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OPERATORS COMMUTING WITH MIXING SEQUENCES

M.D. Ha

ABSTRACT. Let (X, F, u) be a probability space and let L2(X, 0) be the collection of all f € L%(X) with
zero integrals. A collection A of linear operators on L2(X) is said to satisfy the Gaussian-distribution
property (G.D.P) if L2(X, 0) is invariant under .A and there exists a constant C < oo such that the following
condition holds:

Whenever Ty, ..., Ty are finitely many operators in A, and f is a function in L, with zero integral,
then, for any required degree of approximation, there is another Ly-function g with || g |2 C || f 2,
such that all the inner products (ReT;g, Re T;g) are approximately equal to the corresponding inner
products (ReT; f, ReT; f) for all 1 < i, j < k and such that the joint distribution of the functions
ReT\g, ..., ReTyg is approximately Gaussian.

It has been proved that if (S,,)?° is a sequence of uniformly bounded linear operators on L%(X) that

satisfies the Bourgain’s infinite entropy condition and the G.D.P., then there exists an h € L2(X) such that

lim S, h fails to exist u-a.e. as a finite limit on X.
n—00

The purpose of this paper is to provide sufficient conditions for a collection A of linear operators
on L2(X) to satisfy the G.D.P.

1. Introduction

The Zygmund-Marcinkiewicz conjecture states that if f is a 1-periodic, bounded
measurable function, then the sequence of Riemann sums (R, f)° converges a.e. on
[0,1) to fio,, fdAs. Here, R, f(x) = 13}, f(x +%),Vx € [0,1) and A, is the
Lebesgue measure on R. This was disproved by Rudin in 1962 [9]. The method
employed by Rudin essentially made use of only the arithmetic properties of the
primes, namely that if py, ps, ..., py are distinct primes, then forany | <i < N,
pi does not divide the least common multiple of py, p2, ..., pi—t, Pi+1>---s PN-

Also, in 1969, Marstrand [7] proved that if (ax){° is any L£-sequence in N (see [7]
for the definition), then given any € > 0, there is some open set O C (0, 1) for which
A(0) < e and

1 n
lim sup ~ > xo (@x(modl)) =1, Vx e (O, 1).
k=1

n—00

The sequence (k){° was then shown to be an L£-sequence, and thus, applying the above,
Khintchine’s conjecture [7] was settled. Again, the arguments given by Marstrand
depend essentially only on the properties of an L£-sequence. The approaches taken
by both Rudin and Marstrand in the disproof of the respective conjectures were
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apparently ad hoc and seem to depend strongly on each particular situation being
encountered. Therefore, it became clear that a more unified and general principle,
one that would somehow allow us to “simultaneously” settle these and other related
almost everywhere convergence problems, was very much needed.

Then in 1987, Bourgain [3] established a criterion providing necessary conditions
for a.e. convergence in a very general setting (so that many types of operators en-
countered in ergodic theory are covered). Bourgain’s proof of the result above made
use of several ideas and theorems in the theory of Gaussian Processes.

2. Some motivations

Let 1, be the Lebesgue measure on R. For each real number a, let 7,: [0, 1) —
[0, 1) be the translation x > x 4+ a (mod 1). A weighted averages of translations on
the unit interval is a contraction A defined forall 1 < p < oo by

A Ll’([o,l),x,) - LP([O,l),x.)

Af =Y asfor, forall feLP([0,1), 4),

j=

where (;){° is a sequence of non-negative reals with Z;'i, aj = 1 and (g;){° is a
sequence of real numbers.

In an attempt to simplify and better understand Bourgain’s proof of the Entropy
Criteria, M. A. Akcoglu, M. D. Ha and R. L. Jones [1] discovered and proved the
following.

(i) Every sequence (A,) of weighted average of translations on the unit interval
has an interesting property, which was called the Gaussian-distribution property.

(ii) Moreover, if a sequence (A,) of weighted averages of translations on the
unit interval has infinite L2-entropy, then, using the Gaussian-distribution property
of (A,), it was shown that there exists some f € L°°([0, 1), A;) such that the a.e.
convergence of (A, f){° fails.

The techniques used in [1] were later refined in [2] so that in certain cases, much
stronger results can be obtained. The methods employed in [1] and [2] differ substan-
tially from the one used by Bourgain in [3] and the proofs given are self-contained,
avoiding specialized estimates used in the theory of probability.

