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COMPRESSED POLYTOPES, INITIAL IDEALS AND
COMPLETE MULTIPARTITE GRAPHS

HIDEFUMI OHSUGI AND TAKAYUKI HIBI

ABSTRACT. Convex polytopes arising from complete multipartite graphs and their toric ideals will be
studied. First, it is proved that such toric ideals possess squarefree quadratic initial ideals. Second, we
show that these convex polytopes are compressed and compute their f-vectors, Ehrhart polynomials and
normalized volumes explicitly. Finally, all complete multipartite graphs which yield initial ideals coming
from finite partially ordered sets will be classified.

Introduction

The second hypersimplex of order d is the convex polytope A(2, d) which is the
convex hull of the configuration A; = {e;+e¢;;1 <i < j <d}in R?, where ¢; is the
ith unit coordinate vector of R?. If G is a finite connected graph having no loop and
no multiple edge on the vertex set [d] = {1, 2, ..., d} with edge set E(G), then we
write Ag for the subset {e; +e; € Ay; {i, j} € E(G)} of A,. The edge polytope Pg
of G is the convex hull of Ag in R?. Let K[ty, #,, . . . , ;] denote the polynomial ring
in d variables over a field K. The affine semigroup ring K[G] which is generated
by all monomials t;¢; with {i, j} € E(G) is called the edge ring of G. When G is
the complete graph on [d], its edge polytope is the second hypersimplex of order
d and its edge ring is the second squarefree Veronese subring of K|[t#,t2, ..., ts].
In the present paper we are interested in edge polytopes and edge rings of complete
multipartite graphs on [d]. Here, a complete multipartite graph on [d] is a finite graph
on [d] such that, for a suitable decomposition [d] = Vi U V, U ... UV, of [d], its
edge set consists of all {k, £} withk € V; and £ € V; for some i # j.

The present paper will be organized as follows. First, in Section 1, the notion
of the algebra of Segre—Veronese type which generalizes both Segre products and
Veronese subrings of polynomial rings will be presented. Such algebras are affine
semigroup rings which possess squarefree quadratic initial ideals; in particular, these
algebras are normal, Cohen—-Macaulay and Koszul. The edge ring K[G] of a finite
connected graph G is an algebra of Segre—Veronese type if and only if G is a complete
multipartite graph. Hence, the edge ring of a complete multipartite graph possesses
a squarefree quadratic initial ideal and is normal, Cohen—-Macaulay and Koszul.

Second, the purpose of Section 2 is to discuss the combinatorics on edge polytopes
of complete multipartite graphs. We show that such a polytope is compressed, i.e.,
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each of its reverse lexicographic triangulations is unimodular. Moreover, the f-vector,
the Ehrhart polynomial together with the normalized volume of the edge polytope of
a complete multipartite graph will be computed explicitly.

It is known that if R is a homogeneous semigroup ring, then R is Koszul if and
only if its divisor poset (partially ordered set) Xz is Cohen-Macaulay. Here Xy is
the infinite poset consisting of all monomials belonging to R, ordered by divisibility.
In [15], it is proved that if R has an initial ideal which is the Stanley—Reisner ideal of
a finite poset, then the divisor poset X, is shellable. Moreover, in [2], it is shown that
if R is extendable sequentially Koszul, then X is shellable. The second squarefree
Veronese subring R ‘(,2) of K[t, ts, ..., t;]isextendable sequentially Koszul foralld >
2, while R‘(,z) possesses an initial ideal which is the Stanley—Reisner ideal of a finite
posetifandonlyifd = 2, 3, 4. See[2]and [11]. One of the most distinguished classes
of homogeneous semigroup rings having initial ideals which are Stanley—Reisner
ideals of finite posets is the class of monomial ASL’s (algebras with straightening
laws). If, however, R is a monomial ASL, then the shellability of & follows easily
(e.g., [2, Theorem 2.2]). In addition, if R is a monomial ASL, then X is chain
lexicographically shellable. See [2, Theorem 2.3]. In Section 3, we will discuss the
problem which complete multipartite graph yields an edge ring having an initial ideal
which is the Stanley—Reisner ideal of a finite poset.

1. Algebra of Segre—Veronese type

The algebra of Segre—Veronese type which generalizes both Segre products and
Veronese subrings of polynomial rings will be studied. Such algebras are affine
semigroup rings which possess squarefree quadratic initial ideals; in particular, these
algebras are normal, Cohen-Macaulay and Koszul.

Let K be a field and

K[{t,'(i)}lsisn;lsjﬂ:]
the polynomial ring in ) ;_, ¢; indeterminates over K. Fix an integer N > 1 and sets

of integers {a1, @, ..., an}, {b1, ba, . .., by} and (¢ }i1,2,...m:j=1,2,...q, Such that

(i) 0<b; <aqg;foralll <i <n;

) Tpybi <N < Yo
(i) Y0, ¢ > g; forall1 <i <n.

