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A DIFFERENTIAL COMPLEX FOR LOCALLY
CONFORMAL CALIBRATED G,-MANIFOLDS

MARISA FERNANDEZ AND LUIS UGARTE

ABSTRACT. We characterize G2-manifolds that are locally conformally equivalent to a calibrated one as
those G2-manifolds M for which the space of differential forms annihilated by the fundamental 3-form
of M becomes a differential subcomplex of de Rham’s complex. Special properties of the cohomology
of this subcomplex are exhibited when the holonomy group of M can be reduced to a subgroup of G,.

We also prove a theorem of Nomizu type for this cohomology which permits its computation for compact
calibrated G;-nilmanifolds.

1. Introduction

G,-manifolds are 7-dimensional Riemannian manifolds with a two-fold vector
cross product ([BG], [Ca], [G1]-[G4]) identifying each tangent space with the pure
imaginary Cayley numbers. Such a manifold M has a nowhere vanishing differential
3-form ¢, called the fundamental 3-form of M. If ¢ is closed, then M is a calibrated
G,-manifold [HL1]-[HL2], a G, analog of a symplectic manifold; examples of
compact calibrated G,-manifolds are given in [F1]-[F2]. In particular, if ¢ is closed
and coclosed then M has a subgroup of G, as holonomy group [G2]. Examples of
complete G,-manifolds with holonomy group G, have been constructed by Bryant
and Salamon [BS]; the first examples of such manifolds in the compact case have
been given by Joyce [J1], [J2].

In [FG] the first author of the present paper and Gray gave a classification of
G,-manifolds; there are 16 classes. According to this classification, in the present
paper we consider the class W, @ W, that is, the class of all G,-manifolds for which
dp = 6 A ¢, where 0 is the differential 1-form on M which can be defined [C] by
6= —-% * (xd A @), where x denotes the Hodge star operator. The class W, & W,
contains all the calibrated G,-manifolds; moreover, it is the class of all G,-manifolds
which are locally conformal calibrated.

Let A9(M) be the space of differential g-forms on M. Our main object here is the
study of those manifolds in W, & W; for which the sequence

(1) o= B M) < By s BT (M) —> -
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is a differential complex (see in Section 2, Corollary 4). Here B? (M) is the subspace
of A9(M) defined by

BI(M)={B e A (M)]|BAp=0},

and d denotes the restriction to BY (M) of the exterior differential d of M.

The complex (1) is called G,-coeffective complex, because it is the analog of the
coeffective complex for symplectic manifolds [Bou].

In Section 2 we show that if M is a G,-manifold for which the sequence (1) is a
differential complex, then M must be locally conformal to a calibrated G,-manifold.
Therefore, the manifolds in the class W, @ W, are characterized by the existence of
the G,-coeffective complex.

In Section 3 we study the ellipticity of the coeffective complex. In Proposition 3.3
we prove that such a complex is elliptic for any degree g # 3. Moreover, for any
locally conformal calibrated G,-manifold M, we obtain the relations between the
coeffective cohomology groups H?(B(M)) and the de Rham cohomology groups
Hi(M)of M.

In Section 4 we restrict our attention to the particular case of compact calibrated
G,-manifolds. We prove special properties of the cohomology groups of the com-
plementary complex of (1) (see Theorem 4.1). In Theorem 4.2 these properties allow
us to prove that, for g # 3, the coeffective cohomology groups H?(B(M)) are com-
pletely determined by the de Rham cohomology H*(M) when the holonomy group of
M is a subgroup of G (see also Corollary 4.3 forg = 3). In other words, these groups
become invariants of the topology of compact manifolds with Hol € G,. Therefore,
Theorem 4.2 and Corollary 4.3 provide obstructions for a compact G-manifold M
to have a subgroup of G as its holonomy group. In particular, these results imply
the well-known topological conditions b3(M) > by (M) and b3(M) = by(M) proved
by Bonan in [Bo].

The aim of Section 6 is to exhibit an example of compact calibrated G,-manifold for
which the isomorphisms in Theorem 4.2 and Corollary 4.3 fail. The main problem
in constructing such an example is the difficulty of computing the G,-coeffective
cohomology.

For any compact nilmanifold I'\ K, a well-known theorem of Nomizu [N], as-
serts that the Chevalley-Eilenberg cohomology H*(8*) of the Lie algebra £ of K is
isomorphic to the de Rham cohomology H*(I'\K). Hattori has extended Nomizu’s
theorem for compact completely solvable manifolds (see [H]). The goal of Section 5
is to obtain a similar result for the G,-coeffective cohomology. In fact, in Theorem 5.3
we prove that, for g # 3, there exists a canonical isomorphism,

HY(B(T'\K)) = HI(B(&")),

between the coeffective cohomology of a compact calibrated G,-nilmanifold I'\K
and the coeffective cohomology of the Lie algebra £ of K (see Corollary 5.4 for
q = 3). This result permits us to compute in a very simple way the coeffective
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cohomology for a large family of calibrated G,-manifolds. Moreover, Theorem 5.3
and Corollary 5.4 also hold for compact completely solvable calibrated G,-manifolds.

In Section 6 we exhibit two examples of compact calibrated G,-nilmanifolds,
for which we study the G,-coeffective cohomology. The first was given in [F1].
Using Nomizu’s theorem proved in Section 5, we show that Theorem 4.2 and Corol-
lary 4.3 hold for this manifold. However, we prove that for the second example (see
Theorem 6.10 and Corollary 6.11) such results fail. Therefore, Theorem 4.2 and
Corollary 4.3 do not hold for arbitrary calibrated G,-manifolds.

2. The coeffective complex for locally conformal calibrated G,-manifolds

Let M be a C*® Riemannian manifold of dimension 7 with metric (, ). Denote
by X(M) the Lie algebra of C* vector fields on M and by F(M) the algebra of C*
functions on M. A 2-fold vector cross product on M is a tensor field P: X(M) x
X(M) — X(M) satisfying the following axioms:

@ (P(X,Y),X)=(P(X,Y),Y) =0,
Gi) IPX, DI = IXI2NYI* = (X, Y)?,

for X,Y € X(M). A 7-dimensional Riemannian manifold M with a 2-fold vector
cross product P is called a G,-manifold. There is a representation of G, on each
tangent space of M defined by means of the vector cross product P ([BG], [G2],
[G4], [S)). The fundamental 3-form of M is given by

¢(X,Y,Z) = (P(X,Y), Z),

for X, Y, Z € X(M).
The inner product on A?(M) is given by

2 (o, B) Qu = a A B,

fora, B € A9(M), where 2, denotes the volume form on M. In [FG]itis proved that
A9(M) splits orthogonally into G,-irreducible components A;’ (M) of dimension /.
The representation of G, on A!(M) is the irreducible 7-dimensional representation,
and the representations of G, on A9(M) and A779(M) are the same because the Hodge
star x: A9(M) — A79(M) is an isometry. Therefore, it suffices to describe the
representations of G, on A%(M) and A3(M). They are (see [Br], [C], [CMS], [FG],
(311, (32}, (S

