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THE CONLEY INDEX AND NON-EXISTENCE
OF MINIMAL HOMEOMORPHISMS

JOHN FRANKS

ABSTRACT. We give a brief proof of the theorem of E Le Calvez and J.-C. Yoccoz on the non-existence of
a minimal homeomorphism of the finitely punctured plane. The proof here is based on the Conley index.

A problem posed some years ago by S. Ulam and incluoed in the well-known
Scottish Book ([5], problem 115) asks if there exists a homeomorphism of/Rn or
of IRn with a single point omitted which has every complete orbit dense. Such a
homeomorphism is called minimal because the smallest non-empty closed invariant
subset is the entire space.

Various partial results can be found referenced in [5], but in full generality the
problem remains unresolved. In the case of all of IR2 it is an easy consequence
of the Brouwer plane translation theorem (see [2] for example) that no minimal
homeomorphism can exist. But the case of the punctured plane proved substantially
more elusive. This case was completely resolved, however, in a recent important paper
of P. Le Calvez and J.-C. Yoccoz [4]. Le Calvez and Yoccoz prove, in fact, that the
plane with any finite number ofpunctures does not admit a minimal homeomorphism.

The techniques in their paper involve an impressive analysis of the dynamics in the
neighborhood of a fixed point of a local homeomorphism of a two-manifold. They
use this to contradict the possibility of a minimal homeomorphism of the finitely
punctured plane by compactifying the plane (adding the missing puncture points and
a point at infinity) to transfer the problem to S2. The local analysis then allows them to
show that the existence of a minimal homeomorphism on the punctured plane would
contradict the Lefschetz fixed point theorem.

In this paper we give an alternate proof of the ttiis result on the non-existence of
minimal homeomorphisms which is based on the use of the Conley index (described
below). Le Calvez and Yoccoz have independently re-proved their result using ideas
similar to those presented here. While the Conley index provides a much shorter
path to this result it does not provide the deep local analysis of the dynamics in the
neighborhood of a fixed point which can be found in [4].

1. Introduction and definitions

We begin with a brief review of the basic definitions and properties of the Conley
index.
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Definition 1.1. Suppose A is a compact invariant set ofhomeomorphism f: U -->

f(U) where U is an open subset of a manifold. We say that A is isolated and N
is an isolating neighborhood if N C U is compact and contains A in its interior
and A fqnxfn (N). An isolating neighborhood N is an isolating block provided
N N f(N)CI f- (N) C IntN.

Definition 1.2. A regular index pair for an isolated invariant set A with isolating
neighborhood N is a compact pair (X, A) with A C X such that

I. f(X) f3N C Xand f(A)&N C A,
2. X \ A C f-I(N),
3. A C Int(X \ A), and
4. cl(X \ A) CI cl(f(A) \ X) t3.

In the situation which we consider it will be the case that X N and N is an
isolating block, not just an isolating neighborhood. Two results which we will need
are the following theorems which we quote in the form given in [6]. The first is a
result due to R. Easton [1]. It is also given as Proposition 4.8 of [6].

PROPOSITION 1.3.. IfA is an isolated invariant set then every neighborhood ofA
contains an isolating block Nfor A.

The following result can be found as Proposition 4.7 of [6].

PROPOSITION 1.4. IfN is an isolating blockfor A and L N \ f- (IntN) then
(N, L) is a regular index pairfor A with isolating neighborhood N.

LEMMA 1.5. Suppose A is a compact connected isolated invariant set ofa home-
omorphism f: U ---> f(U) where U is an open subsetof2 and suppose that there is
no isolating neighborhood V ofA such that either f(V) C V or V C f(V). Then A
has a regular index pair N, L) such that Hk N, L; Q) isfinite dimensional ifk 1,
and vanishes ifk 1.

Proof. Let No be an isolating block for the isolated invariant set A. We can alter
No to be a compact manifold with boundary. This is done by constructing a smooth
non-negative real-valued function g on U which vanishes precisely on No and letting
N g-I ([0, ]) where e is a small regular value of g. If N is sufficiently close to No
then N is an isolating block for A. Since A is connected, it is contained in a single
component of N. Replacing N by this component (which is also an isolating block)
we may assume N is connected.

