-s\right\}$, where $\{t\}$ denotes the fractional part of t).

Lemma 1. Take $z=x+i y$, with $|z|<1$. Then the following inequalities hold:
(a) $\frac{|z-1|}{1-|z|} \geq \frac{|y|}{1-x}$.
(b) If $y^{2} \leq 1-x<1$ then $\frac{|z-1|}{1-|z|} \leq \frac{2}{x}\left(1+\frac{|y|}{1-x}\right)$.

Proof. (a) We use $|z-1| \geq|y|, 1-|z| \leq 1-x$.
(b) Follows from $\frac{1}{1-|z|}=\frac{1+|z|}{1-|z|^{2}}$ and $|z-1| \leq 1-x+|y|$.

Since $1-|z|^{2}=1-x^{2}-y^{2} \geq x-x^{2}=x(1-x), x>0$ and $1+|z| \leq 2$, our claim follows.

Corollary.
(a) $\frac{|y|}{1-x} \geq \min \left(\frac{x|z-1|}{2(1-|z|)}-1, \frac{1}{|y|}\right)$.
(b) $\quad \lim _{t \rightarrow 0} \frac{|\hat{\mu}(t)-1|}{1-|\hat{\mu}(t)|}=\infty \quad$ if and only if $\quad \lim _{t \rightarrow 0} \frac{|y(t)|}{1-x(t)}=\infty$.

Proof. (a) If $y^{2} \geq 1-x$ then $\frac{|y|}{1-x} \geq \frac{1}{|y|}$; now combine with Lemma 1 b .
(b) Since $\lim _{t \rightarrow 0} \hat{\mu}(t)=1$, we get $\lim _{t \rightarrow 0} x(t)=1, \lim _{t \rightarrow 0} y(t)=0$. Now apply (a) and Lemma 1(a).

LEMMA 2. $\lim _{t \rightarrow 0} \frac{|y(t)|}{1-x(t)}=\infty$ is equivalent to $\lim _{t \rightarrow 0} \frac{\left|\sum a_{n}\langle n t\rangle\right|}{\sum a_{n}(n t)^{2}}=\infty$.
Remark. In the same way, the equivalences in (b) of the corollary and Lemma 2 hold along sequences $\left(t_{n}\right)$ with $\lim _{n \rightarrow \infty} t_{n}=0$. (The notation $\langle s\rangle$ is explained before Lemma 1.)

Proof. We use these estimates:

$$
\begin{gathered}
1-\cos x \leq \frac{x^{2}}{2} \quad \text { for all } x \\
1-\cos x \geq\left(\frac{2}{\pi}\right)^{2} \frac{x^{2}}{2} \text { for }|x| \leq \pi \\
0 \leq x-\sin x \leq \frac{x^{3}}{6} \text { for } x \geq 0
\end{gathered}
$$

and

$$
\frac{x^{3}}{6} \leq \frac{\pi}{6} x^{2} \text { for } 0 \leq x \leq \pi
$$

Since $y(t)=-\sum a_{n} \sin (2 \pi\langle n t\rangle)$, we have

$$
\begin{equation*}
\left|y(t)-2 \pi \sum a_{n}\langle n t\rangle\right| \leq \frac{2 \pi^{3}}{3} \sum a_{n}\langle n t\rangle^{2} \tag{1}
\end{equation*}
$$

From $x(t)=\sum a_{n} \cos (2 \pi\langle n t\rangle)$, we get $1-x(t)=\sum a_{n}(1-\cos (2 \pi\langle n t\rangle))$, hence

$$
\begin{equation*}
8 \sum a_{n}\langle n t\rangle^{2} \leq 1-x(t) \leq 2 \pi^{2} \sum a_{n}\langle n t\rangle^{2} \tag{2}
\end{equation*}
$$

Thus

$$
\frac{1}{\pi} \frac{\left|\sum a_{n}(n t)\right|}{\sum a_{n}(n t)^{2}}-\frac{\pi}{3} \leq \frac{|y(t)|}{1-x(t)} \leq \frac{\pi}{4} \frac{\left|\sum a_{n}(n t)\right|}{\sum a_{n}(n t)^{2}}+\frac{\pi^{3}}{12}
$$

Lemma 3. For $|t|<\frac{1}{2 N}$ we have

$$
\frac{\left|t s_{N}\right|}{t^{2} t_{N}+\frac{1}{4} r_{N}}-2 \leq \frac{\left|\sum a_{n}\langle n t\rangle\right|}{\sum a_{n}\langle n t\rangle^{2}} \leq \frac{\left|t s_{N}\right|+\frac{1}{2} r_{N}}{t^{2} t_{N}}
$$

Proof. If $|n| \leq N$, then $\langle n t\rangle=n t$, hence $\sum a_{n}\langle n t\rangle=t s_{N}+\sum_{|n|>N} a_{n}\langle n t\rangle$. Consequently

$$
\begin{equation*}
\left|\sum a_{n}\langle n t\rangle-t s_{N}\right| \leq \frac{1}{2} r_{N} \tag{3}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
t^{2} t_{N} \leq \sum a_{n}\langle n t\rangle^{2} \leq t^{2} t_{N}+\frac{1}{4} r_{N} \tag{4}
\end{equation*}
$$

This gives

$$
\frac{\left|\sum a_{n}\langle n t\rangle\right|}{\sum a_{n}\langle n t\rangle^{2}} \geq \frac{\left|t s_{N}\right|-\frac{1}{2} r_{N}}{t^{2} t_{N}+\frac{1}{4} r_{N}}
$$

from which the first estimate follows. The second one is obtained similarly.
Proposition 1. The following statements are equivalent:
(i) $\lim _{t \rightarrow 0} \frac{|1-\hat{\mu}(t)|}{1-|\hat{\mu}(t)|}=\infty \quad(A R)$.
(ii) $\lim _{t \rightarrow 0} \frac{|y(t)|}{1-x(t)}=\infty$.
(iii) $\lim _{N \rightarrow \infty} \frac{\left|N s_{N}\right|}{t_{N}+N^{2} r_{N}}=\infty$.