We then write
1 A(N; {a;, b, CJ('i)}lsisn;lstq,)
for the K -subalgebra of K [{tj(i)}lsisn; 1<j<q;] generated by all monomials

n

J

i=1 j=1
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such that

@) £ <c forall1 <i <nandforalll <j <gs
i) b < Y0, £ <aforall 1 <i <n;
(i) 37 X7 1f(’)—N

The affine semigroup ring (1) is called an algebra of Segre—Veronese type.
For example, ifn =2, N =2andg; = b; = c = 1foralli and j, then the affine

semigroup ring (1) is the Segre product of polynomlal rings K[+, £, ..., t{D]and

KitP, 62, .. 191 g = 1,4, = N, b; = 0 and ¢’ = N for all i, then the
affine semigroup nng (1) c01n01des W1th the classical N th Veronese subring of the

polynomial ring K [tl , t1 . tl ] Moreover, if ¢; = 1,a; = 1, b; = 0 and
(') = 1 for all i, then the afﬁne semigroup ring (1) is equal to the Nth squarefree
Veronese subring of the polynomial ring K [tl(l), tfz) yeens tf”)].

Wheng; = 1,a; = cﬁ‘) and b; = 0 for all i, the affine semigroup ring (1) is an

algebra of Veronese type which is discussed, for example, in [5] and [17].

Let w;, wy, ..., ws denote the minimal system of monomial generators of the
algebra of Segre—Veronese type (1). Let K[x;, x2, ..., x5] denote the polynomial
ring in 8 variables over K and 7 the surjective homomorphism

m: K1, %2, ..., %51 > AWN; {ai, by € hiizmt<jzal)

with w(x;) = wi forall 1 < k < §. The kernel of 7 is called the toric ideal (or
defining ideal) of the algebra of Segre—Veronese type (1).

The technique appearing in the proof of [17, Theorem 14.2] which guarantees the
existence of squarefree quadratic initial ideals of algebras of Veronese type can be ap-
plied to algebras of Segre~Veronese type in the obvious way. Hence, we immediately
obtain the following result which generalizes [17, Theorem 14.2].

THEOREM 1.1. The algebra of Segre-Veronese type (1) possesses a squarefree
quadratic initial ideal (i.e., there exists a term order < on the polynomial ring
KI[xy, x2, ..., xs] such that the initial ideal of the toric ideal of (1) with respect to <
is generated by squarefree quadratic monomials). Thus, in particular, the algebra of
Segre—Veronese type (1) is normal, Cohen—-Macaulay and Koszul.

In the present paper, we are interested in a special kind of algebras of Segre—
Veronese type, i.e., subrings of the second squarefree Veronese subring arising from
complete multipartite graphs.

Let G be a finite connected graph on the vertex set [d] = {1, 2, ..., d} and assume
that G has no loop and no multiple edge. Let E(G) denote the edge set of G. If
e = {i, j} is an edge of G joining i € [d] and j € [d], then we write p(e) € R? for
the (0, 1)-vector e; + €;, where e; is the ith unit coordinate vector of R?. The edge
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polytope Pg of G is the convex hull of the configuration Ag = {p(e); e € E(G)}
in R?, Let K[t] = K[, 12, ..., 4] denote the polynomial ring in d variables over
a field K. The edge ring K[G] of G is the affine semigroup ring generated by
those monomials titj with {i, j} € E(G). Let K[x] = K[{x,-,j}(,;j]eg((;)] denote the
polynomial ring over K with each deg x; ; = 1. The toric ideal I of G is the kernel
of the surjective homomorphism 7: K[X] — K[G] defined by 7 (x; ;) = t;¢; for all
{i, j} € E(G). We refer the reader to [12] and [14] for the detailed information about
the edge polytope and the edge ring of a finite graph.

Letqi, g2, . . . , gn denote a sequence of positive integers withg; +¢2+- - -+¢, = d.
Let Vi, Va, ..., V, denote a partition of [d] (i.e.,each@ # V; C [d], VNV, =0
ifi # j,and [d] = V; UV, U-..UYV,) with each §(V;) = ¢;. Here §(V;) is the
cardinality of V; as a finite set. For the sake of convenience, we will assume that

i1 i1 i-1 i

Vi= Zq,- +1,Zq,- +2,--~,Zq,-+q.~ - I,Zq,-l
j=1 j=1 Jj=1 j=1

for each 1 < i < n. The complete multipartite graph of type q = (q1, 92, - - - » qn) 18

the finite graph G4 on the vertex set [d] = V; U V, U ... U V, with the edge set

E(Gq) ={{k, ke Vi,LeV;,1 <i < j<n}

Note, in particular, that if {k, £} € E(G4) withk < £, then {k’, £'} € E(G,) for any
k' and £’ with k' < k < € < £'. It may be assumed that q = (g1, 92, . - - , gn) satisfies

I<q1i<q@=<:-=<gqn

When G is the complete graph on [d], i.e., n = d and each ¢; = 1, the edge
polytope is the second hypersimplex [17, p. 75] of order d and the edge ring is the
second squarefree Veronese subring of K[t t3, ..., t4].

Now, which edge ring can be an algebra of Segre—Veronese type ?

PROPOSITION 1.2. The edge ring K[G]of afinite connected graph G is an algebra
of Segre—Veronese type if and only if G is a complete multipartite graph.