The purpose of this paper is to extend some of the results in [1] by establishing a
general criterion whereby various classes of operators in ergodic theory can be shown
to also have the Gaussian Distribution Property. This is the contents of Theorems I
and II (Section 4) of this paper.
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3. Preliminaries

3.1.  Weak convergence of measures. For any topological space Y, let B(Y)
be the o-algebra of all Borel sets in Y. We denote by M (Y) the collection of all
probability measures on B(Y). Let C,(Y) be the collection of all real-valued bounded
continuous functions on Y. Each ¢ in C,(Y) induces a map

* : MY)—>R

u - fywdu, ne M)

The weak topology on M (Y) is the smallest topology on M (Y) making each of the
maps ¢* above continuous. A sequence (u,){° in M(Y) converges weakly to u €
M (Y) if the convergence takes place in the weak topology on M(Y). Equivalently,
(14n){° converges weakly to p iff

n-—>00

lim / edu, = / ¢du forall ¢ € Cp(Y).
Y Y
We denote this weak convergence of (u4,)™ to u symbolically by

Un — U asn — 0o.

3.2. Distribution measures. Let (X, F, 1) be a probability space and let Y be a
topological space. The distribution measure v of a measurable function f: X — Y
is the measure on Y defined by

v(E) = u(f(B)), E € B(Y).

We shall write o f —1 for the distribution measure of f. If fi,..., fy are mea-
surable functions from X into Y, (fi, ..., fx): X — Y/ is the function defined by
fiseeos IN)X) = (fi(x), ..., fn(x)) forevery x € X. Itis clear that (fi,..., fn)
is measurable when Y" is given the product topology. It then makes sense to talk
about u o (fi, ..., fn)~!, the joint-distribution measure of f, ..., f.

3.3. Gauss measures on’ B(RY). Unless otherwise stated, x € R" will stand for
the point x = (xi, ..., xx). The usual inner-product on RV will be denoted by { , ),
ie., (x,y) = Z:?':, x;yi for all x,y € RV. Here and elsewhere, @’_, F; is the
product o -algebra of the o-algebras F;. We shall identify RXY with (RV)X. Hence,

if A is a probability measure on B(RY) and H: ((RN)K L ®F, B(RN)) - Ris

measurable, we will write H d)\X for the more cumbersome / HdxX.
RKN (RN)K
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For each positive integer m, the standard m-dimensional Gaussian density func-
tion, G,,, is defined to be

Gn: R" > R
Om(x) =

I 3w
Q2 )m/2 ’
The above usage of terminology is in agreement with that of a probability theorist
concerning density functions of random variables. For a lively account of these
matters and more, the reader can consult [4].

Throughout this paper, A,, denotes the m-dimensional Lebesgue measure restricted
to B(R™), the Borel subsets of R™.

x € R™,

Definition 3.3.1.  For each positive integer m, the standard m-dimensional Gaus-
sian measure is the probability measure y,, on B(R™) defined by

Y (E) = f Godh,, E € BR™.
E

If N is any positive integer, a Gauss measure y on B(RV) is the distribution measure
of a linear transformation

L: (R"', BR"), ) - R
for some integer m. Here, we do not require L to be one to one.

Foreach 1 <i < N, we will let 7;: R — R denote the projection map onto the
i'"_coordinate. In [6], the following result was deduced from the Multi-dimensional
Central Limit Theorem (Theorem 11.10 in [4]).

3.4. THE CENTRAL LIMIT THEOREM FOR GAUSSIAN MEASURES. Fix some posi-

tive integer N. Let ) be any probability measure on B(RY) such that for all
1<i,j<N,

/ widi =0 and/ i dA < o0,
RV RV
For each K € N, define Tx: RKYN — RN by

1 K
X'+ +x
My~ = x!, ..., xKeRV.
v K
Then, there exists a unique Gauss measure y on B(RN) satisfying

TK(x',...,x

f i dy =/ mwinjdA foralll <i,j<N.
RV RV
Moreover,

)\.KOTEI —y asK — oo.

From this result, we obtain the following.
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COROLLARY. Let (X, F, u) be a probability space. Let f,..., fv € L*(X)
and / fidu=0foralli =1,2,..., N. Then, there exists a unique Gauss measure

X
y on B(RN) such that
/ mimjdy =f fifijdu foralll <i,j <N.
RN X
Pmof: Let Q = (fl, ceey fN) andA =puo Q! Then

/ midh =0 and f niyrjdl=/ﬁfjdu<oo foralll <i,j <N.
RY RV X
Hence, by the theorem immediately above, we are done. 0O

Definition 3.4.1. The Gauss measure y in the above corollary is called the Gauss
measure induced by (f, ..., fn). We denote this y by Gauss(fi, ..., fn).

3.4. Mixing transformations and sequences. Throughout this discussion, we let
(X, F, u) be a fixed probability space. We will first recall some standard terminolo-
gies concerning various kinds of transformations on X that are frequently encountered
in ergodic theory.