Proof. (i) \Leftrightarrow (ii). By the corollary to Lemma 1.
(iii) \Rightarrow (ii) By Lemma 3 and Lemma 2.
(ii) \Rightarrow (iii) We have $\int_{a}^{b} \cos (2 \pi n t) d t=\frac{1}{2 \pi n}(\sin (2 \pi n b)-\sin (2 \pi n a)) \leq \frac{1}{\pi|n|}$.

In the special case that $N \leq|n| \leq 2 N, a=\frac{1}{4 N}, b=\frac{1}{2 N}(=2 a)$, we can say (putting $\left.s=\frac{\pi n}{2 N}=2 \pi n a\right)$ that $\sin (2 \pi n b)-\sin (2 \pi n a)=\sin (2 s)-\sin (s)$. This is not greater than zero for $n \geq 0$, since $\frac{\pi}{2} \leq|s| \leq \pi$, and nonnegative for $n \leq 0$. Consequently

$$
\int_{\frac{1}{4 N}}^{\frac{1}{2 N}} \sum_{|n|>N} a_{n}(1-\cos (2 \pi n t)) d t \geq \sum_{2 N \geq|n|>N} a_{n} \frac{1}{4 N}+\sum_{|n|>2 N} a_{n}\left(\frac{1}{4 N}-\frac{1}{\pi|n|}\right)
$$

Since $\frac{1}{4 N}-\frac{1}{\pi|n|} \leq \frac{1}{12 N}$, the integral is at least $\frac{r_{N}}{12 N}$. It follows that there exists $t \in] \frac{1}{4 N}, \frac{1}{2 N}$ [such that $\sum_{|n| \leq N} a_{n}(1-\cos (2 \pi n t)) \geq \frac{r_{N}}{3}$. For such a value t we get

$$
\begin{gathered}
1-x(t) \underset{\text { (by }(2))}{\geq} 8 \sum_{|n| \leq N} a_{n}\langle n t\rangle^{2}+\frac{r_{N}}{3} \underset{\text { (by (4)) }}{ }=8 t^{2} t_{N}+\frac{r_{N}}{3} \\
\quad \frac{t_{N}}{2 N^{2}}+\frac{r_{N}}{3} \\
\geq \frac{1}{3 N^{2}}\left(t_{N}+N^{2} r_{N}\right) .
\end{gathered}
$$

Furthermore

$$
\begin{aligned}
& |y(t)| \underset{\text { (by }(1))}{\leq} \quad 2 \pi\left|\sum a_{n}\langle n t\rangle\right|+\frac{2 \pi^{3}}{3} \sum a_{n}\langle n t\rangle^{2} \\
& \text { (by (3) } \leq \text { and (4)) } 2 \pi\left(\left|s_{N} t\right|+\frac{1}{2} r_{N}\right)+\frac{2 \pi^{3}}{3}\left(t_{N} t^{2}+\frac{1}{4} r_{N}\right) \\
& \underset{(\text { since }}{\left.\leq \leq \frac{1}{2 N}\right)} \quad \pi \frac{\left|s_{N}\right|}{N}+O\left(\frac{t_{N}}{N^{2}}+r_{N}\right) .
\end{aligned}
$$

This gives

$$
\frac{|y(t)|}{1-x(t)} \leq 3 \pi \frac{N\left|s_{N}\right|}{t_{N}+N^{2} r_{N}}+O(1)
$$

Proposition 2. Fix p with $p>1$ and assume that μ satisfies $\sum_{n=-\infty}^{\infty}|n|^{p} a_{n}<$ $\infty, \sum_{n=-\infty}^{\infty} n a_{n}=0$.

Then μ cannot satisfy the condition (AR).
Proof. Recall the formula for partial summation: putting $\beta_{n}=B_{n-1}-B_{n}$, we have

$$
\begin{equation*}
\sum_{n=M}^{N} \gamma_{n} \beta_{n}=\sum_{n=M}^{N}\left(\gamma_{n+1}-\gamma_{n}\right) B_{n}-\gamma_{N+1} B_{N}+\gamma_{M} B_{M-1} \tag{5}
\end{equation*}
$$

Put $\alpha_{0}=a_{0}, \alpha_{n}=a_{n}+a_{-n}$ for $n>0$ and $s_{N}^{\prime}=\sum_{|n|>N}|n| a_{n}$. Then for $n>0$ we get

$$
\begin{equation*}
\alpha_{n}=\frac{1}{n}\left(s_{n-1}^{\prime}-s_{n}^{\prime}\right)=\frac{1}{n^{2}}\left(t_{n}-t_{n-1}\right)=r_{n-1}-r_{n} \tag{6}
\end{equation*}
$$

Now assume that property (iii) of Proposition 1 holds. Since $\sum n a_{n}=0$ implies that $s_{N}=-\sum_{|n|>N} n a_{n}$, it follows that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{s_{N}^{\prime}}{N r_{N}}=\infty \tag{7}
\end{equation*}
$$

We will show that (7) is incompatible with a moment-condition $\sum|n|^{p} a_{n}<\infty$. For $c>0$ there exists M such that

$$
\begin{equation*}
s_{n}^{\prime} \geq c n r_{n} \quad \text { for } \quad n \geq M-1 \tag{8}
\end{equation*}
$$

We assume that $c>\frac{2 p}{p-1}$ and $M>p$. Put $\sigma_{M N}=\sum_{n=M}^{N} \alpha_{n} n^{p}$. Then by (5) and (6),

$$
\sigma_{M N}=\sum_{n=M}^{N}\left((n+1)^{p-1}-n^{p-1}\right) s_{n}^{\prime}-(N+1)^{p-1} s_{N}^{\prime}+M^{p-1} s_{M-1}^{\prime}
$$

For $n \geq M$, we have

$$
\left.((n+1))^{p-1}-n^{p-1}\right) s_{n}^{\prime} \geq c\left((n+1)^{p-1}-n^{p-1}\right) n r_{n}
$$