Proof. Work with the same notation as in the definition of the algebra of Segre—
Veronese type (1) and set N = 2 and each cj(.') =1
If b; = 2 for some 1 < i < n, then the algebra (1) is the second squarefree

Veronese subring of K [tl(i), t2(i), ...,t;f)]. If b; = b; = 1 for some i # j, then the

algebra (1) is the Segre product of K[1{", 1", ..., tD] and K¢, 1°, ..., 11,
Let us assume that b; = 1 for some i and b; = O forany j # i. If a; = 1, then the
algebra (1) is the edge ring of a complete bipartite graph. If a; > 2, then the algebra

(1) is the edge ring of the complete multipartite graph on the vertex set

@
U{tj(l)}) U{t}k); ar#0,k#i,1<j < Qk}~
=
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Suppose that each b; = 0. Let I be the set of all i with a; > 2 and J the set of
all k with a; = 1. Then, the algebra (1) is the edge ring of the complete multipartite
graph on the vertex set

(U8e) U (Jo2rt). 0

iel j=1 kelJ

COROLLARY 1.3. The edge ring of a complete multipartite graph is normal,
Cohen—Macaulay and Koszul.

In general, the term order < of Theorem 1.1 can be chosen to be neither lexico-
graphic nor reverse lexicographic. We can show, however, that the toric ideal of a
complete multipartite graph possesses not only a lexicographic quadratic initial ideal
but also a reverse lexicographic quadratic initial ideal.

THEOREM 1.4. Let G be a complete multipartite graph with edge set E(G) and
I its toric ideal. Define the ordering < of the indeterminates x; j with {i, j} € E(G)
by setting x;,j < Xy, wherei < j and k < £, if and only if either (i) i < k or (ii)
i =kand j > L. Let <\ denote the lexicographic term order on K[{x; ;}i neE@G)]
induced by < and <y the reverse lexicographic term order on K[{xi j}i jeE@G)]
induced by <. Let in., (Ig) denote the initial ideal of I with respect to <iex and
in._, (Ig) the initial ideal of I with respect to <iey. Then, bothinitialidealsin., (Ig)
and in._, (Ig) are generated by squarefree quadratic monomials.

Proof. First, by virtue of [17, Remark 9.2], the lexicographic initial ideal in., (/)
is generated by those squarefree quadratic monomials x; jxi ¢ such that either i <
j<k<dlori<k<t< j,where{i, j}, {k, £} € E(G).

Second, to see why the reverse lexicographic initial ideal in._, (Ig) is generated
by squarefree quadratic monomials, we will show that the set of quadratic binomials
belonging to I is a Grobner basis of I with respect to <,y. Let G denote the set of
all quadratic binomials x; jxi ¢ — X; ¢X;« such that (i, j, k, £) is a cycle of G of length
4. It follows from [14, Theorem 1.2] that G is a system of generators of I. Hence,
the Buchberger criterion can be applied in order to prove that G is a Grobner basis
of I with respect to <,y. If f and g are binomials belonging to G and if the initial
monomials of f and g are not relatively prime, then the S-polynomial of f and g is
a cubic binomial. Thus, what we must prove is that, for any cubic binomial

F = Xa,pXi,jXk,e — Xb,iXjkXe,as
where (a, b, i, j, k, £) is a cycle of G of length 6, and for any cubic binomial

F = Xg,pXc,aXi,j — Xb,cXa,iXjas
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where (a, b, ¢) and (a, i, j) are triangles of G having exactly one common vertex,
there exist binomials fi, f3, ... € G and {i}, ji1}, {i2, j2}, ... € E(G) with

F = flxihjl + f2xiz,j2 +oee

such that, with respect to <rey, €ach of the initial monomials of fix;, ;,, foxi,, j,, - -
is less than or equal to the initial monomial of F. The proof will be complete if we
proceed case by case. See [13]. Forexample, if F = x;,2X1,3%4,5 —X2,3%1,4X1,5, Where
(1,2,3) and (1, 4, 5) are triangles of G, then {2,4} € E(G) since {2,3} € E(G);
hence F = fx;3 + gx1 s wWith f = x1,2x4,5 — X1,5%2,4 and g = x1,3%2.4 — X1,4X2,3.
O

2. Triangulations, f-vectors and Ehrhart polynomials

In general, let P C R be an integral convex polytope, i.e., a convex polytope
any of whose vertices belongs to Z¢. An integral polytope is called compressed if
each of its reverse lexicographic triangulations is unimodular. For example, see [16].
Moreover, an integral polytope is called unimodular if any of its triangulations is
unimodular. It then follows that an integral polytope is unimodular if and only if each
of its lexicographic triangulations is unimodular.

As before, let G be a finite connected graph on the vertex set [d] having no loop
and no multiple edge, and with edge set E(G). Let Pg C R be the edge polytope
of G. Note that the vertex set of Pg is equal to Ag = {p(e); e € E(G)} and that
P N Z4 coincides with Ag. By [17, Lemma 9.5], the edge polytope Pg of G is
unimodular if and only if any two odd cycles of G have a common vertex. Thus, in
particular, the edge polytope Pg of a complete multipartite graph G is unimodular if
and only if the type of G is one of the following:

@ (p,g)withl < p <gq;
Gi) (1, p,q) with1 < p < g;
@ii) (1, 1,1, p) with 1 < p;
G(v) (1,1,1,1,1).