According to Proposition 1.4 above, ifwe define L0 N\f- (IntN) then (N, L0)
is a regular index pair for A. The hypothesis that neither f(N) C N nor N C f(N)
implies that L0 0N - 0 and that 0N is not a subset of L0. The problem is that it
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is possible for L0 to have infinitely many components. We will alter L0 to make it a
nicer set.

Note that fact that (N, L0) is a regular index pair implies cl(N \ L0) is disjoint
from cl(f(Lo) \ N) f(Lo) tq (IntN)", where superscript c indicates complement.
It follows that f(Lo) is disjoint from cl(N \ L0) because f(Lo) f(N) \ IntN so
f(Lo) C (IntN)’.

From this we can conclude that any sufficiently small neighborhood L of L0 has

f(L) disjoint from cl(N \ L0). We again choose a smooth non-negative real-valued
function g on U which this time vanishes precisely on L0 and let L! g-I ([0, ])
where e is a small regular value of g. Then L is a compact manifold with boundary
which is a small neighborhood of L0 in U. Perturbing L slightly we can assume that
0L transversely intersects 0 N. We retain the property that L is a sufficiently small
neighborhood of L0 that f(Li) is disjoint from cl(N \ Lo). Setting L N N LI it
follows that f(L) is disjoint from cl(N \ L0) and hence from cl(N \ L).

From this one checks readily that (N, L) is a regular index pair for A. Since L
can be chosen as an arbitrarily small neighborhood of L0 in N we can arrange that
L f) ON and that ON is not a subset of L. This implies that H0(N, L; Q) 0
and H2(N, L; Q) 0. All Hk (N, L; Q) 0 for k > 2 because N is a subset of the
plane.

Finally by its construction it is possible to triangulate N with L a finite sub-
complex. It follows that HI (N, L; Q) is finite dimensional.

Note that both the index pairs (N, L0) and (N, L) in the proof above had the
additional nice property that f(L) is disjoint from cl(N \ L) (and that f(Lo) is
disjoint from cl(N \ L0)). This turns out to be a useful property.

PROPOSITION 1.6. Suppose (N, L) is a regular index pairfor A with isolating
neighborhood N and suppose that f (L) is disjoint from cl(N \ L). Let Nt denote
the quotient space obtained by collapsing L to a point. Then f induces a continuous
map f: NL --+ NL. Moreover, if [L] denotes the distinguished point in Nt. to which
L has been collapsed then [L] has a neighborhood in N which is mapped by f to
the point L].

Proof Note that we can identify N/ \ {[L]} with N \ L. Recall that property 2 of
the definition of regular index pair implies that f(cl(N \ L)) C N. For x 6 cl(N \ L)
let f(x) p(f(x)) where p: N -- N/ is the quotient map anddefine f([L]) ILl.
We must check that f is continuous. If x 6 Nt is notequal to [L] then there is a

neighborhood U ofx with U C (N \ L). On U the map f is equal to the composition
of p and f and hence is continuous.

Thus we need only check continuity at [L]. The condition that f(L) is disjoint
from cl(N \ L) implies there is a small neighborhood U of L in N such that f(U)
is disjoint from cl(N \ L). Thus if y 6 U \ L then f(y) 6 L. This implies there is a
small neighborhood V p(U) of ILl in N such that f(v) {ILl}. Let {xi} be a
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sequence in N/ converging to [L]. Then this sequence is eventually in V so {f(xi)} is
eventually the constant sequence with every term equal to [L]. Hence is continuous
at ILl. 12

The space Nt. and the map f and even their homotopy types dependon the choice
of index pair (N, L). However there is a close relationship between f: N/ ---> NL
and f: Me ---> Me if (N, L) and (M, P) are two regular index pairs for the same
isolated invariant set A. This relationship has been investigated by several authors
(see [6], [8]. and [9]). The best formulation for our purposes is one observed by D.
Richeson in his thesis [7], based on results of [9].