Since $(1+x)^{p-1}-1 \geq \frac{p-1}{2 p}\left((1+x)^{p}-1\right)$ for $0 \leq x \leq 1$, it follows that for $x=\frac{1}{n}$,

$$
\left((n+1)^{p-1}-n^{p-1}\right) n \geq \frac{p-1}{2 p}\left((n+1)^{p}-n^{p}\right)
$$

Hence,

$$
\begin{aligned}
& \sum_{n=M}^{N}\left((n+1)^{p-1}-n^{p-1}\right) s_{n}^{\prime} \geq \frac{p-1}{2 p} c \sum_{n=M}^{N}\left((n+1)^{p}-n^{p}\right) r_{n} \\
& \begin{aligned}
= & p-1 \\
= & (5)) \\
= & \frac{p-1}{2 p} c\left(-\sum_{n=M}^{N}\left(r_{n+1}-r_{n}\right)(n+1)^{p}+(N+1)^{p} r_{N+1}-M^{p} r_{M}\right) \\
& \left.(n+1)^{p}\left(r_{n+1}-r_{n}\right)+(N+1)^{p} r_{N}-M^{p} r_{M-1}\right) \\
= & \frac{p-1}{2 p} c\left(\sum_{n=M}^{N} n^{p} \alpha_{n}+(N+1)^{p} r_{N}-M^{p} r_{M-1}\right) .
\end{aligned} .
\end{aligned}
$$

Thus,

$$
\sigma_{M N} \geq \frac{p-1}{2 p} c\left(\sigma_{M N}+(N+1)^{p} r_{N}-M^{p} r_{M-1}\right)-(N+1)^{p-1} s_{N}^{\prime}+M^{p-1} s_{M-1}^{\prime}
$$

By assumption, we have $M-1-\frac{p-1}{p} M=\frac{M}{p}-1>0$, hence, by (8),

$$
M^{p-1} s_{M-1}^{\prime} \geq c M^{p-1}(M-1) r_{M-1} \geq \frac{p-1}{p} c M^{p} r_{M-1}
$$

It follows that

$$
\sigma_{M N} \geq \frac{p-1}{2 p} c \sigma_{M N}-(N+1)^{p-1} s_{N}^{\prime} \quad \text { for all } N>M
$$

Now, observe that

$$
(N+1)^{p-1} s_{N}^{\prime}=(N+1)^{p-1} \sum_{n>N} n \alpha_{n} \leq \sum_{n>N} n^{p} \alpha_{n} .
$$

By the moment-condition, the right hand side tends to zero for $N \rightarrow \infty$ and we see that $\sigma_{M}=\sum_{n=M}^{\infty} \alpha_{n} n^{p} \quad$ satisfies $\quad \sigma_{M} \geq \frac{p-1}{2 p} c \sigma_{M}$. Since we assumed that $\frac{p-1}{2 p} c>1$, this implies that $\sigma_{M}=0$; consequently $\alpha_{n}=0$ for $n \geq M$ and we arrive at a contradiction.

Remark. (a) Similarly, it can be shown that (given any probability measure μ on \mathbb{Z}) the property $\lim _{N \rightarrow \infty} \frac{N s_{N}^{\prime}}{t_{N}}=\infty$ is incompatible with a moment-condition $\sum|n|^{p} a_{n}<$ ∞ (for any p with $p>1$).
(b) In [BJR], 3.5, an example of a probability measure μ on \mathbb{Z} was given, satisfying $m_{1}(\mu)<\infty, E(\mu)=0$ and (AR). Thus the bound for p in Proposition 2 is sharp.

Recall the notations of [BJR], p. 425: if I is a subinterval of \mathbb{R}, then $r_{I}=$ $\inf \{|\hat{\mu}(t)|: t \in I\}$, if $0 \notin B \subseteq \mathbb{C}$, then $|B|_{\rho}$ denotes the measure of $B_{\rho}=\left\{\frac{z}{|z|}: z \in B\right\}$ (with respect to normalized Lebesgue measure on the circle). Theorem 6.1 of [AB] says that if there exist intervals $I(k)(k=1,2, \ldots)$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{|\hat{\mu}(I(k))|_{\rho}}{1-r_{I(k)}}=\infty \tag{BJR}
\end{equation*}
$$

then (μ^{n}) has the strong sweeping out property.
Proposition 3. If $\sup _{N} \frac{\left|N s_{N}\right|}{t_{N}+N^{2} r_{N}}=\infty$, then the condition (BJR) is satisfied, in particular (by $[A B]$, Th. 6.1), it follows that the sequence (μ^{n}) has the strong sweeping out property.

Proof. We have

$$
1-x(t) \underset{(\mathrm{by}(2))}{\leq} 2 \pi^{2} \sum a_{n}\langle n t\rangle^{2} \underset{(\mathrm{by}(4))}{\leq} 2 \pi^{2}\left(t^{2} t_{N}+\frac{1}{4} r_{N}\right) \text { for }|t|<\frac{1}{2 N}
$$

Now assume that $\frac{\left|N s_{N}\right|}{t_{N}+N^{2} r_{N}} \geq c$. Put $I=\left[-\frac{1}{2 N}, \frac{1}{2 N}\right]$. Clearly, $r_{I} \geq \inf _{t \in I} x(t)$.
Hence,

$$
1-r_{I} \leq \sup _{t \in I}(1-x(t)) \leq 2 \pi^{2}\left(\left(\frac{1}{2 N}\right)^{2} t_{N}+\frac{1}{4} r_{N}\right)=\frac{\pi^{2}}{2 N^{2}}\left(t_{N}+N^{2} r_{N}\right)
$$

Furthermore,

$$
\left|\hat{\mu}(I)_{\rho}\right| \geq \frac{1}{2 \pi} \sup _{t_{1}, t_{2} \in I}\left|y\left(t_{1}\right)-y\left(t_{2}\right)\right|
$$