However, it is not quite clear which edge polytopes are compressed. Our first result
of this section guarantees that the edge polytope of a complete multipartite graph is
compressed.

THEOREM 2.1. The edge polytope of a complete multipartite graph is compressed.

Proof. Let G be a complete multipartite graph with edge set E(G) and K[Xx] =
K[{xi j}i, j)ee(s)] the polynomial ring over K. Fix an arbitrary reverse lexicographic
term order < on K[x] and let in.(Ig) denote the initial ideal of the toric ideal
I C K[x] with respect to <. If the triangulation arising from the Stanley—Reisner
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ideal +/in.(Ig) is not unimodular, then it follows from [17, Lemma 9.5] that we can
find two odd cycles C; and C; of G having no common vertex such that the monomial

@) [T =
{i,j}EE(C1)VE(C?)

does not belong to +/in_(Ig). Letiy, i, ..., iz,—1 be the vertices of the cycle C; with
{ik, ix+1} € E(G)forall1 < k < 2s — 1 withiy; = ij,andlet jj, ja, ..., jor—1 be the
vertices of the cycle C, with {j¢, je+1} € E(G) forall 1 < £ <2t — 1 with j,, = jj.
Suppose that x;, ;, is the weakest variable among all x; ;’s with {i, j} € E(C{)UE(C>).
Since G is a complete multipartite graph, either {i, j;} or {i;, j2} is an edge of G.
Say {i, j1} € E(G). Then, the binomial

K t s—1 t—1
= . Ly 22 - o
8= nx'Zk—h’ﬂc nxlzt-hlu Xiy,ji l—[xlzlu‘Zk-H l_[x‘Zb’ZLH
k=1 =1 k=1 =1

belongs to I and its initial monomial is

5 t
in.(g) = ]—[xizk-l,izk Hxiu-hizz'
k=1 =1

Now, since in.(g) divides the monomial (2), the monomial (2) must belong to
in<(Ig). This contradiction shows that the triangulation arising from +/in.(lg) is
unimodular, as desired. O

A regular unimodular triangulation of the edge polytope of a complete multipartite
graph arising from the lexicographic initial ideal of Theorem 1.2 can be constructed
by imitating the technique appearing in [17, pp. 77-79].

We may call a homogeneous semigroup ring compressed if each of the reverse
lexicographic initial ideals of its toric ideal is squarefree. It follows from Theorem 2.1
together with Proposition 1.2 that all algebras of Segre—Veronese type generated by
squarefree quadratic monomials are compressed. There is a noncompressed algebra
of Segre—Veronese type generated by squarefree cubic monomials. In fact:

Example 2.2. 'The affine semigroup ring R C K[#, #2, ..., ts] which is gener-
ated by all squarefree cubic monomials #;¢;# with1 <i < j <k <6and (i, j, k) #
(4,5,6) is an algebra of Segre—Veronese type with n = 4, (q1,92,93,94) =
(1., 1, 1, 3), (a1, a, a3,a4) = (1, 1, 1, 2), (b1, bz, b3, b4) = (O, 0, 0, 0) and each
CJ(") = 1. The initial ideal of its toric ideal with respect to the reverse lexicographic
term order induced by the ordering #1113 < titats < titats < titats < tif3ls < -+ <
Bilats < talstg < ntste is not squarefree. Hence, the affine semigroup ring R is
noncompressed.

It seems to be a reasonable research project to find a criterion for an algebra of
Segre—Veronese type generated by squarefree monomials to be compressed.
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In principle, it is possible to find all facets of the edge polytope of a finite connected
graph. For example, see [12, Theorem 1.7]. Here, we compute the f-vector of Pg
in terms of the type of G.

Let G4 be the complete multipartite graph of type q = (g1, 42, - .., ¢s) on the
vertex set [d] = Vi U Vo, U ... UV, with each #(V;) = ¢; and E(G4) the edge set
of Gq. We know (e.g., see [12, Proposition 1.3]) that dim ’qu =d-1ifn >3,
and dim ’PGq =d —2if n = 2. Recall that p(e) € R is the (0, 1)-vector e; + e; if
e = {i, j} € E(Gq), where ¢; is the ith unit coordinate vector of Re. If H (# Gg)is
a subgraph of G4 with the edge set E(H), then we write Fy for the convex hull of
{p(e); e € E(H)} in R?. Then the next result follows from [12, Theorem 1.7].

LEMMA 2.3.  (a) Ifn > 3, then the subpolytope Fy of Py is a facet of Pgq if and
only if either H is nonbipartite and is the induced subgraph of G4 on [d]\{i} for some
i € [d], or H is the complete bipartite graph on V; U ([d]1\ Vi), where 1 <k < n.

(b) If n = 2, then the subpolytope Fu of Paq is a facet of Pgq if and only if H is
the induced subgraph of Gq on [d1\{i}, where i € V; with q; > 1.

COROLLARY 2.4.  The subpolytope Fy of Pgg is a face of P if and only if one
of the following holds:

(i) H isthe complete multipartite graph on V{UV,U- - .UV, where each V;, C Vi
and where V) # @ for at least three ks,

(i) H is the complete bipartite graph on V, U V', where @ # V, C Vi and
@ # V' C [d\Vi for some 1 <k <n.