Definition 1.7. Two maps f: X ---> X and g" Y Y are shift equivalent
provided there are maps r" X ---> Y and s: Y ---> X and n > 0 such that r o f
gor, f os=sog, sor= fn andros=gn

Shift equivalence is a natural and dynamically significant equivalence relation for
maps. Note that if f and g are homeomorphisms (i.e., invertible) then they are shift
equivalent if and only if they are topologically conjugate. If they are shift equivalent
a conjugacy is given by h r o f-n g-n o r and h-I s.

The following result of D. Richeson based on work of Szymczak can be found
in [7].

PROPOSITION 1.8. If (N, L) and (M, P) are regular index pairsfor the isolated
invariant set A then the maps fi: NL -- N and f: Me Me are shift equivalent.

The homotopy Conley index for an isolated invariant set A is then defined to be
the shift equivalence class of f: N/ ---> N/ in the homotopy category, but we will
not make use of this.

2. The Lefschetz theorem

In this section we point out the relationship between the Lefschetz fixed point
theorem and the Conley index.

PROPOSITION 2.1. /f (N, L) is a regular index pairfor the isolated invariant set
A thenfor any k the trace off,i" Hi (Nt,, L], Q) - Hi (Nt,, L], Q) is independent
of (N, L).

Proof. Let the r: Nt - Me and s: Me - Nt define a shift equivalence on
the induced maps on the pointed spaces coming from regular index pairs (N, L) and
(M, P) respectively. Then r,: H,(NL, ILl; Q) -+ H,(Mp, [P]; Q) and
s,: H,(Mp, [P]; Q) -+ H,(NL, [L]; Q) defines a shift equivalence of induced linear
maps
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If the linear maps R and S between vector space endomorphisms A and B define
a shift equivalence then for every n > 0,

R(ker(A I)n) C ker(B I)n,

and

S(ker(B .I)n) C ker(B )I)n.
Also if . -# 0 the maps R o S and S o R are isomorphisms on these generalized
eigenspaces. It follows that if , # 0 then . has the same multiplicity as an eigenvalue
of A and of B. From this it follows that for any k the trace of f,k" Hk (N/, [L], Q) --Hk (Nt,, L], Q) is independent of (N, L).

PROPOSITION 2.2. If (N, L) is a regular index pairfor the isolated invariant set
A and I (A, f) denotes the Lefschetz index ofA then

tl

I(A, f) (-l)/trJ/
k=0

where f.i" Hk(N., [L], Q) Hi(NL, [L], Q).

Proof. Let X N/ and A {[L]} and consider the long exact sequence of
the pair (X, A). Each element of this sequence has a linear endomorphism induced
by f. Because the sequence is exact the alternating sum of the traces of all of these
endomorphisms is zero (see for example [3, p. 98]). If we define E(X, A, ) to be
"=0(--1) trf, for f.i" Hk(X, A; Q) Hk(X, A; Q) and define E(X, fi) and
E(A, f) analogously thenby re-orderin the terms of this long exact sequence we
obtain. E(A, f) E(X, f) + (X, A, f) O.

Thus E(X, A, fi) E(X, f) E(A, f) E(X, fi) since E(A, f) as a
is a single point. Since all fixed points of f are either in A or the single point [L]
we also know that E(X,f) I (A t_J A, fi) I (A), fi) + I (A, fi). Hence we need
only the fact that ! (A, f) to conclude that I (A), f) E(X, f) 1.

To see this we observe that we can use any regular index we choose and hence by
Proposition 1.6 we can assume there is a neighborhood V of [L] with f(V) {[L]}.
This implies that !(A, f), the index of the fixed point ILl, is equal to one and
completes the proof.

We finish this section with a lemma on the traces of powers of an arbitrary real
matrix.