This can be estimated as follows:

$$
\begin{aligned}
& \left|y(t)-2 \pi t s_{N}\right| \leq\left|y(t)-2 \pi \sum a_{n}\langle n t\rangle\right|+2 \pi\left|\sum a_{n}\langle n t\rangle-t s_{N}\right| \\
& \underset{\text { (by }}{\underset{(\mathrm{I})}{\mathrm{I}}, \text { (3)) }} \underset{3}{ } \frac{2 \pi^{3}}{3} \sum a_{n}\langle n t\rangle^{2}+2 \pi \cdot \frac{1}{2} r_{N} \\
& \underset{\text { (by }}{\leq}(4)) \quad \frac{2 \pi^{3}}{3}\left(t^{2} t_{N}+\frac{1}{4} r_{N}\right)+\pi r_{N} \text {. }
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\left|y\left(\frac{1}{2 N}\right)-y\left(-\frac{1}{2 N}\right)\right| & \geq 2 \pi \frac{1}{N}\left|s_{N}\right|-\frac{4 \pi^{3}}{3}\left(\left(\frac{1}{2 N}\right)^{2} t_{N}+\frac{1}{4} r_{N}\right)-2 \pi r_{N} \\
& \geq \frac{2 \pi}{N^{2}}\left(\left|N s_{N}\right|-c_{0}\left(t_{N}+N^{2} r_{N}\right)\right)
\end{aligned}
$$

where the constant c_{0} does not depend on N.
In combination, this gives

$$
\frac{\left|\hat{\mu}(I)_{\rho}\right|}{1-r_{I}} \geq \frac{2}{\pi^{2}}\left(\frac{\left|N s_{N}\right|}{t_{N}+N^{2} r_{N}}-c_{0}\right) \geq \frac{2}{\pi^{2}}\left(c-c_{0}\right) .
$$

Proposition 4. If μ satisfies the condition $(B J R)$, then $\sup _{N} \frac{\left|N s_{N}\right|}{t_{N}+N^{2} r_{N}}=\infty$.
The proof of Proposition 4 needs more elaborate estimates and is postponed until after the examples.

Remark. There does not seem to be an easy description of (UR) in terms of the asymptotic behaviour of r_{n}, s_{n}, t_{n}. By the remark after Lemma 2, a probability measure μ satisfies (UR) iff $\limsup _{t \rightarrow 0} \frac{|y(t)|}{1-x(t)}=\infty$ and iff $\underset{t \rightarrow 0}{\limsup } \frac{\left|\sum a_{n}\langle n t)\right|}{\sum a_{n}(n t)^{2}}=\infty$.

If (BJR) does not hold, then $\sup _{N} \frac{\left|N s_{N}\right|}{t_{N}+N^{2} r_{N}}<\infty$. From this, one gets as a necessary condition that (UR) (but not (BJR)!) should hold: $\lim _{N} \sup \frac{N^{2} r_{N}}{t_{N}}=\infty$, i.e., the remainder r_{N} must not go to zero too fast. But this is not sufficient. The outcome depends on the behaviour of the sequences $(\langle n t\rangle)_{n \geq\left[\frac{1}{21}\right]}$. For (UR) there should be t such that $\langle n t\rangle$ gets small, but not too small for sufficiently many n and then the distribution of the signs in $\langle n t\rangle$ (and the relative size of a_{n}, a_{-n}) comes into play too. See Example 3 below, for how explicit examples of this behaviour can be obtained from this rather sketchy description.

APPLICATION. Assume that μ is concentrated on $\mathcal{W}=\left\{ \pm w_{k}: k=1,2, \ldots\right\} \subseteq$ \mathbb{Z} where $0 \leq w_{1}<w_{2}<\cdots$. Put $\alpha_{k}=\mu\left(\left\{-w_{k}, w_{k}\right\}\right)$. Let $\mathcal{K}=\left\{k_{1}<k_{2}<\right.$
$\cdots\} \subseteq \mathbb{N}$. Assume the following regularity conditions: there exists $c, d>0$ such that $r_{w_{k}} \leq c \alpha_{k+1},\left|s_{w_{k}}\right| \geq d w_{k} \alpha_{k}, t_{w_{k}} \leq c w_{k}^{2} \alpha_{k} \quad$ for all $k \in \mathcal{K} \quad$ (i.e., the size of the sums is governed by the leading term).

Under these assumptions we will show that $\lim _{k \in \mathcal{K}}\left(\frac{\alpha_{k+1}}{\alpha_{k}}+\frac{w_{k}}{w_{k+1}}\right)=0$ implies $\sup \left\{\frac{\left|N s_{N}\right|}{t_{N}+N^{2} r_{N}}: w_{k} \leq N<w_{k+1}, k \in \mathcal{K}\right\}=\infty$ (in particular, by Prop. 3, property (BJR) holds).

Proof. For $w_{k} \leq N<w_{k+1}$, we have $r_{N}=r_{w_{k}}, s_{N}=s_{w_{k}}, t_{N}=t_{w_{k}}$. Hence

$$
\frac{\left|N s_{N}\right|}{t_{N}+N^{2} r_{N}} \geq \frac{N d w_{k} \alpha_{k}}{c w_{k}^{2} \alpha_{k}+N^{2} c \alpha_{k+1}}=\frac{d}{c}\left(\frac{w_{k}}{N}+\frac{N}{w_{k}} \cdot \frac{\alpha_{k+1}}{\alpha_{k}}\right)^{-1}
$$