Proof. Each facet of Pg, is again the edge polytope of a complete multipartite
graph. In general, every face of a convex polytope P is a face of a facet of P. Hence,
repeated applications of Lemma 2.3 enable us to obtain the desired result. m]

THEOREM 2.5. The number of i-faces (i-dimensional faces) of the edge polytope

Pgq of the complete multipartite graph Gq of type q = (41, G2, - - - , qn) On the vertex
set [d] withn > 2 is a; + B;, where

n-1 i i
_ Qi \ (Qe+1+ Qe 00| 9k qe
““;Z(j>( i—j+1 ) 2 Z(f)(i-—jﬂ)’

Jj=1 1<k<tzn j=1

no i+l i+1
a\( d—qk gk qe
2S00 BT
e S A\ Sl s Y Aoy B s AN i—j+2

Proof. 'The number of subgraphs H of the form ( i ) of Corollary 2.4 withi + 1
vertices is «; and the number of subgraphs H of the form (ii ) of Corollary 2.4 with
i + 2 vertices is B;. O
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We now turn to the problem of computing the Ehrhart polynomial of the edge
polytope of a complete multipartite graph. If P C R is an integral convex polytope,
then we write i (P, m) for the number of rational points (£, &, ..., &) € P N Q¢
with (mé&;, m&,, ..., mé;) € Z8 foreachm = 1,2, .. .; in other words,

i(P,m) = #(mP NZ%.

It is known that i (P, m) is a polynomial in m of degree dim P. We call i (P, m) the
Ehrhart polynomial of P. If vol (P) is the normalized volume of P, then the leading
coefficient of i (P, m) is vol (P)/(dim P)!. We refer the reader to [10], for instance,
for the detailed information about Ehrhart polynomials of convex polytopes.

THEOREM 2.6. The Ehrhart polynomial i(Pgq, m) of the edge polytope Pgq of

the complete multipartite graph G4 of type q = (q1, g2, - - - , 4n) On the vertex set [d]
withn > 2is

3 (d+dz:n1~1)_z": 3 (j—i+m—1)<d—f1-|—-r;1—1).

k=1 1<isj<q J—t

Proof. It follows from [12], for example, that the Ehrhart polynomial i(’PGq, n)
coincides with the Hilbert function of the normalization of the edge ring K[Gq] of G4.
Since K[G4] is normal, i(’Pc;q , m) is equal to the Hilbert function dimg (K[Gq])m of
the homogeneous K -algebra K [Gq] = @pr_o(K[GqD)m.

The lexicographic quadratic initial ideal of Theorem 1.4 guarantees that the set of
monomials x;, j X, j, * * * Xi,, j, With each {i;, j} € E(G) such that

@ << SimSj1<jp=s--
is a K -basis of (K[Gq])m. How many sequences (4) with {is, js} ¢ E(Gg) for some

1 < s < m do we have? If we fix 1 < k < n, then the number of sequences (4)
with {i5, js} € E(Gq), {is-1, Js—1} € E(Gg) and with i; € V;, j; € V for some

1<s<mis
Z (j—i+m—1)<d—j+m—1)
12i<j<qe j-i d—j

Since the number of sequences (4) is the binomial coefficient d";fi”l"), the required
formula follows immediately.

More generally, it is possible to write down the Hilbert function of the algebra of
Segre—Veronese type (1). We, however, omit the result due to the lack of usefulness.
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COROLLARY 2.7. (a) The normalized volume of the edge polytope ’Paq of the

complete multipartite graph Gq of type q = (41,42, - . ., qn) On the vertex set [d]
withn > 3 is

- ZZ(J - 1)

1 j=1

(b) The normalized volume of the edge polytope of the complete bipartite graph of

type (p, q) is
p-l-q—Z)
p-1 )

Proof. (a) Since n > 3, the finite graph G4 is nonbipartite. Hence, the edge
polytope Pg, is of dimension d — 1 and the Ehrhart polynomial i (Pg4, m) is of degree
d—1. By (3) the leading coefficient of (d —1)!i (Pgq, m)is 241 =34 _, 3% (‘I’ D-

(b) If G is the complete bipartite graph of type (p, q), then the polynom1a1 3
turns out to be (73" ) (s 1), which is a polynomial in m of degree p + ¢ — 2. The

leading coefficient of (p + g — 2)'(p+m -1 (q+m-l) is (p+q =2y O

Remark 2.8. In [5] the Gorenstein algebra of Veronese type is completely clas-
sified. It seems difficult to find all Gorenstein algebras of Segre—Veronese type.
However, based on the technique developed in [5] together with Lemma 2.3, we can
prove that the edge ring K[G] of a complete multipartite graph G is Gorenstein if
and only if the type of G is (1, p) with p > 1, or (p, p) with p > 2, or (p, g, r) with
l<p<g=<r=<2or(,1,1,1.

3. Semigroup rings coming from posets

Let K[x;, x2, ..., x5] be the polynomial ring in § variables over a field K with each
degx; = 1. Let < be a partial orderon [§] = {1, 2,...,8}and P = ([8], <) the finite
poset (partially ordered set) on [§] with the partial order <. The Stanley-Reisner ideal
of P is the ideal of K[xy, x3, ..., xs] which is generated by all squarefree quadratic
monomials x;x; such that i and j are incomparable in P.