A2(M) = {x(a@ A*p) |a € AL(M)},
ALM) = {B e A2(M) | BAxp =0},
3) A}(M) = {fo | f €T},
ANM) = {(x(@Ap) |ae A (M),
AL(M) = [y e (M) |y Ao =y Axp=0}.
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Now, from (2) and (3), it is easy to get

@ ANM) @A M) ={y e (M) |y Ap =0},
5) ASM) ® AL (M) = (A e A*(M) | A A g =0}

Recall ([Br], [C], [FG], [S]) that the G,-manifold M is said to be parallelif Vo = 0
(or equivalently, dg = d * ¢ = 0); calibrated (or almost parallel) if dp = 0; locally
conformal calibrated if dp = 0 A @, where 6 is the differential 1-form on M given
by 6 = —1 x (xdo A ).

We need also the following:

LEMMA 2.1. Let M be a G,-manifold with fundamental 3-form ¢. Then:
(i) For any differential 1-form o on M,
*(x(a A @) A @) = —4a.

(ii) If there is a differential 1-form w on M such that do = | A @, then p =
—% * (xd@ A @) and M is locally conformal calibrated.

Proof. Part (i) follows by a straightforward computation. Suppose that u is a
differential 1-form on M such that dp = u A ¢. Then xdg = *(u A ¢). In this
identity we take the wedge product by ¢, obtaining

6) *do A =*x(L A Q) A p.
Applying * to both sides of (6) and using (i), we get
*(kd A @) = *(x(1L A @) A p) = —4p,

which implies (ii). O

Definition 2.2. Let M be a G,-manifold with fundamental 3-form ¢. For each ¢q
with 0 < g < 7, the space B?(M) is defined by
Bi(M)={BeA(M)|Brp=0}

Also, let A7(M) be the orthogonal complement of B(M) in A?(M).

LEMMA 2.3. Let M be a G-manifold. Then we have

BI(M) = {0} for0<gq <2,
BX(M) = A}(M) @ A} (M),
BYM) = A5(M) @ A3;(M),
BI(M) = ATM) for5<q=<T.
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Therefore,

AUM) = AY(M) for0<gq <2,
M) = AM),

AYM) = AT,

AI(M) = {0} forS<q=<T.

Proof. These formulas are consequences of (3)-(5). O

PROPOSITION 2.4. Let M be a G,-manifold with fundamental 3-form ¢. Then
M is locally conformal calibrated if and only if for any differential 3-form y €
A3(M) & A3,(M), the exterior differential dy belongs to A3(M) & A}, (M).

Proof. Suppose that M is a locally conformal calibrated G,-manifold. Then
do =0 Ag. Lety € A3(M) & A3,(M). From (4) it follows that

dy Ao = d(y Ap)—y Adgp
= —yYyAOAgp
= 0;

using (5), this proves thatdy € A3(M) @ A%, (M).

To show the converse, we observe that dp € A3(M) @ A}, (M) because ¢ €
A3(M). Consequently, we have
@) de =0 A¢+xy,
where 0 A ¢ € A#(M) and y € A%7(M). Thus dy A ¢ = 0, and we deduce that
® yAdp=dy Ag—d(y ng)=0.

Taking the wedge product by y in (7), and using (8), we get

O=yAdp = YyAOAQp+Yy Axy

= Y A Xy,
which implies that y = 0. Then (7) becomes
dp=0ANe,

which, by Lemma 2.1, proves that M is locally conformal calibrated. [
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COROLLARY 2.5. Let M be a Gy-manifold. Then M is locally conformal cali-
brated if and only if there exists the complex

-

0— B(M) = AX(M) © AL M) -5 BYM)
A @ A% ) S A
©) < Ay S A(M) —s 0,

where d denotes the restriction to B9 (M) (g = 3,4) of the exterior differential d
of M.

Proof. From Proposition 2.4 it is clear that (9) is a complex if M is locally
conformal calibrated. To prove the converse, let us first show that for any f € F(M)
and y € B3 (M) = A3(M) ® A},(M) we have

(10 T4ed(fy) = frsed(y),

that is, the operator msed: B*(M) —> A*(M) is tensorial, where 74 denotes the
orthogonal projection of A*(M) onto A*(M) = A}(M). In fact, since y € A3(M)®
A3, (M), from (4) and (5) it follows that df Ay € AJ(M) & A% (M), that is,
ma(df A y) = 0; thus maed(fy) = ma(df Ay) + ma(fdy) = fra(dy), which
shows (10).

Now suppose that (9) is a complex, that is, d (dy) =0, forany y € B3(M). Since
dy = m4od(y) + dy, applying d to this equality we get

(11) d(msed(y)) =0,
for any y € B3(M). Therefore, if f is any function on M, from (10) and (11) we get
0 = d(m4od(fy)) = d(f m40d(y)) = df A ms0d(y).

Since my4od(y) € A‘I‘(M), there is &, € (M) such that m4od(y) = h, * ¢ and thus
h,(df Axp) =0,forany f € F(M). Buta A*p =0iffa =0, fora € AY(M),
which implies that the function 4, must be zero.

Therefore, m4od(y) = O for any y € B3(M), that is, d(B>(M)) C B*(M), and
Proposition 2.4 implies that M is locally conformal calibrated. O

For a locally conformal calibrated qz-manifold M, we denote by H *(B(M)) the
cohomology of the complex (9). Then H?(B(M)) = H?(M) forq = 6, 7. Therefore,
to find the cohomology of the complex (9) it suffices to find the cohomology groups
HY (B(M)) for 3 < g < 5. We need to consider another complex.

Definition 2.6. Let M bea G,-manifold. ForQ < g < 3,the mapéq: AT (M) —
A9+1(M) is defined by

(12) dy = 7tgsed,
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where 7r441: ATTI(M) — A7*!(M) is the orthogonal projection of A9*+! (M) onto
AT+HL(M).

From Lemma 2.3 it follows that Jq = d for ¢ = 0, 1. It will be convenient to

make no distinction to denote the maps d, and 33. In fact, unless clarity is required,
we write d for each of these maps.

PROPOSITION 2.7. Let M be a G,-manifold with fundamental 3-form ¢. Then M
is locally conformal calibrated if and only if the sequence

(13) 0 —> A°M) -5 A'(M) %> A2(M) -2, A(M) o, A}(M) — 0

is a complex.