Amap t: X — X is said to be measure-preserving if t™'A € F and u(z7'A) =
n(A) for all A € F. A measure-preserving map t: X — X is said to be ergodic if
whenever t™!'A = A for some A € F, then u(A) = 1 or u(A) = 0. A measure-
preserving map t: X — X is said to be weakly mixing if forall A, B € F,

n

1 X
lim - Z |u(ANT/B) — u(A) n(B)| =0,
i=1

and is strongly mixing if for all A, B € F,
lim px(ANt™"B) = u(A) u(B).
n—>oo

Also, as is well known, strongly mixing => weakly mixing == ergodicity [8]. We
shall be interested in sequences of measure-preserving maps on X that has a certain
property of mixing as following.

Definition 3.5.1.  Let (7,)$° be a sequence of measure-preserving transformations
from X into X. Then (7,,){° is said to be mixing of all orders if for all K > 1 and all
A|,A2,...,AK Ef,

lim wr ANt AN Nt Ag) = p(A) p(A2) ... w(Ak).

m
inf -a"L,*f—'—-)oo
1<j<K-I1 J
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Remark 3.5.1. A slightly different notion of mixing of all orders from the one
introduced in Definition 3.5.1 is the following. Let (t,) be a sequence of measure-
preserving transformations on a probability space (X, F, u). Then (z,,){° is said to
be mixing of all orders (of type II) if for all K > 1 and all A, A, ..., Ax € F,

_ lim AN AN N1 Ag) = p(A) p(A2) ... u(Ak).
inf  (mjy—mj)—o00
I<j<K-1
' inf mj—o0
Isjsk

It is clear that if a sequence (t,) is mixing of all orders of type II, then it is mixing
of all orders as defined in our definition above. Thus, mixing of all orders of type
II is a more stringent condition imposed on a sequence (t,). For the present paper,
Definition 3.5.1 suffices. Also, if T is a measure-preserving map on X such that
(t™){° is mixing of all orders of type II, then 7 is strongly mixing. The converse still
remains an open problem for sometime.

3.5. Examples. (a) Bernoulli shifts. Let us first recall what we mean by Bernoulli
shifts. Let X be a topological space, B(X) being the o -algebra of its Borel sets, and
e
let 1« be a probability measure on B(X). LetY = n X be endowed with the product
—00
topology. Given Ag, ..., A, € B(X) and j € Z, define a cylinder setin Y as

C(j,Aos..., An) = {(x)C € Y: xj € Ag, Xj41 € AL, ..., Xjim € An}.

It can be shown that there exists a unique probability measure v on B(Y) satisfying

m

v(CU, Ao, ..., Aw)) = [[ (4D . j e Z, A € BX).
i=0

The map
o: (Y, B(Y),v) > (Y, B(Y),v)
defined by
(c®))=6(n+1), neZ,0eY

(considering an element 6 of Y as a map 6: Z — X) is called a Bernoulli shift on
X. It can be shown that (o"){° is mixing of all orders. We call (Y, B(Y),v,0) a

Bernoulli scheme. In the special case when X = {1,2, ..., n} is given the discrete
topology and u({i}) = p; foreachi = 1,...,n, where p; > 0, >i_, pi = 1, we
denote the corresponding Bernoulli scheme as B(py, p, ..., pn).

(b) Continuous ergodic automorphisms of compact abelian groups. Let X be a
compact, abelian group equipped with the normalized Haar measure m defined on
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the o -algebra B(X) of its Borel sets. An automorphism t: X — X is a 1-1, onto
map such that t(xy) = t(x)r(y) for all x,y € X, i.e., a group isomorphism. It
can be shown that if T: X — X is a continuous, surjective group homomorphism
then 7_is measure-preserving. It can also be shown, using the fact that the dual
space X of X forms an orthonormal basis for L?(X, m), that a continuous ergodic
automorphism of X is strongly mixing. In fact, Lind, Miles and Thomas [8] were
able to show that any continuous, ergodic, automorphism of a compact abelian group
is isomorphic to a Bernoulli shift on some probability space. Recall that if (X, F, u)
and (Y, }_, v) are probability spaces, and if 7: X — X, p: Y — Y are measure-
preserving transformations, then t and p are said to be isomorphic if (X, F, u, t) and
(Y, 2, v, p) are isomorphic in the following sense: There exists Xo C X, Yy C Y,
n(Xo) = 1 = v(¥p) such that

(i) 7(Xo) € Xo p(Yo) < Yo and
(ii) there exists an invertible, measure-preserving map ¢: Xo — Y, such that
¢(r(x)) = p(¢(x)) for all x in X,.