(a) If $\sqrt{\frac{\alpha_{k+1}}{\alpha_{k}}} \leq \frac{w_{k}}{w_{k+1}}$, consider $N \geq \frac{w_{k+1}}{2}$ (assuming $w_{k+1} \geq 2$). Then

$$
\frac{w_{k}}{N}+\frac{N}{w_{k}} \cdot \frac{\alpha_{k+1}}{\alpha_{k}} \leq 2 \frac{w_{k}}{w_{k+1}}+\frac{w_{k+1}}{w_{k}}\left(\frac{w_{k}}{w_{k+1}}\right)^{2}=3 \frac{w_{k}}{w_{k+1}}
$$

and the right-hand side tends to zero.
(b) If $\sqrt{\frac{\alpha_{k+1}}{\alpha_{k}}}>\frac{w_{k}}{w_{k+1}}$, consider N with $\sqrt{\frac{\alpha_{k+1}}{\alpha_{k}}} \leq \frac{w_{k}}{N} \leq 2 \sqrt{\frac{\alpha_{k+1}}{\alpha_{k}}}$
(this is possible as soon as $\frac{\alpha_{k+1}}{\alpha_{k}} \leq \frac{1}{4}, w_{k} \geq 2$). Then

$$
\frac{w_{k}}{N}+\frac{N}{w_{k}} \cdot \frac{\alpha_{k+1}}{\alpha_{k}} \leq 2 \sqrt{\frac{\alpha_{k+1}}{\alpha_{k}}}+\sqrt{\frac{\alpha_{k}}{\alpha_{k+1}}} \cdot \frac{\alpha_{k+1}}{\alpha_{k}}=3 \sqrt{\frac{\alpha_{k+1}}{\alpha_{k}}}
$$

and the right hand side tends to zero again.
Remark. If $\left|s_{w_{k}}\right| \leq c w_{k} \alpha_{k}\left(\sqrt{\frac{\alpha_{k+1}}{\alpha_{k}}}+\frac{w_{k}}{w_{k+1}}\right)$ for $k \in \mathcal{K}$ (and the regularity conditions for $r_{w_{k}}$ and $t_{w_{k}}$ stay true), then the converse follows from similar computations, i.e.,

$$
\sup \left\{\frac{\left|N s_{N}\right|}{t_{N}+N^{2} r_{N}}: w_{k} \leq N<w_{k+1}, \quad k \in \mathcal{K}\right\}<\infty
$$

This is applicable, in particular, if

$$
\left|s_{w_{k}}\right| \leq c w_{k} \alpha_{k} \text { for } k \in \mathcal{K} \quad \text { and } \quad \liminf \left(\frac{\alpha_{k+1}}{\alpha_{k}}+\frac{w_{k}}{w_{k+1}}\right)>0
$$

Examples. (1) If $1<p<2$ is fixed, there exists μ satisfying the condition of Proposition 3 (i.e., (BJR) holds) and having the properties

$$
\sum_{n=-\infty}^{\infty} n a_{n}=0, \quad \sum_{n=-\infty}^{\infty}|n|^{p} a_{n}<\infty
$$

Explicitly: Choose α with $p<\alpha<2$. Then $u=\left[\frac{1}{2-\alpha}\right]+1 \geq 2$.
Put

$$
\begin{array}{rlrl}
w_{m} & =m! & (m=1,2, \ldots) \\
a_{w_{m}} & =\frac{\gamma}{w_{m}^{\alpha}} & \\
& & \text { for } m \equiv 0(\bmod u) \\
a_{-w_{m+1}} & =\frac{a_{w_{m}}}{m+1} & \\
a_{n} & =0 \quad \text { otherwise. }
\end{array}
$$

($\gamma>0$ is chosen so that $\sum a_{n}=1$.) Then $w_{m} a_{w_{m}}-w_{m+1} a_{-w_{m+1}}=0$, hence $\sum n a_{n}=0$. For $n=w_{m}, m \equiv 0(\bmod u)$, we have $n^{p} a_{n}=\frac{\gamma}{n^{\alpha-p}}$, and for $n=-w_{m+1}$, we get

$$
|n|^{p} a_{n}=(m+1)^{p-1} \frac{\gamma}{w_{m}^{\alpha-p}} \leq \frac{\gamma}{w_{m}^{\frac{\alpha-p}{2}}} \text { holds for large } m .
$$

Hence $\sum|n|^{p} a_{n}<\infty$.
Put $\mathcal{K}=\{m: m \equiv 0(\bmod u), m>0\}$. We check the conditions for (BJR) specified above. For $m \in \mathcal{K}$, we have the following:
(a) $r_{w_{m}}=\sum_{|n| \geq w_{m+1}} a_{n}$, and $a_{w_{m+n}}=\left(\frac{w_{m}}{w_{m+n}}\right)^{\alpha} a_{w_{m}} \leq \frac{1}{m+1} a_{w_{m}}=-a_{w_{m+1}} \leq a_{w_{m}}$.

Hence $r_{w_{m}} \leq a_{-w_{m+1}} \cdot 2 \cdot \sum_{k=0}^{\infty} \frac{1}{k!}$.
(b) $s_{w_{m}}=w_{m} a_{w_{m}}$.
(c) $w_{m}^{2} a_{w_{m}}=\gamma w_{m}^{2-\alpha} \leq \gamma \frac{w_{m+\pi}^{2-\alpha}}{m^{2-\alpha \alpha_{m}}} \leq \frac{w_{m+u}^{2}}{m} a_{w_{m+u}}$ since $(2-\alpha) u>1$.

This gives

$$
\begin{aligned}
w_{m+1}^{2} a_{-w_{m+1}} & =(m+1)^{2} w_{m}^{2} \frac{a_{w_{m}}}{m+1}=\gamma(m+1) w_{m}^{2-\alpha} \\
& \leq \gamma \frac{m+1}{(m+1)^{u(2-a)}} w_{m+u}^{2-\alpha} \leq w_{m+u}^{2} a_{w_{m+u}}
\end{aligned}
$$

Hence $t_{w_{m}} \leq w_{m}^{2} a_{w_{m}} \cdot 2 \cdot \sum_{k=0}^{\infty} \frac{1}{k!}$.
(d) $\frac{\alpha_{m+1}}{\alpha_{m}}=\frac{a_{-w_{m+1}}}{a_{w_{m}}}=\frac{1}{m+1} \rightarrow 0$.
(e) $\frac{w_{m}}{w_{m+1}}=\frac{1}{m+1} \rightarrow 0$.
(2) There exists μ satisfying the condition of Proposition 3 (i.e., (BJR) holds) and having the following properties:

$$
\sum_{n=-\infty}^{\infty} n a_{n}=0, \quad \sum_{n=-\infty}^{\infty}|n|^{p} a_{n}<\infty \quad \text { for all } \quad 1<p<2
$$