LetK[t, 1, ..., t;] be the polynomial ring in d variables over K and R a homoge-
neous semigroup ring with the minimal system of monomial generators wy, wa, ...,
ws with each w; € K[t, ta, ..., t7]. The divisor poset of R is the infinite poset T
consisting of all monomials belonging to R, ordered by divisibility. It is known that R
is Koszul if and only if X is Cohen—-Macaulay. For example, see [15, Corollary 2.2].
Let I denote the toric ideal of R, i.e., I is the kernel of the surjective homomorphism
w: K([x1,x2,...,x5] = R defined by w(x;) = w; forall 1 <i <34. If R is Koszul,
then I is generated by quadratic binomials. Moreover, if I possesses an initial ideal
generated by quadratic monomials, then R is Koszul; e.g., see [4]. We say that R
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comes from a poset if its toric ideal I possesses an initial ideal which is the Stanley-
Reisner ideal of a finite poset. In [15] it is proved that if R comes from a poset, then
Xr is shellable. Moreover, in [2] it is proved that if R is extendable sequentially
Koszul, then X, is shellable. For example, the squarefree second Veronese subrin,
RP of K[t1, 12, ..., 14] is extendable sequentially Koszul for all d > 2, while R
comes from a posetif and only if d = 2, 3, 4. See [2] and [11]. One of the most famil-
iar examples of homogeneous semigroup rings coming from posets is the monomial
ASL (algebra with straightening laws). See [3], [6] and [10] for detailed information
about ASL’s.

As before, let R C K[t, 1, ...,t;] be a homogeneous semigroup ring with the
minimal system of monomial generators w;, ws, ..., ws. Then, we say that R is a
monomial ASL if there exists a partial order < on {w;, ws, ..., ws} satisfying the
following conditions:

(ASL-1) The set of all monomials w;, w;, - -+ of R with w;, < w;, < ---(sucha
monomial is called standard with respect to the partial order <) is a K-basis of R;

(ASL-2) If w; and w; are incomparable in the partial order < and if w;w,, where

wy < we, is a unique standard monomial (whose existence and uniqueness follow
from (ASL-1)) with w;w; = wiwy, then we have wy < w; and wy < wj.
The toric ideal of a monomial ASL possesses a reverse lexicographic initial ideal
which is the Stanley-Reisner ideal of a finite poset. It is known that the divisor poset
of a monomial ASL is chain lexicographically shellable. Moreover, in general, a
homogeneous semigroup ring whose divisor poset is chain lexicographically shellable
is extendable sequentially Koszul. We refer the reader to [1] and [2] for further
information about monomial ASL’s and extendable sequentially Koszul semigroup
rings.

Before stating the main result of the present section, we will discuss some examples
of monomial ASL’s.

Example 3.1. (a) A homogeneous semigroup ring R is called trivial (cf. [8])
if, starting with polynomial rings, R is obtained by repeated applications of Segre
products and tensor products. Every trivial semigroup ring is a monomial ASL. (In
fact, every trivial semigroup ring belongs to the class of monomial ASL’s arising from
finite posets discussed below.)

(b) Let P = ([d], <p) be an arbitrary poset on the finite set [d] = {1,2,...,d}
and K[s, t1, 1, . .., t4] the polynomial ring in d + 1 variables over a field K. Recall
that a poset ideal of P is a subset I of [d] such thati € I and j € [d] with j <p i
implies j € 1. The empty subset can be a poset ideal of P. Let J(P) denote the set of
all poset ideals of P. Foreach I € J(P),wesetu; =s[];;ti € K[s,t1, 12, ..., ta].
In [9], it is proved that the homogeneous semigroup ring K [{#;};e/(p)] is a monomial
ASL with respect to the partial order < on {u;};cs(py defined by u; < u, if and only
if I c I'. The relation required in (ASL-2) is of the form uju; = uinpusur. The
finite poset ({u;}1es(p), <) is a distributive lattice and u; is the meet of u; and u,/;
uyy is the join of u; and u;.. See [1] and [8] for related topics.
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Let K[, t2, . . . , t4] denote the polynomial ring in d variables over a field K with
each deg#; = 1. Let Af,q) denote the gth Veronese subring of K[¢, %, ..., ;] and
let Rf,") denote the gth squarefree Veronese subring of K[ty, #, ..., t5]. Thus, Af,q)
is generated by the djffl) monomials of degree g of K[t;,1,...,t;] and R‘(,q) is

generated by the (Z) squarefree monomials of degree g of K [#1, t2, . . ., t4]. Itisknown

[15, Theorem 4.2] that Af,q) comes from a poset for any d and any g. However, it is
proved in [11, Theorem 2.3] that R‘(f) with 2 < g < d comes from a poset if and only
if eitherq =2 andd = 3,4,0orq = 3 and d = g 4+ 1. We recall from the proof of
[15, Theorem 4.2] the poset from which Aff) comes.