(By ¢ an invertible measure-preserving map we mean that both ¢ and ¢! are measure-
preserving, i.e., v(¢(AN X)) = u(AN Xo) and u(¢p~"(ENYy)) = v(ENYp), A €
F,Ee))

It is intuitively clear that if T and p are isomorphic, then (z")$° is mixing of all
orders if and only if (p"){° is.

For an application of the above observation, consider the 2-torus 72 = [0, 1)2
with the usual Lebesgues measure A, defined on its Borel sets. Consider the ’baker’s
transformation” b: [0, 1)2 — [0, 1)? defined by

(2x, 1) (mod 1) if0<x <}

PON=1 @ do+1) (mod1) ifl<x<l
Then, (T2, B(T?), A, b) is isomorphic to the Bernoulli scheme B(%, %). Hence,
(6™ is mixing of all orders.

Since a continuous ergodic automorphism of a compact abelian group is isomor-
phic to a Bernoulli shift, we conclude from (a) that if T is a continuous ergodic
automorphism of a compact abelian group then (t"){° is mixing of all orders. For
another example, consider S' = {z € C: |z| = 1} and let [, be the usual normalized
arc-length measure on S'. Let

(8", B(S"), In) = Q)(S', B(s"), 1),
k=1

the product measure space. Then S" is a compact abelian group under coordinate-
wise multiplication and /, is the normalized Haar measure on S". Let A = [a;;] €
M, (Z), with det A = +1 and suppose that A has no eigenvalues which are roots



434 M. D. HA

of unity. Define

. §" —> §",
an|

(@, z) =@, ), @, z) €S

Then 7 is a continuous ergodic automorphism [8] so that (t")$° is mixing of all
orders. So, if p: T? — T? is given by, say,

p(x,y) = (5x +7y,3x +4y) (mod 1), (x,y) € T?,

then, (p"){° is mixing of all orders.
(c) Product of mixing sequences.

Let (X, F, u) be a probability space. Assume that (z,)$° and (s,){° are mixing of
all orders on X. Define

YU XXX, FQF, u®@u)—> XxX,FQF, nu®un),
Va(x,y) = (tux,5.y), Vx,»)eXn=12,...

Then (1,,){° is mixing of all orders. An application of this gives the following result.

Let n be a given positive integer. Let T" = [0, 1)" be the n-torus, with the usual
Lebesgue measure A, defined on its o -algebra B(T") of Borel sets. Define a sequence
(Y«) of transformations on T" as follows:

Yi: T" — T,
Yk (x1, ..., X)) = (kxy (mod 1), ..., kx, (mod 1)), k=1,2,...

Then, (Yx){° is mixing of all orders.

To see this, consider the 1-torus (T, B(T'), A,). Define the multiplication operators
M; on T' as follows:

Mj(x) = jx(mod 1), j=1,2,...,xeT".

Since (T", @i, BT, @i, A1) = (T", B(T"), Ay, it suffices to show that
(M;)$° is mixing of all orders. Simply apply the approximate independence lemma
[1] which states that if f}, ..., fx € L®°(T') and € > 0 are given, there exists M
such that whenever (n,, ..., ng) € NX satisfies fnL:'l > Myforalll < j<K-—1,
then

< €.

K
/ Hnyx) fanax) -+ fx(ng x)dr — l—[ / fi(x)dr
[0.1) izt Jion

By putting f; = xa,, Ai € B(T"), 1 <i < K, we see immediately that M) is
mixing of all orders.

d) If r: S' — S!is an ergodic rotation of the unit circle, then T is not weak
mixing. Hence, (t"){° cannot be mixing of all orders.
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3.6. The Gaussian distribution property. For any complex-valued function f,
we let Re f denote the real part of f.

Definition 3.7.1. Let (X, F, u) be a probability space. A finite collection A =
{81, S2, ..., Sy} of linear transformations on L2(X) is said to satisfy the Gaussian
distribution property, abbreviated as G.D.P., if it has the following properties:

(a) L%(X,0) is invariant under A, i.e., S(L2 (X, O)) C L%*(X,0) forall S € A.

(b) There exists a constant k5, < oo such that given any f € L%(X,0), we can

find a sequence (gx){° S L2(X) with ||gkll2 < kallfll2forallk = 1,2, ...and
such that

wo (ReSig, ..., ReSygr)™' = Gauss(Re S, f,...,ReSyf) ask — oo.