Explicitly: Put

$$
\begin{array}{rlrl}
w_{m} & =m! & \\
\mathcal{K} & =\left\{2^{k}: k=1,2, \ldots\right\} & & \\
a_{w_{m}} & =\frac{\gamma}{w_{m}^{2-\frac{1}{k}}} & & \\
a_{-w_{m+1}} & =\frac{a_{w_{m}}}{m+1} & & \text { for } m=2^{k} \in \mathcal{K} \\
a_{n} & =0 & & \\
\text { otherwise. }
\end{array}
$$

The estimates are done as in (1).
(3) If $1<p<2$ is fixed, there exists μ with unbounded asymptotic ratio (i.e., $\underset{t \rightarrow 0}{\lim \sup } \frac{|\hat{\mu}(t)-1|}{1-|\hat{\mu}(t)|}=\infty$, property (UR)), but not satisfying (BJR) and having the prop$t \rightarrow 0$ erties

$$
\sum_{n=-\infty}^{\infty} n a_{n}=0, \quad \sum_{n=-\infty}^{\infty}|n|^{p} a_{n}<\infty
$$

Construction. Assume that $w_{1} \geq 1, w_{k} \mid w_{k+1}$ and $w_{k+1}>2 w_{k}$ for k sufficiently large. Then, taking $t=\frac{1}{w_{k+1}}$, it can be shown by computations similar to those in Lemma 3 that $\sum a_{n}\langle n t\rangle=t s_{w_{k}}$ and $\sum a_{n}\langle n t\rangle^{2}=t^{2} t_{w_{k}}$. Hence by the remark to Lemma 2, the asymptotic ratio is unbounded as soon as

$$
\sup \frac{\left|s_{w_{k}}\right| w_{k+1}}{t_{w_{k}}}=\infty
$$

Applying Proposition 4, we have only to show that this is compatible with the first condition given in the remark before Example 1 (with $\mathcal{K}=\mathbb{N}$).

Explicitly: Choose α with $p<\alpha<2$, put $\alpha_{k}=\frac{\gamma}{w_{k}^{\alpha}}$ for $k \in \mathbb{N}$ and balance $a_{-w_{k}}$ and $a_{w_{k}}$ so that $s_{w_{k}}=\gamma \sqrt{\frac{w_{k}^{2-\alpha}}{w_{k+1}^{\alpha}}}$ (this is possible, since the right side is smaller
than $\alpha_{k+1} w_{k+1}<\alpha_{k} w_{k}$). Then the condition from the remark before Example 1 is fulfilled:

$$
\begin{gathered}
s_{w_{k}}=w_{k} \alpha_{k} \sqrt{\frac{\alpha_{k+1}}{\alpha_{k}}} \\
r_{u_{k}} \leq \gamma w_{k+1}^{-\alpha} \sum_{n=0}^{\infty} \frac{1}{2^{n \alpha}} \leq c \alpha_{k+1} \\
t_{w_{k}} \leq \gamma w_{k}^{2-\alpha} \sum_{n=0}^{\infty} 2^{n(\alpha-2)} \leq c w_{k}^{2} \alpha_{k}
\end{gathered}
$$

Thus,

$$
\frac{\left|s_{w_{k}}\right| w_{k+1}}{t_{w_{k}}} \geq \frac{1}{c}\left(\frac{w_{k+1}}{w_{k}}\right)^{1-\frac{\alpha}{2}}
$$

and the asymptotic ratio is unbounded when $\sup \frac{w_{k+1}}{w_{k}}=\infty$. Hence, for example, one can take, $w_{k}=k$!.

Before proving Proposition 4, we show an auxiliary result.
Lemma 4. If $m_{2}(\mu)=\infty$, then $\lim _{t \rightarrow 0} \frac{y(t)^{2}}{1-x(t)}=0$.

Proof. Take $\epsilon>0$ and choose $N \in \mathbb{N}$ such that $\tau=r_{N}=\sum_{|n|>N} a_{n}<\epsilon$. Put

$$
z_{1}=\frac{1}{1-\tau} \sum_{|n| \leq N} a_{n} e^{-2 \pi i n t} \text { and } z_{2}=\frac{1}{\tau} \sum_{|n|>N} a_{n} e^{-2 \pi i n t}, z_{j}=x_{j}+i y_{j}
$$

(for $j=1,2$; everything depends on t which is omitted for brevity). By (2), we can estimate $1-x_{1}$ by $\frac{1}{1-\tau} \sum_{|n| \leq N} a_{n}\langle n t\rangle^{2}$. For $|t|<\frac{1}{2 N}$ this equals $\frac{1}{1-\tau} \sum_{|n| \leq N} a_{n} n^{2} t^{2}$. For $1-x_{2}$, we get $\frac{1}{\tau} \sum_{N<|n|} a_{n}\langle n t\rangle^{2}$ and for $|t|<\frac{1}{2 M}$ (with $M>N$) this is bigger than $\frac{1}{\tau} \sum_{N<|n| \leq M} a_{n} n^{2} t^{2}$. Since $m_{2}(\mu)=\infty$, it follows that there exists $t_{o}>0$ such that

$$
1-x_{1}<\tau^{2}\left(1-x_{2}\right) \text { for }|t|<t_{o} .
$$

By definition, $y=(1-\tau) y_{1}+\tau y_{2}$ and $1-x=(1-\tau)\left(1-x_{1}\right)+\tau\left(1-x_{2}\right) \geq \tau\left(1-x_{2}\right)$. Since $\left|z_{j}\right| \leq 1$, we have $\left|y_{j}\right| \leq \sqrt{2\left(1-x_{j}\right)}$ and this gives

$$
\begin{aligned}
y^{2} \leq 2 y_{1}^{2}+2 \tau^{2} y_{2}^{2} \leq 4\left(1-x_{1}\right) & +4 \tau^{2}\left(1-x_{2}\right) \\
& <8 \tau^{2}\left(1-x_{2}\right) \leq 8 \tau(1-x)<8 \epsilon(1-x)
\end{aligned}
$$