Let QY denote the set of all sequences (iy, iz, ...,i,) € 29 with 1 < i; <
ip < -+ < iy < d. We introduce the partial order sf,q) on fo) by setting
(1,02, ..., iq) 5(q) s J2s e e Jq) ifige_1 < J2k—1 and Jor < ik for all k. We then
identify each sequence (iy, i, ...,i;) € Qf,") with the monomial #;, %, - - - #;, € Aff).
Now, the proof of [15, Theorem 4.2] guarantees that Af,,") comes from the poset Qf,");
in other words, the set of standard monomials with respect to Qf,") is a K -basis of Afi").
However, the poset Qf,") possesses at least two minimal elements if d > 2 and g > 3.
In fact, if d > 2 and if ¢ > 3 is odd, then both (1, 1,...,1) and (1,2,2,...,2) are
minimal elements of Q4”, andif d > 2andif ¢ > 3iseven, thenboth (1, 1,...,1,d)
and (1, 2,2,...,2,d) are minimal elements of Qf,q). Hence, the axiom (ASL-2) fails
to hold for A and QY ifd > 2 and ¢ > 3.

PROPOSITION 3.2. (a) The Veronese subring Af,q) withd > 2andq > 2isa
monomial ASL if and only if ¢ = 2.

(b) The divisor poset of the Veronese subring Aff) is locally semimodular for any
d>2andanyq > 2.

Proof. (a) First, we show that if d > 2 and ¢ = 2, then Aff) is a monomial
ASL on fo). In fact, if (i, j) and (k, £) are incomparable in Q‘(,z), then (i, j)(k, £) =
@, jH&, €), where i’ < k' < £ < j' with {i, j, k, £} = {i’, j’, k', €'}, which is the
required relation in (ASL-2).

Second, to see why Aff) with d > 2 cannot be a monomial ASL if ¢ > 3, it is
enough to prove that the initial ideal of the toric ideal of A‘(,q) with respect to any
reverse lexicographic term order cannot be squarefree if d > 2 and ¢ > 3. Since
the monomials t7, ™' 15, 177212 and 1771} belong to AY if d > 2 and g > 3, the
binomials x — x1x3 and x2 — x,x4 belong to the toric ideal of AP Hence, either x2
or x? must belong to the minimal system of monomial generators of the initial ideal
of the toric ideal of Af,") with respect to any reverse lexicographic term order.

(b) It is known [8, Proposition 2.3 (a)] that Af,") is strongly Koszul for any d > 2
and any g > 2. Hence, its divisor poset is locally semimodular [8, Proposition 1.4].

O
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We are now in the position to discuss the problem which edge rings of complete
multipartite graphs come from posets.

THEOREM 3.3. The edge ring K[G] of a complete multipartite graph G comes
from a poset if and only if the type of G is one of the following:

@@ (p,q)withl <p <gq;
@) (1, p,q)with1 < p <gq;
(i) (1,1, p,q) withl1 < p <gq.

Moreover, if the type of G is one of the above, then K[G] is a monomial ASL.

Proof. First of all, it is known [11, Proposition 2.2] that if G is a finite graph
such that the edge ring K[G] comes from a poset, then the edge ring K[G’'] of any
induced subgraph G’ of G also comes from a poset. Moreover, if G is the complete
graph on the vertex set [d], then its edge ring comes from a poset if and only if
d = 2,3,4. See [11, Theorem 2.3]. Thus, if G is a complete multipartite graph of
type (41, g2, - - - » gn) and if its edge ring K[G] comes from a poset, then n < 4.

Let G denote the complete multipartite graph of type (2, 2, 2). The explicit compu-
tation of all regular triangulations of the edge polytope P with the computer program
PUNTOS by De Loera guarantees that the toric ideal I possesses 24 quadratic initial
ideals (up to symmetry). Each of them is squarefree. However, none of them sat-
isfies the well-known combinatorial condition, (e.g., [7]) for a squarefree quadratic
monomial ideal to be the Stanley—Reisner ideal of a finite poset. Hence, the edge ring
K[G] does not come from a poset.

It follows that if the edge ring K[G] of a complete multipartite graph G of type
(91,92, - - - » gn) comes from a poset, then n < 4 and at most two of g;’s canbe g; > 2.
Hence, if the edge ring K[G] of a complete multipartite graph G comes from a poset,
then the type of G is (p, q), or (1, p,q), or (1, 1, p, q).

We now prove that the edge ring of the complete multipartite graph of type
(1, 1, p, q) is a monomial ASL. The case of the complete multipartite graph of type
(p, q) or (1, p, q) can be done similarly. Let G be the complete multipartite graph
on the vertex set [p + ¢] with the partition [p + g] = V; U V, U V3 U V4, where

Vl={1}’V2={2,3,-“,17"1},V3={P}»V4={P+1,P+2,--~ap+q}'

Let Q¢ denote the set of variables x; ; withi < jand {i, j} € E(G). Let N2 denote the
infinite planar distributive lattice consisting of all pairs (i, j) of nonnegative integers
with the partial order defined by (i, j) < (i’, j’) ifand only if i <i’and j < j'. We
then regard Qg as a subposet of N? via the injective map w: Q¢ — N? defined as
follows: If x; ; € Q¢ with (i, j) € {(1,2),(1,3),..., (1, p — D}, then w(x;,;) =
@ Jj)ifx,j € Qewithi=1and2 < j < p-1thenw;)=({,p+q+1).
For example, if p = 5 and g = 4, then Qg is the poset with the Hasse diagram of
Figure 1.
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Figure 1. Hasse diagram of Qg with p = 5and g = 4.