A collection A of linear transformations on L2(X) is said to satisfy the G.D.P. if every
finite sub-collection A of A does and

K= sup kp < 0o,
finite ACA

Finally, a collection (t4),c; of measure-preserving transformations on X is said to
satisfy the G.D.P. if the corresponding collection (U;,)oes Of induced operators on
L?(X) satisfies the G.D.P. Here, each U, is defined by U, (f) = f o 1, for all
f € L*(X).

4. Main results

The following two theorems are the main results of the paper.

THEOREM 1. Let (X, F, 1) be a probability space and let A be any finite col-
lection of bounded, linear operators on L*(X, F, u) such that L*(X, 0) is invariant
under A. Assume that there exists a sequence (t,);°: X — X which is mixing of all
orders and satisfies the following approximate commutativity condition:

Given f € L*(X, F, i) and € > 0, there exist infinitely many integers n > 1 such
that

IS(fot) —(Sf)ot,lla <€ forallS € A.

Then A satisfies the G.D.P., and moreover, we can take k5 to be 3.
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To state our next theorem, we first need to define the following concept of subsets
of N having certain densities. For each finite set A, let Card (A) be the number of
elements in A.

A set S C N is said to have density « if

Card(Sﬂ{l,Z,...,n})

lim =a.
n—o00 n

§ C Nis said to have positive upper density if

msup Card(sn(l,z,...,N})

> 0.
N—oo N

Clearly, S has positive density implies S has positive upper density.

THEOREM II. Let (X, F, 1) be a probability space. Let A be a finite collec-
tion of bounded, linear operators on L*(X) such that L*(X, 0) is invariant under
A. Assume there exists a weakly-mixing transformation t: X — X satisfying the
Jollowing condition:

For any f € L*(X) and for any K, € > 0, K an integer, there exists positive
integers j| < j, < --+ < jg such that the set

Di={neN: |[S(fot")—(Sflot™|, <€ VSeA, V1I<k<K)

has positive upper density.
Then A satisfies the G.D.P. with k5 = 3.

Consequently, A satisfies the G.D.P. if there exists a weakly mixing t: X — X
satisfying

SU, =U.S forall S € A.

5. Some lemmas

This part of the paper is devoted to statements and proofs of all necessary lemmas
that will be needed in the proof of Theorem I.

LEMMA 5.1. Let N > 1 be any given integer. Let a,,...,ay, by,...,by be
real numbers with P = max{|a;|, |b;|: 1 <i < N}. Then
N N

[Te -5

i=l i=l1

N
<P"' Y lai - bil.

i=1
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Proof. We have

N
]—[ a; —1_[ bi = ajay---an —byay---an
i=l

i=
+bjay---ay — bibyaz - - -an
+bibraz---ay — bibybzas -+ -ay
+

+byby---by_1ay — b|b2 . 'bN.

Thus, letting the empty product be 1, we obtain

i(la,—bll_[lbl I |a,)

i=1

N N

[Te-TT»

i=l1 i=l

I/\

N

PN=1Y" gy — byl m]

j=

IA

LEMMA 5.2. Let (X, F, u) be a probability space. Let (1,)7°: X — X be
mixing of all orders. Let K be any positive integer and assume hj: X — Cis in
L®X)for j=1,2,..., K. Then, for any € > 0, there exists an integer M > 1 with
the following property:

Whenever (n, ...,ng) € NX satisfies

() >M1<j<K——Iand

.I
@) ny,....,ng > M,
then

< €.

K K
f]‘](h,or,,,)du—]'[f hjdp
Xj=1 j=t 7X

Proof. This follows from Lemma 1 and a routine approximation argument. [

LEMMA 53. Let A > 0. Let K, N > 1 be integers. Consider the compact set
C =[—A, AN x-..x [—A, A]Y inREN . Let B be the collection of all real-valued
Junctions on C of the form
¢: C—->R

B e o) x e Xk (66),
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where x', ..., xX are points of [—A, AN and @; is bounded and continuous on

[—A, AIY foreach 1 <i < K.
Then lin B is dense in the normed space of all continuous real-valued functions on
C with the sup-norm || - ||

Proof. This follows directly from the Stone-Weierstrass theorem. O

We now combine Lemma 2 and Lemma 3 to obtain the following proposition
which plays a key role in the proof of Theorem I.

PROPOSITION 5.1. Let N, K be given positive integers. Let (X, F, 1) be
a probability space and suppose (1,)°: X — X is mixing of all orders. Let
hi,....,hg: X > RV be measurable such that wioh; € L*(X, ) foralll <i <N,
1 <j<K. Freachj=12,...,K,letv; = MOhj_I- Consider the product
measure space

K
(R¥Y. BRY) ® --- ® BRY),v) =) (R", BRY),v;).

j=I1

Forn = (ny,...,ng) € N¥ let H, = (hj o1y, ..., hg 0 Tp,): X = RXVN and
pn = o H;'. Let y: RN — R be bounded and continuous and let n > 0 be
given.