Proof. Consjder o € AY(M). From (12) we see that Jz(da) = m3ed(da) = 0.
This proves that dyod = 0. Now, let us suppose that M is locally conformal calibrated,
and let B € A%(M). Using the fact that A3(M) = A3(M) & A3(M) & A},(M), we
have
(14) B =drB +,
where d,8 € A3 (M) = A3(M) and y € A3(M) @ A};(M). Proposition 2.4 implies
that dy € A%(M) @ A%;(M). Then taking in (14) the exterior differential d of M,
we obtain

0 = d(dy8) + dy,
which means that d(d,8) € A4(M)® A%, (M). Thus da(d»8) = 0 because d3(d2 ) is
the image of d (d,8) by the orthogonal projection 7r4: A*(M) —> A*(M) = AH(M).

To prove the converse, let B be a 2-form on M. Therefore, the exterior differential
dp of B is
(15) dB =dB +v,
where dof € A3(M) and y € A}(M) ® A3;(M). Applying in (15) the exterior
differential d of M, we get
(16) 0=d(d:B) +dy.

Applying the projection 74 to (16), and using (12) together with the hypothesis
dsed; = 0, we obtain
0 = my(d(d2B)) + ma(dy)
= dyody(B) + ma(dy)
= ”4(dy)a
which means that dy € A%(M) ® A%,(M). Moreover, using (10) we conclude that

d(A3(M) ® A}, (M) C AY(M) & A3,(M). From Proposition 2.4 it follows that M
is locally conformal calibrated. [
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For a locally conformal calibrated G,-manifold M, we denote by H*(A(M))
the cohomology of the complex (13). Then HY (AM)) = HI(M) forq = 0, 1.
Therefore, to find the cohomology of the complex (13) it is sufficient to find the
cohomology groups H?(A(M)) for2 < g < 4.

3. Ellipticity of the coeffective complex

In this section, we suppose that M is a locally conformal calibrated G-manifold
with fundamental 3-form ¢. First we study the ellipticity of the complex (A*(M), d).

PROPOSITION 3.1. The complex (A*(M), d) given by (13) is elliptic in degree q
forany q # 2.

Proof. 1t is obvious that the complex (A*(M), (i) is elliptic in degrees O and 1,
because the de Rham complex (A*(M), d) of M is elliptic. The complex (A*(M), d)
is elliptic in degrees 3 and 4 if for any point m € M and for any 1-form u non-zero
at m, the complex

o i
AT M) S ATy 8 AN TEM) — 0

is exact in the steps 3 and 4, where T,: M is the cotangent space of M at m, and

a7 0,(d2)(B) = m3( A B),

(18) 0. (d)(y) = ma(u A ),

for B € A>(T*M) and y € A3(T:M). Therefore, to prove that the complex
(A*(M), J) is elliptic in degree ¢ = 3 it is sufficient to prove that

(19) Ker (0,,(d3)) C Im (0, (d2)).

Lety € A%(T,,’;M ) be such that y € Ker (au(33)), or equivalently m4(u A y) = 0.
This implies that u A y € A3(TXM) & A3;(TM), and so u A ¥ A ¢, = 0. Since
¥ A@m € AS(T} M), from the ellipticity of the de Rham complex it follows that there
is n € AS(T M) satisfying

(20) Y AN =RAN.

Now, we use the isomorphism Ag@,,: A2(T"’; M) — A5(T,;‘M ) given by A@,(B) =
B A @m, for B € A*(T*M). This isomorphism implies that there is v € A2(T¥M)
such that n = v A ¢,,. Thus (20) becomes

YAPm =Rk AVA@y =73(LAV) A @n.
Therefore, we have

(2)) (y —m3(uAV)) Ay =0.
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But the wedge product by ¢y, is also an isomorphism Agy,: A3(TEM) — AS(TEM)
and so, from (21), it follows that y — w3(u A v) = 0, or equivalently using (17),

Y =m3(p AV) = 0, (d2)(v),

which proves (19). 5
To prove the ellipticity of the complex (A*(M), d) in degree g = 4, we show

ANTEM) C Im (0,(d3)).

Let A € A}(TM). Then A A @, € AT(TxM). Now, from the ellipticity of the de
Rham complex of M, we conclude that

(22) KA®=XAQm,s

for some w € AS(T}M). Using the isomorphism A@n: A3(TiM) — AS(TM)
again, we obtain w = y A ¢, for some y € A%(T,:‘, M). Then (22) becomes
ANOn =AY NP =T4(L AY) A O,
which implies that
(23) A =7 AY)) Aom =0.

But A@,: A‘,‘(T,,’;M) — A7(T,,’;M) is an isomorphism, and hence, from (23), we
have

h=ma(u Ay) = 0,(d) ().
Thus A € Im (o, (Jg)). This completes the proof. [

Remark 3.2. 'Wenote that the complex (A*(M), d) is not elliptic in degree g = 2,
because

4
3 (~1)tdim (AT(TpM)) =1 =T +21 =T+ 1=9 #0.
q=0

PROPOSITION 3.3. The complex (B*(M), d) given by (9) is elliptic in degree q
forany q # 3.

Proof. Tt is obvious that the complex (B*(M), 3) is elliptig in degrees 6 and 7,
because it is the de Rham complex of M. To show that (B*(M), d) is elliptic in degree
q = 4, we must prove that for m € M and for non-zero u € T,; M, the complex

Q4) AXTM) @ AL (TEM) L5 AT M) @ A4 (TEM) 25 AS(TEM)
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is exact in degree 4. Let w € A3(TxM) ® A4, (T M) satisfy u A @ = 0. We must
show that there is y € A?(T,:M) (2>} Ag-,(T,,‘,‘M) such that @ = u A y. From the
ellipticity of the de Rham complex we know that there exists y; € A3(T*M) such
that

(25) w=[LAy.

Moreover, y1 = y| + y{ with y{ € AX(T}M) and y{ € AX(TM) & A3,(TM).
Now (25) becomes

(26) O=UANI=UAY+FUAY.
But w and p A ¥ € AS(TM) & A3 (T M); hence ma(u A y{) = O, that s,
¥, € Ker(0,(d3)). From Proposition 3.1 it follows that y{ € Im (au(dvz)). This
means that there exists 8 € AZ(T,,’;M) such that y| = m3(u A B).

Letv € A}(T; M)® A3, (T;; M) be the image of A B by the orthogonal projection
of A3(T*M) onto A3(T}M) & A3,(T;M). Then we get

O=puAWAB)=uAy +uAV,

or equivalently
2N UAY =—AV.
From (25), (26) and (27) we obtain

(28) ©=puA v+

Now (28) implies that the form y = —v+y/" issuchthaty € A} (T M) ® A3, (T} M)
and w = u A y. This proves that (24) is exact in degree 4.
Finally, we must prove that the complex
AYTEM) @ A(TEM) 5 AS(TiM) 25 AS(TEM)

is exact in degree 5. Let § € AS(T} M) satisfy u A § = 0. We must find a 4-form
A € AN(TM) & A%, (T M) such that

(29) E=pnAA

By the ellipticity of the de Rham complex of M we see that there is v € A*(T*M)
such that

(30) E=pAv.