Remark. If $m_{2}(\mu)<\infty$, it is easy to see (e.g., by de l'Hôpital's rule) that

$$
\lim _{t \rightarrow 0} \frac{y(t)^{2}}{1-x(t)}=\frac{2 E(\mu)^{2}}{m_{2}(\mu)}
$$

Proof of Proposition 4. Assume that sup $\frac{\left|N_{s}\right|}{t_{N}+N^{2} r_{N}}<\infty$. First, we claim that

$$
\begin{equation*}
y(t)^{2}=o(1-x(t)) \quad \text { for } t \rightarrow 0 \tag{9}
\end{equation*}
$$

If $m_{2}(\mu)=\infty$, (9) was shown in Lemma 4. Next, we give an argument for the case $m_{1}(\mu)<\infty$. As before, put $\alpha_{n}=\mu(\{-n, n\})$. We define $\bar{y}(t)=-\sum_{n=1} \alpha_{n} \sin (2 \pi n t)$, $\bar{s}_{N}=\sum_{|n| \leq N}|n| a_{n}=\sum_{n=1}^{N} n \alpha_{n}$. Then $\lim \bar{s}_{N}=m_{1}(\mu)$. By partial summation,

$$
t_{N}=\sum_{n=1}^{N} n^{2} \alpha_{n}=-\sum_{n=1}^{N} \bar{s}_{n}+(N+1) \bar{s}_{N}
$$

Hence $\lim \frac{1}{N} t_{N}=-m_{1}(\mu)+m_{1}(\mu)=0$. Furthermore,

$$
N r_{N}=N \sum_{n=N+1}^{\infty} \alpha_{n} \leq \sum_{N+1}^{\infty} n \alpha_{n} \rightarrow 0 \text { for } N \rightarrow \infty
$$

This entails

$$
\lim _{N \rightarrow \infty} \frac{N \bar{s}_{N}}{t_{N}+N^{2} r_{N}}=\infty
$$

hence, by our initial assumption,

$$
\lim \frac{\bar{s}_{N}}{\left|s_{N}\right|}=\infty
$$

In particular, $E(\mu)=0$. For $m_{2}(\mu)<\infty$, (9) now follows from the remark above or from [BJR], Prop. 1.9 (2), but we give yet another argument. Since $x(t)=$ $\sum_{n=0}^{\infty} \alpha_{n} \cos (2 \pi n t)$, we have $x(t)^{2}+\bar{y}(t)^{2} \leq 1$, hence $\bar{y}(t)^{2} \leq 1-x(t)^{2} \leq 2(1-x(t))$.

As in the last part of the proof of Proposition 1, for $|t|<\frac{1}{2 N}$ we get

$$
|y(t)| \leq 2 \pi\left|s_{N} t\right|+O\left(t^{2} t_{N}+r_{N}\right)
$$

and similarly

$$
|\bar{y}(t)| \geq 2 \pi\left|\bar{s}_{N} t\right|-O\left(t^{2} t_{N}+r_{N}\right)
$$

For $\frac{1}{4 N} \leq t<\frac{1}{2 N}$, it follows from (10^{\prime}) that $t^{2} t_{N}+r_{N}=o\left(\bar{s}_{N} t\right)$, hence by $\left(10^{\prime \prime}\right)$

$$
\frac{|y(t)|}{|\bar{y}(t)|} \leq \frac{\left|s_{N} t\right|+o\left(\bar{s}_{N} t\right)}{\left|\bar{s}_{N} t\right|-o\left(\bar{s}_{N} t\right)}=o(1) \quad \text { for } t \rightarrow 0(\text { which implies } N \rightarrow \infty)
$$

This gives (9). As a consequence,

$$
1-|\hat{\mu}(t)| \sim \frac{1}{2}\left(1-|\hat{\mu}(t)|^{2}\right) \underset{(9)}{\sim} \frac{1}{2}\left(1-x(t)^{2}\right) \sim 1-x(t) \quad \text { for } t \rightarrow 0
$$

Now assume that $I(k)$ are intervals satisfying

$$
\lim _{k \rightarrow \infty} \frac{|\hat{\mu}(I(k))|_{\rho}}{1-r_{I(k)}}=\infty
$$

In particular, $1-r_{I(k)} \rightarrow 0$. This gives $|I(k)| \rightarrow 0$. After passing to a subsequence and translating, we may assume that $I(k)$ tends to $\{0\}$ for $k \rightarrow \infty$. Put $r_{I}^{\prime}=\inf \{x(t)$: $t \in I\}$. Then it follows from the above that

$$
1-r_{I(k)} \sim 1-r_{I(k)}^{\prime} \quad \text { for } k \rightarrow \infty
$$

If J denotes a subinterval of the circle, it is easy to see that

$$
|J|_{\rho} \sim \frac{1}{2 \pi} \sup \left\{\left|z_{1}-z_{2}\right|: z_{1}, z_{2} \in J\right\} \quad \text { for } J \rightarrow\{1\}
$$

This gives,

$$
|\hat{\mu}(I)|_{\rho} \sim \frac{1}{2 \pi} \sup \left\{\left|\hat{\mu}\left(t_{1}\right)-\hat{\mu}\left(t_{2}\right)\right|: t_{1}, t_{2} \in I\right\}+O\left(1-r_{I}\right) \quad \text { for } I \rightarrow\{0\} .
$$

Since $\left|x\left(t_{1}\right)-x\left(t_{2}\right)\right| \leq 2\left(1-r_{I}^{\prime}\right)$, we get

$$
\left|\hat{\mu}\left(t_{1}\right)-\hat{\mu}\left(t_{2}\right)\right| \leq\left|y\left(t_{1}\right)-y\left(t_{2}\right)\right|+2\left(1-r_{I}^{\prime}\right) \quad \text { for } t_{1}, t_{2} \in I .
$$

Thus $|\hat{\mu}(I)|_{\rho} \sim \frac{1}{2 \pi}|y(I)|+O\left(1-r_{I}^{\prime}\right)$. This gives

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{|y(I(k))|}{1-r_{I(k)}^{\prime}}=\infty \tag{11}
\end{equation*}
$$

(where $|I|$ denotes the length of a real interval I). By symmetry, we can assume that $I(k) \subseteq\left[0, \infty\left[\right.\right.$, hence $I(k) \subseteq\left[0, \frac{1}{3}[\right.$ for large k.