Then there exists aninteger My > 1 withthe following property: Ifn = (n\, ...,ng) €
NX satisfies

OY > My, j=1,2,...,K - land
n.

J
@) ny,...,ng > My,

then

<.

W dun f Vv
RN

RKN

Proof. Let y: RKY — R be bounded and continuous and let > 0. We may
assume that ||¥|lc < 1. Choose € > 0 so that KNe + 1 — (1 — Ne)X < p/4.
Since each 7; o h; € L2(X), we can choose A > 0 such that the set Xij=1{x €
X: |mi o hj(x)| > A) has measure u(X;;) < ¢, foralll <i < N,1<j=<K.
Hence, for each j,

N
{x € X: hj(x) ¢[-A, AN} € UXij~
i=1
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Thus, if v; = po hj_', then v; ([—A, A]") > (1 — Ne) forall j. Letv = ®f___, vj
and let

C=[-A AN x - x [-A A",

K times

Then, v(C) > (1 — Ne)X so that
v@RX¥N —C) <1-(1 - Nek.

Similarly, if n = (ny,...,ng) € N€ and pu, = o (hy o Ty, ..., hg 0 Ty, )L,
then u,(C) > 1 — K Ne, so that

w.(REN — C) < K Ne.
Let B be as in Lemma 3. Then there exists ¢o € lin B such that

sup |go(x) — ¥ (x)| < n/4.

xeC
Also, forany n = (ny,...,ng) € NX, let I = | [pun ¥ dptn — [gen ¥dv|. Then
I = f wdun—f 1/1dv+|/1//dun—f1//dv
REN_C RKN —C C C
< ||‘/f||oo(KNe+l—(|—N€)K)+|f wdun—f ydv).
C C

Now, if J = | [ ¥ dpun — [ ¥ dv|, then

J = f W — go)diun — f W — go)dv +~ f oodiin — f oodv
C C C C
< 25up|1/f(x)—¢o(x)|+lf wod iy —/ wodv
xeC C C
< 2+ f%dun—f g0 dv].
C C

Therefore, we have

¥ ditn — f vdv
RKN

RKN

KNe+1—(1—Ne)"+n/2+|f<podun—/¢odv
C C

f¢0dun—f¢0dv
c c

IA

IA

3n/4 +
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Hence, to complete the proof of our proposition, it suffices to show that for any ¢ € B,

there exists an integer M > 1 such that whenever n = I(n|, ..., ng) € NX satisfies
nj > M foreach j = l,2...,Kandu > M, we have
nj
|f odur — [ pav| <ns.
c c
So, let ¢ € B, say (x', ..., x5) = o (x") - - - px (x¥), where each ¢; is a bounded

continuous real-valued function on [-A, A]". Then

/<Pdv = f(w XX eg)dW Q-+ @ vk)
C C
K K
= ]—[/ @jdv; = n/ (X-a.a1 % @;) dv;
j=1 Ji-A.AW =i JRY

K
= n/X [(X-a.a 0 b)) x (¢ 0h] dp 1)
j=1

Similarly, if n = (ny, ..., ng) € NX, then

/wdun = f (Xc x @)dpn
C RKN

= fXCO(hIOTn.»o--,hKOTnK)
X
x@io(hjoty) X...x@gohg oty )du.

Since

K
xcohioty,...,hg 0 Ty) = n(X[—A,A]N ohj)ot,,
=t

we have

K
L¢dﬂn = /x l_[ [X—a.a1% 0 hj) x (gj o hj)] o tn,) du V)]
j=1

Foreach j = 1,2,..., K, let g = (x(—a,ap © hj) x (g o hj). Then from (1) and

),
K K
dun— [ od oty dit — d
‘fc‘pu fcwv /x]l:!(g,w,)u j];]lfxg,u

Since ¢; is bounded for each j, we have g; € L*(X), j =1,2,..., K. Now apply
Lemma 2 to (3) to conclude that there exists an integer M > 1 with the required
property. O

3
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COROLLARY 5.1. Let N, K € N. Suppose (X, F, ) is a probability space
and (1,){°: X — X is mixing of all orders.