Because A4(T,;,*M) = A‘}(T,,",‘M) ® A‘;(T,,‘;M) ® A§7(T,;,*M) andv € A“(T,,*,‘M) we
have

@31 v=v 4+,
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where v € A{(TXM) and v" € A3(TM) ® A%, (T:M). Using Proposition 3.1, we
deduce that there exists y € A3 7(TxM) such that

(32) Vi =m(uAy).
From (32) it follows that
(33) O=puA@AY)=pAV +uAnr,

where 7 is the image of u A y by the orthogonal projection of A*(T;*M) onto the
subspace A3(TM) & A%, (T M). The identity (33) implies that 4 AV = —p A 7.
Thus from (30) and (31) we conclude that

E=uA(=t+V").

Consider A = —t +V". Then A € A3(T;M) ® A%, (T;: M), and moreover § = L A L.
This proves (29) and completes the proof O

Remark 3.4. 'We note that the complex (B*(M), J) isnotelliptic in degree g = 3,
because

4
Z(—l)qdim BI(T M) =-28+34—-21+7—-1=-9#0.
q=3

From Proposition 3.1 and Proposition 3.3 we have the following result.

COROLLARY 3.5.  For any compact locally conformal calibrated G,-manifold M,
the cohomology groups H>(A(M)), H*(A(M)), H*(B(M)) and H’(B(M)) are of
finite dimension.

. In order to obtain the first relations among the groups HY(M), HY (B(M)) and
H7(A(M)), we proceed as follows. From (9) and (13) we can consider the diagram
0—> 0 — 0 —> 0 —A3® AL A% @ A% 25 A5-25 A543 A 750
¥ Y [
G4 0—A-SHAEA2L A3 L At LASL AL AT—0
[ T R L
0—A-HAS A2 4, A3 4 At o,
where i and p denote the natural inclusion and the orthogonal projection, respectively.
Using the definitions of dandd, given by (9) and (12), respectively, it follows that i
and p are cochain maps, that is,

(35) doi =iod and  dop = ped.
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From (34) and (35) we get the short exact sequence of differential complexes
0 — B*(M) -5 A*(M) 2> A*(M) —> 0.

Therefore, there is the long exact sequence of cohomology groups

0o — mun O puen L9
36 Bem)y 29 won T8 maon 9
(36) ~a HYG 4 H'G) x4 H'@)
H*(BM)) — H'M) — H'(AM))
BB 9 mBwm — 0,

where H/ (i) and H9(p) (3 < j < 5,2 < q < 4) are the naturally induced maps,
and HY(d) (2 < g < 4) is the connecting homomorphism given by

H(d)([a]4) = [dals € B9 (B(M))
for [a]4 € HI(AM)).
PROPOSITION 3.6. Let M be a locally conformal calibrated G,-manifold. Then:

() H*(M) = H2(AM)) if and only if H*(d) = 0;

(i) H3(M) = H*(A(M)) ® H*(B(M)) if and only if H*(d) = H*(d) = 0;
(i) H*(M) = H*(AM)) & H*(B(M)) if and only if H3(d) = H*(d) = 0;
(iv) H3(M) = B5(B(M)) if and only if H*(d) = 0.

Proof. These relations are an easy consequence of the exactness of the se-
quence (36). 0O

Let M be a compact locally conformal calibrated G,-manifold; and let § denote
the coderivative of M. If n is a differential g-form on M we have §n = (—1)? xd % .
On the space A?(M) of differential g-forms on M we consider the inner product (, )
given by

(n, p) = f nA*u
M

forn, u € A1 (M).

LEMMA 3.7. The operator 8 is the adjoint of d, that is, for B € A2 (M), y €
A3(M), € AY(M)

(37) (d2B,v) = (B, 8y),
and

(38) (d3y, &) = (v, 82).
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Proof. Because § is the adjoint of d we have

39 dn, u) = (n,8w)

forn, u € A*(M). To prove (37), we use (39) and the decomposition df = dzﬂ + ﬂ ,
where ﬂ € A3(M) o A3 37(M). Thus (ﬂ, y) = 0, and we obtain

(B,8y) = B, y) = (d:B, ¥),

which 1mp11es (37). Also (38) is an easy consequence of (39) and dy = 33)/ +7,
where 7 € AS(M) & A}, (M). O

Definition 3.8. We let
(40) HA(AM)) = {y € A3(M) | dy =8y =0},
41) HYAM)) = {f %9 € A}(M) | 8(f *¢) =0}

The spaces Ha (A(M)) can also be defined as follows:

PROPOSITION 3.9. Let M be a compact locally conformal calibrated G ,-manifold
with fundamental 3-form ¢. Then

42) ﬁ3(A(M)) = {y e A%(M) ldy Ae=0 and d=xy =0},
@3) HYAWM)) = {f xp € A{(M) | d(fo) = 0).

Proof. From (40) and the fact that d y =0ifand only if dy € A% (M) A . (M)
(or equivalently, dy A ¢ = 0) we obtain (42). Finally, (43) is an easy consequence
of 41). O

Moreover, from Hodge theorem and Proposition 3.1 we have

(44) HI(AM)) = HI(AM)), q=3,4.

4. Calibrated G,-manifolds

In this section we give more details about the groups HY (A(M)) of a calibrated
G>-manifold M, and also details about the groups il (B(M)) of a G-manifold M
whose holonomy group is a subgroup of G.

THEOREM 4.1.  Let M be a compact calibrated G,-manifold with fundamental
3-form ¢. The cohomology groups H?(A(M)) satisfy

() H3(AWM) = H (M),
(i) H*(AM)) = H'(M).
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Proof. Because dg = 0, the space ﬂ4(A(M )) given by (43) is
HYAM)) = {f * ¢ | df =0},

which is naturally isomorphic to H 0(M). Now, from (44) it follows that H* AM)) =
HA(A(M)) = H°(M), which proves (ii).
We define the linear map F: Al(M) — A% (M) by

F(a) =x(a A @)

for @ € A'(M). From the description (3) of A%(M ) we know that F is an iso-
morphism. Moreover, it follows that F induces the isomorphism F*: HY(M) —
H3(A(M)) defined by

(45) F*(@) = F(a) = *(a@ A ¢)

for « € H!(M). In fact, let us first show that F*(H!(M)) Cc H3(A(M)). Let
o € H!(M) and put B = *(a A ). Then we obtain

dx(B)=d(@Ag)
(46) =daAg—aAdyp
=0,
because da = dg = 0. Moreover, using d * ¢ = dg = 0, we have
dBAg =d(BAg)
@7) =d*x(aAp)Ap)

= —4d(xa)
=0.