LEMMA 2.3. Let A be an arbitrary n x n realmatrix. Then for infinitely many
integers k > 0 the trace ofA is non-negative.
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Proof. If A is nilpotent then tr Ak 0 for all k > 0. Otherwise there are non-
zero eigenvalues .j, j m, of A which we enumerate with multiplicity. Write
.j rj exp(2zriOj) where rj > 0 and Oj /Z. Then 19 (0, 02 Ore) is an
element of the m-torus qlTM. Let G be the closure of the subgroup of rJlm generated by
19. Then the set {n191 n Z, n 0} is dense in G. It follows that for infinitely many
values of k the element k19 is close to the identity of G. Since the same is true of
(-k)19 we can assume that k > 0. Thus there are infinitely many positive values of
k with k19 (kO, k02 kOm) in a small neighborhood of (0, 0 0) Tm. In
particular, for all < j < m we can have exp(2kzriOj) close enough to that it has
positive real part. Hence

trAk= r exp(2kzriOj) r(Re(exp(2kzriOj)) > 0
j=l j=l

for infinitely many positive integers k. 12

3. There is no minimal homeomorphism of the punctured plane

We are now in a position to give a simple proof of the result of Le Calvez and
Yoccoz [4] which asserts the non-existence of a minimal homeomorphism of any
finitely punctured two-sphere.

The proof is based on the following proposition.

PROPOSITION 3.1. Suppose p is a fixed point of a local homeomorphism f of
the plane and {p} is an isolated invariant set and suppose that there is no isolating
neighborhood V of p such that either f(V) C V or V C f(V). Then there are
infinitely many values ofn > 0 such that I (p, fn) <_ O. Moreover ifA {Pi }ik__. is
a finite set offixed points each with the properties ofp then there are infinitely many
values ofn > 0 such that

k

I (A, fn) I (Pi, fn) < O.
i=1

Le Calvez and Yoccoz actually prove a stronger result, namely that for a p as
above there are positive integers r and q such that I (p, fn) rq whenever n
is a multiple of q. However, the result above is substantially easier and sufficient for
our purposes.

Proof. We choose an index pair (N, L) for the isolated invariant set {p} With the
properties described in Lemma 1.5 and construct fi: Nt -- N/. By Proposition 2.2,

2

l(p, fn)= y(_l)k trfn,k
k=O
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where fi,ni" Hi (Nt, [L], Q) ---> Hi (N/, [L], Q). But by Lemma 1.5 if k # 1, then
//I(NL, [L], Q) 0. Hence I (p, f’) tr f2 tr A" where A is a matrix for

f.. By Lemma 2.3, tr A" >_ 0 for infinitely many n > 0 so I (p, fn) _< 0 for these n.
To obtain the result for a finite set of fixed points IPi }i--! let Ai be a matrix for the

map on the one dimensional homology for pi and consider the matrix ,4 ti Ai.
Then

I (A, f") I (pi, f") trA tr
i=1 i--1

Again Lemma 2.3 implies tr An >_ 0 for infinitely many n > 0 so the result follows.

THEOREM 3.2. (Le Calvez and Yoccoz [4]). IfM is thefinitely punctured sphere
S2 \ {P Pn then there is no homeomorphism f" M -- M with each complete
(forward and backward) orbit dense.

Proof. We assume such an f exists and show this leads to a contradiction. The
homeomorphism f extends continuously to a homeomorphism of S2 which permutes
the points of the set {p Pl }. Let g fn. S2 ._.> S2 where n is chosen so that
g preserves orientation and g(Pi) Pi for < < k. The fact that each orbit of f
on M is dense implies that each of the points pi is an isolated invariant set for g.

If V is an isolating neighborhood ofp for g then it cannot be the case that g(V) C
V. To see this, note that V’s being an isolating neighborhood implies Int(B \ g(B))
is non-empty but any orbit of f can have only finitely many points in Int(B \ g(B)).
A similar argument shows that V C g(V) is impossible.

Thus we can apply Proposition 3.1 and conclude

k

l(p, gJ) < O.
i=1

for infinitely many values of j > 0. There are no other periodic points of g since such
a periodic point of g would be on a finite orbit of f. Hence the sum of the indices of all
fixed points of gJ is less than or equal to 0. But, by the Lefschetz index theorem, this
sum is also the Euler characteristic of S2 which is 2. This contradicts the assumption
that there exists a homeomorphism f" M ---> M with all orbits dense.
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