Let f € L*(X,0), fi...., fv € L*(X,0) be real-valued functions. Let Q =
fireo s SN X>RY . PutA=poQ ' andforn = (n,...,ng) € NX, let

Un =10 (R0Ty,...,007T,,) "

Let ¥: RXN — R be bounded and continuous and let n > 0 be given. Then there
exists an integer My > 1 with the following property:
Whenevern = (ny, ..., nk) € NX satisfies

O > Mo foreach j=1,2,...,K — 1 and
n.

j
@iyny,...,ng = My,
we have

f wdun—f ¥ dr¥
RKN RKN
/(forn,.)(fon,,)du|<n Vi<i#j<K.
X

(a)

<n and

(b)

LEMMA 5.4. There exists a countable set H of continuous real-valued functions
on R" with compact supports satisfying the following condition:

Let ¢: RYN — R be continuous with sup, g |¢(x)| = ||#]l0o
be compact and € > 0. Then there is some ¢ in 'H such that

< 1. Let.K C RV

sup |o(x) —@d(x)| <e.

xek

Proof. Write RV =

o0
K,, where K; C K, C K3 C ... are compact subsets

i=l

of RV. Let
C(K,) ={f: K, — R: f continuous}.

Since K, is compact, C(K,) has a countable dense subset G,. Here, the norm of
f € C(Ky) is || flix, = sup,ex, |f(x)|. For each @ € G,, let &: R — R be
a Tietze’s extension of « to all of RV, i.e., & is continuous of compact support,
d(x) = a(x) forall x € K, and ||&||oc = ll|lk,. Forn =1,2,..., let

H,={a@: R" > R: a €G,).

PutH = D’H,,.
n=1

Now, suppose that ¢: RV — R is continuous with |||l < 1. Let € > 0 and let
K < R" be compact. Then K C K, for some n. Hence, there exists « € G, such
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that
sup '(b(x) - oe(x)l <e.

xekK,

Let & € H, be a corresponding Tietze’s extension of « to all of RV. Then

sup [&(x) = ¢(x)| < sup [@x) =] = sup la(x) — )| <e. O
X€e

xekK, xekK,
The two lemmas below are very elementary. We omit the proofs.

LEMMA 5.5. Let (X, F, u) be a probability space. Let N be a positive integer.
LetS € L*(X, F, W) be bounded, so that there exists C < oo with || fll2 < C for all
f € S. Then for each € > 0, there exists a compact set K C RN such that, for all
fio.... v €S,

pLo(fiseoos )R —K) <e.

LEMMA 5.6. Let&: RY — R be any continuous function of compact support.
Let n > 0. Then there is some € > 0 with the following property:
Let (X, F, ) be any probaility space. Let

a=(a,...,ay): X >RY, B=(B,...,By): X > R",
where o;, B; are real-valued measurable functions on X. Assume that
li — Billo <€ VI<i<N.
Then

I] $d(uoa")—f Edwon)| <.
RV RV

6. Proof of Theorem I

Proof. Let (X, F, u) be a probability space and let A = {S|,..., Sy}, (T.))®
be as in the hypotheses of Theorem I. Assume that f € L*(X,0). ThenReS; f €
L2(X,0)forall 1 <i < N.

Let {&;}] be a finite collection of compactly-supported, continuous functions from
RY toR. Let y = Gauss(Re S f, ..., Re Sy f). We will show the following:

For any n > 0, there exists some g € L*(X), ligll2 < 2|l fl2 such that if

v=p0(ReS g ...,ReSy )",

then

‘/ dev—/ Ejdy’<n Vi=12,...,J.
RY RY



OPERATORS COMMUTING WITH MIXING SEQUENCES 443

1. Put fi = ReS;jf,1 <i < N. Let Q := (f1,..., fv): X > RV, and
A=pnoQ ' Ifr;: RV — Ris the i™-projection, then for 1 <i, j < N,

/ i dk=f fidu =0,
RV X

/ n,~7t,~d)»=/ ﬁf,-du:fmnjdy<oo.
RY b bt

Thus, by the Central Limit Theorem in Section 3, we can choose an integer K > N
large enough so that forall 1 < j < J,

/ (aornuk—f §d4<n, @
RKN RV
where T: RN — R s defined by

Ty ... K
K)=x——_‘-—-_‘—-x— Vx',...,xK GRN.

vK

2. Forn = (ny,...,ng) € N, let H, = (Qo71,,, ..., QoT,,)and u, = poH; .
Choose €y > 0 small enough so that Lemma 6 holds for each &; in place of &,
1<j<J.