From (46), (47) and (42) we conclude that 8 € 3 (A(M)). Furthermore, because F

is injective, it follows that F* is injective. Now, to prove that F* is surjective, let us
suppose that 8 € H3(A(M)). Consider the 1-form & € A!(M) defined by

1
a——z*(ﬁ/\(p).
Using that d % B8 = 0 and d¢ = 0, we have
1
dot/\¢=d(a/\<p)=—Zd(*(ﬁ/\<p)/\¢)=d*ﬁ=0,

which implies that da € B2(M) = {0}, and so
(48) da = 0.

Also, we have

49 d*a=—%d(ﬂ/\¢)=0,
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because df A ¢ = de = 0. Now, from (48) and (49) it follows that « € H!(M).
Moreover,

1
F*(@) = F(a) = 2% *x(BAp)A@) =B,
that is, F* is surjective. This completes the proof of (i). O

THEOREM 4.2. Let M be a compact parallel G,-manifold with fundamental 3-
form @. Then the connecting homomorphisms H>(d) and H*(d), of the exact se-
quence (36), vanish. Therefore, we have

(50) HY(M) = H(M) ® B*(BM)),
H>(M) = H3(B(M)).

Proof. First we see that the connecting homomorphism H?(d): H3 (.A(M ) —
H*(B(M))is zero. Let B € H3(A(M)). Since the map F*: H!(M) — H3(A(M))
given by (45) is an isomorphism, we have 8 = %( A@), where « is aharmonic 1-form
on M. Then « is parallel (with respect to the Levi-Civita connection of M) because
the Ricci curvature of M is identically zero [Bo]. Hence o A ¢ is also parallel. This
implies that the differential 4-form « A ¢ is harmonic. Thus we obtain

dB=dx*(aAgp)=0,

which implies that H3(d) =

On the other hand, let f be a differentiable function on M such that it satisfies
f %@ € H*(A(M)). Thendf = 0and H*(d)(f * ¢) = [d(f * ¢)]s = 0, because
d % ¢ = 0. This proves that H*(d) = 0. Now (50) follows from Proposition 3.6 and
Theorem 4.1 (ii). O

Let us consider now the quotient

A (BM))
H2(A(M))/HX(M)
We note that (51) is defined for any compact G,-manifold M, as the cohomology
groups H2(A(M)) and H3(B(M)) are defined even if the manifold is not locally

conformal calibrated. If M is locally conformal calibrated, then the exactness of (36)
implies that

(1)

H3(M)
H3(BM))
H2(A(M))/H2(M)

and therefore (51) is of finite dimension. However, from Proposition 3.1 and Propo-
sition 3.3, we know that the dimensions of the cohomology groups H2(A(M)) and

(52) =~ Ker H3(d) € H}*(AM)),
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H3 (B(M)) are not necessarily finite. Moreover, if M is calibrated then (52) and
Theorem 4.1 (i) imply that the dimension of (51) is > b3(M) — by (M), where b, (M)
denotes the g-th Betti number of M.

COROLLARY 4.3. Let M be a compact parallel Gy-manifold. Then

BBWM)
H2(AM))/H*(M)

(53) H3M = H' M ®

. Proof. From Theorem 4.1 (i) and Theorem 4.2 it follows that Ker H3(d) =
H3(AM)) = H'(M). Therefore, (53) follows from (52). O

Remark 4.4. Notice that for compact calibrated G,-manifolds, (53) is satisfied if
and only if H3(d) = 0. In fact, this follows directly from (52) and Theorem 4.1 (i).

From Theorem 4.2 and Corollary 4.3 it follows that for any compact parallel
G,-manifold M, the dimensions of (51) and H*(B(M)) are b3(M) — b;(M) and
b3(M) — bo(M), respectively. In particular, for such a manifold M we get

b3 (M) = by(M) and  b3(M) = bo(M),

which provides a proof of these topological conditions, different from the proof given
in [Bo].

Now let us consider the long exact sequence (36). In Theorem 4.2 we have proved
that the connecting homomorphisms H3(d) and H*(d) are zero for any compact
parallel G,-manifold. Next, we show an example of a compact parallel G,-manifold
for which H?(d) is non-zero:

Let R7 be the 7-dimensional Euclidean space R’ = {(xo,...,xs) | xi € R,
0 < i < 6). A basis for the left invariant 1-forms on R” is given by {dx;; 0 < i < 6}.
Now, we take the compact quotient I'\R’, where I is the uniform subgroup of R’
consisting of those elements whose coordinates are integers. Thus I'\R’ is a 7-
dimensional torus T7; and the 1-forms dx; (0 < i < 6) all descend to 1-forms o;
(0 < i < 6) on T” such that

da; =0, 0<ic<é.
Consider the functions fy: R” —> R and go: R?” — R defined by
So(x) = sin(27 xo), go(x) = cos(27xg)

for x = (x, ..., %s) € R7. One can check that fy(x + k) = fo(x) and go(x + k) =
go(x) for x € R” and k € T'. Thus both functions fy and go descend to functions f
and g on T”, respectively, and they satisfy

(54) df =2mgay, dg = —2nfay.
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Consider the metric (, ) on T’ given by
(,)=0f+o? +al+a}+a}+a?+al.
Define the 3-form ¢ on T7 by

(55) Q = g AU ANa3t+ AL Ay AQs+ 03 A3 Ads+ a3 Adg Adg
+oag Aag Aas+ap Aos Adg+ og Aoy A .

Then it is clear that dp = d x ¢ = 0. Therefore T’ is a compact parallel G,-manifold
whose fundamental 3-form is the 3-form ¢ given by (55).
Now let us consider the 2-form B8 on T’ given by

(56) ﬁ = fOll A os3.

Using (54), we find that dp = 2mgag A ay A a3, that is, B is non closed. However,
since dB A ¢ = 0, we get d2(B) = 0 and therefore B defines a non-zero cohomology
class [B]4 in H*(A(T7)). Thus

H*@)([B)a) = [dBls = 2mgap Ay Az #0,

that is, the connecting homomorphism H?(d) is non-zero. From Proposition 3.6 and
Theorem 4.1 (i) it follows that

H*(T") 2 H*(AT)),
HXT) ¢ H'T") ® B3(B(T")),

for the compact parallel G,-manifold T’.

5. A theorem of Nomizu type for the coeffective cohomology

In this section we prove that there exists a canonical isomorphism between the
coeffective cohomology of a compact calibrated G,-nilmanifold I'\ K and the coef-
fective cohomology of the Lie algebra 8 of K. We also prove that this result holds
for compact completely solvable calibrated G,-manifolds.

Let M be a 7-dimensional compact nilmanifold; that is, M = I'\K, where K
is a 7-dimensional connected, simply-connected and nilpotent Lie group, and I' is
a discrete subgroup of K such that the quotient space I'\K is compact. The most
immediate example of such a manifold is the torus T”. It is easy to see that each left
invariant differential form on K descends to the quotient I'\ K. For convenience, if
u is a left invariant differential form on K we also denote by w the differential form
induced on M.