If @, j) €{(1,2),(1,3),...,(0, p=D}andif2 < j < p— 1, then x; j < xy,jr
in Qg ifandonlyif 1 <i < j' < jsince j < p—1and j > p. If neither (i, j)
nor (i’, j’) belongs to {(1,2), (1,3),...,(1, p — D}, then x; ; < x; j in Qg if and
only ifi < i’ < j < j’'sincei,i’ < pand j, j/ > p. Thus, x;; and xy j with
i < i’ are comparable in Qg if and only if i < i’ < j < j’. In other words, x; ; and
xir,j with i < i’ are incomparable in Qg if and only if eitheri < j < i’ < j’ or
i <i' < j < j. Now, the first paragraph of the proof of Theorem 1.4 guarantees
that there exists a term order on the polynomial ring K[{x; j}( jje£()] such that
the initial ideal of I is generated by those squarefree quadratic monomials x; jxk e,
where {i, j}, {k, £} € E(G), such that eitheri < j <k < fori <k < £ < j. This
initial ideal coincides with the Stanley—Reisner ideal of the finite poset Q¢.

It remains to show that the edge ring K[G] is a monomial ASL on Q. Since the
set of standard monomials with respect to the above initial ideal is equal to the set
of standard monomials with respect to the partial order on ¢, the axiom (ASL-1) is
satisfied. In order to prove the axiom (ASL-2), suppose that x; j and x; » withi < i’
are incomparable in Qg. Ifi < j <i’ < j/,theni =1and2 < j < p—1and
Xi jXir jp = Xipxj, p Withxj p < x; jand x; j < xp, p. fi <i’ < j’' < j, then neither
(i, ]) nor (il, J') belongs to {(1, 2), (1, 3), ey (1, p— 1)} and Xi, jXit, jr = Xi, jr X, j
with x; j < x; j and x; j» < xi j». Hence, the axiom (ASL-2) is satisfied. m}

Remark 3.4. If a homogeneous semigroup ring R is generated by squarefree
monomials and if its toric ideal I possesses a quadratic initial ideal in.(I), then
in. (1) must be generated by squarefree monomials. This obvious fact is, however,
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essential in [14] for the construction of a Koszul semigroup ring having no quadratic
Grobner basis. Hence, a homogeneous semigroup ring R generated by squarefree
monomials is quasi-poset [15, p. 384] if and only if R comes from a poset.

Conjecture 3.5. (a) The edge ring of a complete multipartite graph is extendable
sequentially Koszul.

(b) (follows from (a)) The divisor poset of the edge ring of a complete multipartite
graph is shellable.

We conclude the present paper with a discussion of edge rings of complete multi-
partite graphs which are strongly Koszul.

Let R be a homogeneous semigroup ring with the minimal system of monomial
generators wy, wy, ..., ws. Then, R is called strongly Koszul if the ideals (w;) N (w;)
are generated in degree 2 for all i # j. Every strongly Koszul semigroup ring is
extendable sequentially Koszul. It is known [8, Proposition 1.4] that the divisor poset
of ahomogeneous semigroup ring R is locally semimodular if and only if R is strongly
Koszul. The edge ring K[G] of a connected bipartite graph G is strongly Koszul if
and only if G is a complete bipartite graph [8, Theorem 4.5].

PROPOSITION 3.6. The edge ring K[G] of a complete multipartite graph G is
strongly Koszul if and only if the type of G is (p,q) or (1,1, p) or (1, 1,1, 1).

Proof. If G is either a complete bipartite graph or the complete graph with 4
vertices, then the edge ring K[G] is strongly Koszul. See [8, Example 1.6]. If
G’ is the complete multipartite graph of type (1, 1, p), then the edge ring K[G'] is
isomorphic to the polynomial ring in one variable over the edge ring of the complete
bipartite graph of type (2, p). Hence, K[G’] is strongly Koszul. This proves the “if
part of the proposition.

It follows from [11, Corollary 1.6] that if G is a finite graph such that the edge
ring K[G] is strongly Koszul and if G’ is any induced subgraph of G, then K[G'] is
again strongly Koszul. Thus, in order to prove the “only if ” part of the proposition,
it is enough to show that if the type of a complete multipartite graph G is (1, 2, 2)
or(1,1,1,2) or (1,1, 1, 1, 1), then K[G] is not strongly Koszul. Suppose that the
type of a complete multipartite graph G is (1,2,2) or (1,1,1,2) or (1, 1,1, 1, 1).
Then, the finite graph in Fig. 2 is a subgraph of G. Hence, it may be assumed that
the monomials

U=t u =tt3, v =t1t3, V' = tity, w = tyts, W = t115

belong to K[G]. Note that uvw = w'v'w’ = t;2tt3t4¢5. If the ideal (w) N ') is
generated in degree 2, then (w) N (u’) must be generated by wu’ (= t2t3t4¢5). Now,
the monomial #,2t,t314¢5 is contained in (w) N (&’). However, in K [G], t2¢34¢5 cannot
divide #,2t,13t4t5. Hence, (w) N (u’) cannot be generated in degree 2. Thus, K[G] is
not strongly Koszul. O
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