By our assumption on (t,)S°, there exist infinitely many integers m > 1"such that
foralll <k <N,

TG, ..., x

H&Uom%%&ﬂomh<% ©)

By Corollary 1, we can choose a p = (py, pa, ..., px) € N¥ satisfying

ISk(f o Tp) — Sk otyllz < %0 Vi<k<N, Vli<i<K (6)
with
l/ (*EjOT)du,,—f EoT)yd | <n Vi<j<lJ (7
RKW RKN
and so that
Il £113 .,
(for)(fory)du| < X Vi<i#j<K. ®
X
From (4) and (7),
IAKN(ijT)de—LN gdy|<2n Yl<j<lJ. ©)
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3. Foreachi =1,2,...,N,let gi: X — R be defined by
_ fiotp +fioty+ -+ fioty

gi"‘ \/’k‘
LetV=po(g,...,gn)"". Then
[ gai=[ @ondun j=12... (10)
RN RN

4. Letg = 7'7(-[fot,,, +--~+foz,,K]. Forall 1 <i < N, we have (by (6))

IRe Sig — gill2

ﬁl

ZReS(for,,,)—(Res Hor,
Jj=1

2

K
< J_.Z IRe (Si(f ©tp) = (Sif) o Tp) 2 < €0

Consequently, ifo = (Re Sig,...,ReSyg)and B = (gi, ..., gn), thenby Lemma6,

M;ﬁjdv-fméjdv

wherev =poa !, D =popl.
5. Therefore, by using (9), (10) and (11), foreach j = 1, 2, ..., J we obtain

/l;stdv—/RN{-'jdy /;stdv—/;Nde;+"/RN$jdi3""/I;N§jdy'

[gjdv—/ sjd3+‘/ (SjoT)dup-/ éjdyl
RY R¥ RN RY
n

<n Vl=sj=</J, an

IA

=
1
Finally, since g = i [fotp + -+ f oty wehave
el = ¢ > [ Fomfondu
|<l JJ<K
=% [Kllfllg /(fOfm)(fOTm)d“]
I<i#j<K

Thus, by (8),

1
2 . 2
gl < 115+ &

f (fOtp,)(forp,)du‘

I<1#1<K

IA

IO 1)
IF1G+ g KK — D22

21113

IA
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We have completely proved what we set out to prove.

6. Let H be as in Lemma 5.4, say H = {¢1, ¢2, ¢3, .. .}. It follows from step 5
above that for any positive integer I, there exists g € L2(X), |lg ||§ < 2| fll2, such
that if v; = p o (Re Sy gj, ..., Re Sng;)~! foreach j > 1, then

1
‘/ <p,~dv1—f ¢;dyl<— vVi=1,2,...,1.
RN RN l

Hence, it follows that there exists (g;){° € L*(X), llgill2 < 2l fll2 for all j =
1,2, ...such that

1
‘,/.;~¢idvj-/|;~(pidy’<; Vi=1,2,...,}j.

Therefore,

j—o0

lim pdv; =/ edy Vg e H. (12)
RV RV

7. Let&: RY — R be continuous, ||£ |l < 1. We will show that

lim Edvy; =/ &Edy.
RN RV

j—oo
Fix some small § > 0. By Lemma 5.5, there exists a compact set K C R" such that
ViRV —K) <8 forallj>1 and yR"-K) <3.
8. Choose ¢ € M so that sup,.x |¢(x) — £(x)| < 8. Then, forall j > 1,

/ (pdvj —/ dej‘
RV RV
/ pdy; ] Edv; / q)dvj—/ Edvy;
RV-K RV-K K K

<20 RY — K) + v;RY — K) + 8 v;(R") < 45.

< + +

Similarly, using the last inequality in step 7, we obtain

U. ¢dy—f §dy' < 44.
RV RV
Hence,

fRNgdu,—fRNsdy’ < fRN‘s‘dvj—fRNwdvj +URN<pdvj—kawdyl
/Rthdy—fRNEdV’-

+
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Thus,
./ ‘g”dv,-—/ de' 588+’f (pdv,-—/ (pdyl.
RN RN RN RN
By (12),
lim &dv; =/ Edy. (13)
J—=>00 JRN RN
9.Ifa: RV — Riscontinuous and bounded, let§ = "a"a—_‘_l,so that [|E]l < 1,
and then apply (13) to get %
lim f ady; = / ady. 0
J—>0 JRN RV

Remarks. By making use of Furstenberg’s theorem stated below [5] and adapting
the techniques employed in the proof of Theorem I, Theorem II can be similarly
proved, and therefore we omit the proof.

FURSTENBERG’S RECURRENCE THEOREM FOR WEAKLY-MIXING TRANSFORMATIONS.
Let (X, F, u) beaprobability spaceandleto: X — X beweakly-mixing. Let K € N.
Then, for every ji1 < j» < ... < jg in N, every fi,..., fx € L*(X) and every

n > 0, there exists a set D = D(n, ji,..., jk » fi,-.., fx) C N of density 1, such
that, for all n € D, we have

K K
fxl_[(fioa"’”)du—]—[fxfzdu <n.

i=l i=l
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