Next, let us suppose that K is a G,-manifold with left invariant metric (, ) and
left invariant 2-fold vector cross product P. Then the metric and the vector product
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descend to a metric (, ) and a 2-fold vector cross product P on M, respectively.

Let ¢ be the left invariant fundamental 3-form on K. Then M is a G,-nilmanifold

with fundamental form ¢. Moreover, M is locally conformal calibrated (in particular,

calibrated) if and only if K is locally conformal calibrated (in particular, calibrated).
Denote by £ the Lie algebra of K. Let

o AT D A1) D AT — -

be the Chevalley-Eilenberg complex, where A?(£*) denotes the space of left invariant
differential g-forms on K. The Chevalley-Eilenberg cohomology is defined by

Ker{d: A(R*) — AIT1(8Y)

HI®) = i@ ar i) = avo)]

In 1954 Nomizu [N] proved the following theorem which reduces the computation
of the de Rham cohomology of compact nilmanifolds to the calculation at the Lie
algebra level:

THEOREM 5.1 ([N]). Let M = I'\K be a compact nilmanifold of dimension m
and denote by tv;: HI(R*) — HI(I'\K), 0 < g < m, the homomorphism of
cohomology groups defined by

7({e}) = [e] € HI(T'\K)

for {a} € H(8*), where R denotes the Lie algebra of K. Then v, is an isomorphism
for0<g <m.

Now we introduce the differential complexes
60— B&) = Al&) @ AL’ -5 B®Y)
AR @ AR - AS@) L AS@aY)
4 AT®) — 0

and

58) 00— R AR L A2 @) L5 IR -5 A4(RY) — 0,

where the spaces A" (8*) and the maps d and d are defined by relations similar to (3),
(9) and (12), respectwely Notice that the complexes (57) and (58) are differential
subcomplexes of (9) and (13), respectlvely We denote by A* (B(8*)) the cohomology
of the complex (57), and by H*(A(R")) the cohomology of (58).

LEMMA 5.2. Let M = I'\K be a compact calibrated G,-nilmanifold. Suppose
that the fundamental 3-form ¢ on M stems from a left invariant fundamental 3-form
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on K. Denote by o,: HY (ARY) — HY (A(M)), q = 3, 4, the homomorphism of
cohomology groups defined by

o,({e}.) = [@]4 € HI(AM))

for{ala € H9(A(R*)). Then 0, is an isomorphism for q = 3, 4.

Proof.  First we prove that the homomorphism f,: HY (AM)) — HI3(M)
definedby f, ([a]a) = [anplfor[ala € HY (A(M))isanisomorphismforg = 3, 4.
In fact, taking into account that M is calibrated, this follows from the commutativity
of all the squares in the diagram

A*(M) A3(M) LN MM — 0

(39 I Ao V ne ¥ Ae

MM L Ay L A — o,

&
—

and from the fact that the wedge product by ¢ makes the vertical arrows isomorphisms.
Moreover, if we consider the diagram (59) at the Lie algebra level it follows that
the homomorphlsm & HY (A(R*)) —> HI3(R*) given by 8} a) = {a A p)
for {a} 4 € HI(A(R*)) is also an isomorphism for ¢ = 3, 4.
Therefore, we can consider the diagram

HI(ARY) —> HI(AM))
I fy 1 g
HIB@Y) B gl

for g = 3, 4. As this diagram is commutative and f,, g, and 7,43 are isomorphisms
for g = 3, 4 (see Theorem 5.1), we see that o, is an isomorphism forg = 3,4. 0O

In order to prove a theorem of Nomizu type for the G,-coeffective cohomology, we
need to consider for the Lie algebra £ the corresponding long exact sequence given
by (36) for any locally conformal calibrated G>-manifold. It will be convenient, for
£, to change the notation of the homomorphisms of (36). We write H4(p), HY (d)
and H? (1) instead of H?(p), H%(d) and HY (i), respectively. Then we have

0 — B O mragy) B9
N P 3053 . 30
60 peEy 22 ey 28 Buady =2
(60) fa HO 4 HG) 4 HY@)
BB@&") — HY®) =5 HYARD) —

pew) 2 By — o
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THEOREM 5.3. Let M = I'\K be a compact calibrated G,-nilmanifold for which
the fundamental 3-form ¢ stems from a left invariant fundamental 3-form on K. De-

notebyd,. HY (B(&*)) — HY (B(M)),q = 4, 5, the homomorphism of cohomology
groups deﬁned by

8,({e)s) = [als € HI(B(M),
for {a}s € HI(B(R*)), where R denotes the Lie algebra of K. Then 8, is an
isomorphism for g = 4, 5.

Proof. Let us consider the diagram

He-1(89) "D a1 O faBe) 9 g TP o)

e [ B [

o) " Far o) TS Aeon) B9 maan L Haam),

where 7,_1, 7,, 04—1 and o, are the canonical isomorphisms given in Theorem 5.1
and Lemma 5.2 for ¢ = 4, 5. Notice that H3(A(&*)) = H3(A(M)) = {0} and the
isomorphism o5 is zero.

It is easy to see that the homomorphism &, makes the squares commutative for
q = 4,5. Moreover, from (36) and (60) it follows that the two horizontal rows in

the diagram are exact. Then the Five Lemma implies that 8, is an isomorphism for
g=4,5. O

COROLLARY 5.4. Let M = I'\K be a compact G,-nilmanifold in the conditions
of Theorem 5.3. Then there is a canonical isomorphism

BB®) . Bee)
H2(A(R)/H*(&*)  H2(A(M))/H*(M)

Proof. From the exactness of the sequence (60) it follows that

3/a* ~
(61) AH (&) = Ker H*(d).
H3(B(#Y))
H2(A(R)/H*(8*)
Now, taking into account Lemma 5.2 and Theorem 5.3 it follows that the diagram
By 9D a4B@Yy)
o3 . |84
BAmy) 9 B4Bon)
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is commutative. Moreover, since o3 and 84 are isomorphisms we obtain a canonical
isomorphism

(62) Ker H3(d) = Ker H*(d).

Finally, the result follows from (52), (61) and (62), taking into account that H 3ry) =
H3*(M) by Theorem 5.1. [

Remark 5.5. The example exhibited at the end of Section 4 shows that a theorem
of Nomizu type does not hold for the cohomology groups H2(A(M)) and H3(B(M))
of arbitrary compact calibrated G,-nilmanifolds M. In fact, it is easy to see that there
are no left invariant representatives for the cohomology classes [B] 4 and [dB15, B
being the 2-form on T’ given by (56). Therefore, for the torus T’ we have

H2(A®Y) 2 H*(AT)) and H3(B(&) & H*(BT")).