We proceed with an estimate for $1-r_{I}^{\prime}$. We assume that $I=[u, v]$ with $0 \leq u<$ $v \leq \frac{1}{3}$. Put $N=\left[\frac{1}{|I|}\right]$ (where $[s]$ denotes the integer part of $s \in \mathbb{R}$). Define

$$
\rho_{N}=\frac{1}{N^{2}} t_{N}+\sum_{|n| \leq N}\langle n v\rangle^{2} a_{n}+r_{N} \quad \text { and } \quad \beta_{n}=\frac{1}{|I|} \int_{I}\langle n t\rangle^{2} d t=\frac{1}{|n I|} \int_{n I}\langle s\rangle^{2} d s
$$

If $|n|>N$, we have $|n I| \geq 1$, hence (by elementary computations) $\beta_{n} \geq \frac{1}{16}$. For all n, we have $\beta_{n} \geq \frac{1}{4}\langle n v\rangle^{2}$ and for $|n| \leq N$ we have the estimate $\beta_{n} \geq \frac{1}{12}(n|I|)^{2} \geq \frac{1}{48}\left(\frac{n}{N}\right)^{2}$ (using $|n I| \leq 1$ and $|I|>\frac{1}{2 N}$). This gives

$$
\frac{1}{|I|} \int_{I} \sum a_{n}\langle n t\rangle^{2} d t \geq c_{1} \rho_{N}
$$

(for some $c_{1}>0$ independent of N, I; one could take $c_{1}=\frac{1}{48}$). Using (2), we conclude that

$$
\begin{equation*}
1-r_{I}^{\prime} \geq 8 \sup _{t \in I} \sum a_{n}\langle n t\rangle^{2} \geq 8 c_{1} \rho_{N} \tag{12}
\end{equation*}
$$

Next, we want to estimate $|y(I)|$. By (1) and (2), for $t_{1}, t_{2} \in I$ we have

$$
\left|y\left(t_{1}\right)-y\left(t_{2}\right)\right|=2 \pi\left|\sum a_{n}\left(\left\langle n t_{1}\right\rangle-\left\langle n t_{2}\right\rangle\right)\right|+O\left(1-r_{I}^{\prime}\right)
$$

Put $M=\left[\frac{N}{3}\right]$ (observe that $N \geq 3$) and assume $t_{1}<t_{2}$. If $t \mapsto\langle n t\rangle$ has no jump between t_{1} and t_{2}, then $\left\langle n t_{1}\right\rangle-\left\langle n t_{2}\right\rangle=n\left(t_{1}-t_{2}\right)$. If $|n| \leq M$, then $|n I| \leq \frac{|n|}{N} \leq \frac{1}{3}$. Thus, if there is a jump between t_{1} and t_{2}, then $|\langle n v\rangle| \geq \frac{1}{6}$, hence

$$
\left\langle n t_{1}\right\rangle-\left\langle n t_{2}\right\rangle-n\left(t_{1}-t_{2}\right)=1=O\left(\langle n v\rangle^{2}\right) .
$$

Since $\sum_{|n| \leq M}\langle n v\rangle^{2} a_{n} \leq \rho_{N}\left(\overline{\overline{11})} O\left(1-r_{I}^{\prime}\right)\right.$, this gives

$$
\left|y\left(t_{1}\right)-y\left(t_{2}\right)\right|=2 \pi\left|s_{M}\left(t_{1}-t_{2}\right)\right|+O\left(1-r_{I}^{\prime}\right)
$$

Since $|I| \leq \frac{1}{N} \leq \frac{1}{M}$, we get

$$
\begin{equation*}
|y(I)| \leq \frac{2 \pi}{M}\left|s_{M}\right|+O\left(1-r_{I}^{\prime}\right) \tag{13}
\end{equation*}
$$

Now it follows from (11) and (13) that

$$
\frac{\frac{1}{M}\left|s_{M}\right|}{1-r_{I(k)}^{\prime}} \rightarrow \infty \text { for } k \rightarrow \infty
$$

hence by (12), $\frac{1}{M}\left|s_{M}\right| / \rho_{N} \rightarrow \infty$ (where $N=N(k)=\left[\frac{1}{|I(k)|}\right]$ and $M=M(k)=$ $\left.\left[\frac{N(k)}{3}\right]\right)$. But since $M \geq \frac{N}{4}$, we have $\rho_{N} \geq \frac{1}{16}\left(\frac{1}{M 2} t_{M}+r_{M}\right)$, and we arrive at a contradiction to our initial assumption.

References

[AB] M. Akcoglu, A. Bellow, R. L. Jones, V. Losert, K. Reinhold-Larsson, M. Wierdl, The strong sweeping out property for lacunary sequences, Riemann sums, convolution powers and related matters, Ergodic Theory Dynamical Systems 16 (1996) 207-253.
[B] A. Bellow, Transference principles in ergodic theory, Proceedings of the Calderón Symposium, to appear.
[BC] A. Bellow, A. P. Calderon, A weak type inequality for convolution products, Proceedings of the Calderón Symposium, to appear.
[BJR] A. Bellow, R. Jones, J. Rosenblatt, Almost everywhere convergence of convolution powers, Ergodic Theory Dynamical Systems 14 (1994), 415-432.
[C] G. Chistyakov, private communication.

Institut für Mathematik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria
losert@pap.univie.ac.at