Remark 5.6. Hattori has extended Theorem 5.1 for compact completely solvable
manifolds (see [H]). Taking into account this result one can deduce that Lemma 5.2,
Theorem 5.3 and Corollary 5.4 still hold for compact completely solvable calibrated
G,-manifolds.

6. Examples

In this section we exhibit two examples of compact calibrated (non-parallel) G-
nilmanifolds. The first of them, given in [F1], was the first known example of a
calibrated G,-manifold in the compact case. We prove that Theorem 4.2 holds for
this manifold. The second example is a compact calibrated G,-nilmanifold for which
Theorem 4.2 and Corollary 4.3 fail.

Next we prove some results about G;-nilmanifolds, which we shall use later.

PROPOSITION 6.1. Let M = I'\K be a compact G,-nilmanifold for which the
fundamental 3-form ¢ stems from a left invariant fundamental 3-form on K. Then M
is parallel if and only if M is the torus T”.

Proof. As we have seen at the end of Section 4, the torus T” is a compact parallel
G,-nilmanifold. Suppose that M = I'\K is a compact parallel G,-nilmanifold and
denote by R the Lie algebra of K. Since M is parallel, the Ricci curvature of M is
identically zero [Bo]. Therefore, the Lie algebra & must be abelian because otherwise
there would exist a direction of strictly negative Ricci curvature and a direction
of strictly positive Ricci curvature ([Wo], [M]). Therefore, since £ is abelian the
nilmanifold M = I'\K must be the torus T?. O

Next we obtain a characterization of Theorem 4.2 for the particular case of nil-
manifolds.
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PROPOSITION 6.2. Let M = I'\K be a compact calibrated G,-nilmanifold. Sup-
pose that the fundamental 3-form ¢ on M arises from a left invariant fundamental
3-formon K. Then

(63) H(M) = B (B(M))

if and only if

(64) d x ¢ € d(A7(R*) © A3 (R),

where R denotes the Lie algebra of K. Moreover, if (63) is satisfied then
(65) HY (M) = HO(M) @ H*(B(M))

if and only if

(66) d(A3(R) C (AL (R).

Proof. From Theorem 5.1 and Theorem 5.3 it follows that H> (M) = ig (B(M))
if and only if

spaes (@€ AS(R) |da =0} _ {0 € ASRY) |da=0) g .
B =——7m@y - aB@y -1 ERD.

Therefore, (63) is satisfied if and only if

(67) d(A*(R") = d(B*(8").

But A*(8*) = A (R*)@B*(R*), and s0 (67) is equivalent to d(A(R*)) Cd(B*(8&*)).
Since A‘} (8*) is generated by *¢, from the definition of B*(&*) we get the equivalence
between (63) and (64).

Suppose now that (64) is satisfied. Using Theorem 5.1 and Theorem 5.3 again, it
follows that H*(M) = HO(M) & H*(B(M)) if and only if

Z4(R%)
d(A3(8¥))

Z4B(&")
d(B*(8"))

where Z4(8*) = {a € A*(R*) | da = 0} and Z*(B(R*)) = {a € B*(&*) | da = 0}.
Since all these spaces are finite dimensional, (65) is satisfied if and only if

HY®") = = H'(®Y ® = H(®*) ® H*(B(®Y)),

(68) dim Z*(8*) — dimd(A3(8*)) = 1 + dim Z*(B(&*)) — dim d(B*(&*)).

From (64) we have d x ¢ € d(B*(R*)), which implies that there is y € B*(&*) such
that d(x¢ — y) = 0. Since A*(R*) = A}(8R*) ® B*(8*) and A}(R*) = (*¢), we get
Z4(R*) = (k¢ — y) ® Z*(B(R*)). Therefore, dim Z*(8*) = 1 + dim Z*(B(&*)).
Using this equality, it follows that (68) is equivalent to

dimd(A3(&*)) = dimd (B (8")).
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Since B3(&*) C A3(R*), from the definition of the space B*(#*) we get
(69) d(A](R) © AJ(R*) ® AJ;(RY) = d(AY(R") © A3 (RY).

But A3(8*) is generated by ¢ and, since M is calibrated, d(A3(£*)) = {0}. So (69)
is reduced to

d(A3(8*) ® A3, (/) = d(A},(8Y)),
which is equivalent to (66). O

Remark 6.3. 1t follows from Remark 5.6, that Proposition 6.2 also holds for
compact completely solvable calibrated G,-manifolds.

6.1. Example 1.

Consider the 7-dimensional compact nilmanifold M = T'\K, where K is a
simply-connected nilpotent Lie group defined by left invariant 1-forms {«y, 2, B,
Y1» Y2, M1, M2} such that

day =doy =df =dn =dn, =0,
(70 {d)’l =—a1 A B,
dy, = -z A B,
and I is a uniform subgroup of K. This manifold canbeseenas M =I"(1, 2)\H (1, 2)x

T2, where T? denotes the 2-dimensional torus, H (1, 2) is the generalized Heisenberg
group which consists of all matrices of the form

1 0 x4 oy
01 x 22
00 1 y|)
0 0 0 1

where x, x2, ¥, 21, 22 € R, and I'(1, 2) is the subgroup of H (1, 2) consisting of those
matrices whose entries {x;, X2, ¥, 21, 22} are integers (see [F1]).

THEOREM 6.4 ([F1]). There exists a vector cross product on M such that the fun-
damental 3-form is closed. Therefore, M is a compact calibrated G,-nilmanifold.

Proof. The 3-form ¢ on M defined by

an g=—agANAMmtoaAnARtaAYAMIFORANIAN
+BAVIAVIFAaI A AB—=BANL AN

is closed. Consider the metric given by
(,)=a}+a}+ B>+ vl +vi+ni+n

Let {Ey, ..., E¢} be the basis dual to {«y, ¥2, 72, 11, &2, B, ¥1}. Then a 2-fold vector
cross product P on M is given by P(E;, Ej;) = —P(Ej, E;), and P(E;, E;y)) =
Eiy3, P(Eiy3, E;) = Eiy1, P(Eiy1, Eiy3) = E; (i €Z7). O
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From Proposition 6.1 it follows that the compact calibrated G,-nilmanifold M is
non-parallel.

PROPOSITION 6.5 ([F1]). The Betti numbers of M are as follows:
by(M) =5, by(M) = 13, by(M) = 21.
THEOREM 6.6. The calibrated G,-manifold M satisfies

H*M) = H'(M) @ H*(B(M)),
H (M) = B3 (BM)).

Proof. From Proposition 6.2 it is sufficient to prove (64) and (66). From (70)
and (71) it is easy to verify that
¥ = ABAVIAMTUABAVIANI —1 A AVIAY,
taABAVAM+ANAVLAM AR FaL A AN AT,
—mABAYAM
and

dxo =dyi A2 AN AN)

= - ABARAMAMRtBRABAVIAM AN
= d(u),
where u = Y1 Aya ANy Ay —as AB Ay An. Using (71) it is easy to see
that o A @ = O, that is, u € A3(R*) ® A},(R*). Therefore, (64) is satisfied or,
equivalently, H3(M) = H>(B(M)).
To prove (66), we note that

W) = ANARTOAVIAN —AVAN a2 AYI AN,

w =~y A At ABAM R ATIAR a2 AB AN,
w3 = —ABAY—LAGQAM—NAYV2ANI =02 ABAYL,
wg = —AVIAY2FOaAMAR+BARAN —BAYI AN,
ws = —gp A AM+UABAVI—=VNIAVRAR —a ABAY,,
wg = —AIABAM—ai AQAVI+FVIAM AN+ AB AN,

o = BARAMmM—wANAta AN AR+BAYIAN,
form a basis of the space A?, (8*). The form w; is closed and therefore, to prove (66)
it is sufficient to prove that dw; € d (Ag7 (R*)) for2 <i < 7. Let us consider
K2=0a1 A A2+ V2 AN AN, us=a1ABAY—VIAV2AN,
Ha = =01 AYI AY2— Q1L AN AN, Hs =y AN AN — V1 ANY2 A2,
He =ar ABAM+ Y ANt AN, W1 ==BAV2AMm —2 AYLAY2.
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A straightforward computation using (70) shows that d(w;) = d(w;) and u; A @ =
wi A k@ = 0for2 <i <7. Then it follows from (3) that u; € A37(ﬁ*) and so (66)
is satisfied. 0O

COROLLARY 6.7. The calibrated G,-manifold M satisfies

H3(B(M))

H3 (M) = H'\(M . .
@D e H2(A(M))/H?*(M)

Proof. Proposition 3.6 and Theorem 6.6 imply that the connecting homo-
morphism H3(d) is zero. Therefore, taking into account Remark 4.4, the result
follows. O

6.2. Example 2.
Let X be the 7-dimensional connected, simply-connected and nilpotent Lie group

defined by left invariant 1-forms {cp, . . . , og} such that
doag =da; =day =daz =0,
72) dag =ag Aoy +a; Aoz + oy Ads,

dos = ag Aas +a) Aas,
dog = —ag Aoy —ag Aoz + a3 A as.

Since the coefficients in the structure equations given by (72) are integers, a well-
known result of Mal’¢ev [Ma] implies that K has a uniform subgroup I'. Consider
the compact nilmanifold N = I'\X.

THEOREM 6.8. There exists a vector cross product on N for which the funda-
mental 3-form is closed. Therefore N is a compact calibrated (non-parallel) G,-
nilmanifold.

Proof. Let ¢ be the 3-form on N defined by

(73) =0 AN ANa3+a Ady Adg+ oy Aaz Ads+ a3 Aog Aog
+og Aag Aas+a) Aos Adg+og Ady A .

From (72) it is easy to verify that ¢ is closed.
Define a metric on N by

(,Y=af+a?+a}+a+a?+al+al

Let {Ey, ..., Eg} be the basis dual to {ct,...,®s}. Then a 2-fold vector cross
product P on N is given by P(E;, E;) = —P(E;, E;), and P(E;, Eiy1) = Ei43,
P(Eit3, Ei) = Eiy1, P(Ei+1, Eiy3) = E; (i € Z7). One can check that P sat-
isfies the axioms for a 2-fold vector cross product and moreover, that the form ¢
given by (73) is the fundamental 3-form. Finally, from Proposition 6.1 it follows that
d x ¢ # 0, that is, the calibrated G,-nilmanifold N is not parallel. [
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PROPOSITION 6.9. The Betti numbers of N are as follows:

bi(N)=4, bh(N)=8, b(N)=13.

Proof. An easy computation, using Theorem 5.1, permits to obtain explicitly all
the de Rham cohomology groups of N. O

THEOREM 6.10.  For the calibrated G,-manifold N we have

HY(N) 2 H'(N) @ H*(B(N)),
H3(N) = B3 (B(N)).

Proof. First we prove that condition (64) in Proposition 6.2 is satisfied. It will
be convenient to introduce an abbreviated notation for wedge products. We write
ojj = o Ao, Qjjk = o A A O, and so forth.

From (72) and (73) it is easy to verify that

*¥Q = —0a56 + Q356 — Qo146 + Y0125 + X1236 — X234 — 1345,

and

dx ¢ = d(—o24s56 — Qp146)

= —ap1236 — Q01245 + 01256 — X01345 + X2345 + X02346 + X12346 — X12356
= d(y),

where y = —as6 — o146 + 201345. Moreover, from (73) we have y A ¢ = 0, that
is, ¥ € A(R*) ® A}, (8*). Therefore (64) is satisfied or, equivalently, H>(N) =
H3(B(N)).

Next we show that H*(N) ¥ H®(N) @ H*(B(N)) by proving that the condi-
tion (66) in Proposition 6.2 is not satisfied. To see this, it is sufficient to find a 3-form
pin A3(8*) such that dp & d(A3,(8)).

Let us consider i = g4 + oose — @126 — ¥145. Using (73) it is easy to see that
1 = *(a3 A @); therefore, from the description (3) it follows that u € A% (R*). Now,
an easy computation using (72) shows that

d(ao24) = —ap123,

d(aose) = —o136,

74

74 d(a26) = —0123 + 1235,
d(a1as5) = —0lp134 — 1235,

Therefore diu = o134 — @o136. Moreover, a long but easy calculation shows that if
n is a 3-form in Ag7 (8*) for which du = dn then 1 must be a linear combination of
the forms

N1 = 024 — Qps6, N2 = Q4 + X126, N3 = Q24 + X145
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and any other closed 3-form in Ag7 (8*). (Notice that n; A ¢ = n; A x@ = 0, that is,
n; € A%7(ﬁ*) fori =1,2,3.) Sodu ¢ d(Ag7(ﬁ*)) if and only if there do not exist
A1, A2, A3 € R satisfying

) du = Mdny + Aadny + Aadns.
From (74) we obtain

Mdny + Aadmy + Azdny = —(Ap + 2A2 + A3)ap123 — A3do134
+ Aioo13s + (A2 — Az)ag23s.

Therefore, since du = 134 — 0136, it follows that (75) is equivalent to

M+2x+2A3=0,
79 { ha—13 =0,
where A; = A3 = —1. Since there does not exist A, satisfying the equations (76)

with A; = A3 = —1, we getdu ¢ d (A%7(ﬁ*)). Therefore the condition (66) is not
satisfied. 0O

COROLLARY 6.11.  For the calibrated G,-manifold N we have

H3(B(N))

H3(N) 2 HY(N . .
W& B )EBHZ(A(N))/Hz(N)

Proof. Theorem 6.10 and Proposition 3.6 imply that the connecting homomor-
phism H?3(d) is non-zero, because H*(d) is identically zero. Therefore the result
follows taking into account Remark 4.4. 0O
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