
ILLINOIS JOURNAL OF MATHEMATICS
Volume 44, Number 2, Summer 2000

A DIFFERENTIAL COMPLEX FOR LOCALLY
CONFORMAL CALIBRATED G2-MANIFOLDS

MARISA FERN/,NDEZ AND LUIS UGARTE

ABSTRACT. We characterize G2-manifolds that are locally conformally equivalent to a calibrated one as
those G2-manifolds M for which the space of differential forms annihilated by the fundamental 3-form
of M becomes a differential subcomplex of de Rham’s complex. Special properties of the cohomology
of this subcomplex are exhibited when the holonomy group of M can be reduced to a subgroup of G2.
We also prove a theorem of Nomizu type for this cohomology which permits its computation for compact
calibrated G2-nilmanifolds.

1. Introduction

G2-manifolds are 7-dimensional Riemannian manifolds with a two-fold vector
cross product ([BG], [Ca], [G1]-[G4]) identifying each tangent space with the pure
imaginary Cayley numbers. Such a manifold M has a nowhere vanishing differential
3-form o, called thefundamental 3-form of M. If 9 is closed, then M is a calibrated
G2-manifold [HL1]-[HL2], a G2 analog of a symplectic manifold; examples of
compact calibrated G2-manifolds are given in [F1]-[F2]. In particular, if p is closed
and coclosed then M has a subgroup of G2 as holonomy group [G2]. Examples of
complete G2-manifolds with holonomy group G2 have been constructed by Bryant
and Salamon [BS]; the first examples of such manifolds in the compact case have
been given by Joyce [J 1 ], [J2].

In [FG] the first author of the present paper and Gray gave a classification of
G2-manifolds; there are 16 classes. According to this classification, in the present
paper we consider the class W2 W4, that is, the class of all G2-manifolds for which
d9 0 A p, where 0 is the differential 1-form on M which can be defined [C] by
0 -1/4 (.dcp A p), where denotes the Hodge star operator. The class
contains all the calibrated G2-manifolds; moreover, it is the class of all G2-manifolds
which are locally conformal calibrated.

Let Aq (M) be the space of differential q-forms on M. Our main object here is the
study of those manifolds in ]/Y2 "1/4 for which the sequence

(1) 3q-l(M) 3q(M) 3q+l(M)
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is a differential complex (see in Section 2, Corollary 4). Here Jq (M) is the subspace
of Aq (M) defined by

q(M) {e Aq (M) I A tp-----0},

and denotes the restriction to Jq (M) of the exterior differential d of M.
The complex (1) is called G2-coeffective complex, because it is the analog of the

coeffective complex for symplectic manifolds [Bou].
In Section 2 we show that if M is a G2-manifold for which the sequence (1) is a

differential complex, then M must be locally conformal to a calibrated G-manifold.
Therefore, the manifolds in the class Y2 ’4 are characterized by the existence of
the G-coeffective complex.

In Section 3 we study the ellipticity of the coeffective complex. In Proposition 3.3
we prove that such a complex is elliptic for any degree q : 3. Moreover, for any
locally conformal calibrated G-manifold M, we obtain the relations between the
coeffective cohomology groups nq (B(M)) and the de Rham cohomology groups
Hq (M) of M.

In Section 4 we restrict our attention to the particular case of compact calibrated

G-manifolds. We prove special properties of the cohomology groups of the com-
plementary complex of (1) (see Theorem 4.1). In Theorem 4.2 these properties allow
us to prove that, for q - 3, the coeffective cohomology groups/q (J(M)) are com-
pletely determined by the de Rham cohomology H*(M) when the holonomy group of
M is a subgroup of G2 (see also Corollary 4.3 for q 3). In other words, these groups
become invariants of the topology of compact manifolds with Hol c_ G2. Therefore,
Theorem 4.2 and Corollary 4.3 provide obstructions for a compact G2-manifold M
to have a subgroup of Gz as its holonomy group. In particular, these results imply
the well-known topological conditions b3(M) > bl (M) and b3(M) > bo(M) proved
by Bonan in [Bo].

The aim ofSection 6 is to exhibit an example ofcompact calibrated G:-manifold for
which the isomorphisms in Theorem 4.2 and Corollary 4.3 fail. The main problem
in constructing such an example is the difficulty of computing the G2-coeffective
cohomology.

For any compact nilmanifold F\K, a well-known theorem of Nomizu [N], as-
serts that the Chevalley-Eilenberg cohomology H*(J*) of the Lie algebra J of K is
isomorphic to the de Rham cohomology H*(F\K). Hattori has extended Nomizu’s
theorem for compact completely solvable manifolds (see [H]). The goal of Section 5
is to obtain a similar result for the G2-coeffective cohomology. In fact, in Theorem 5.3
we prove that, for q 3, there exists a canonical isomorphism,

/’q (B(r\K)) -/q((J*)),

between the coeffective cohomology of a compact calibrated G2-nilmanifold F\K
and the coeffective cohomology of the Lie algebra J of K (see Corollary 5.4 for
q 3). This result permits us to compute in a very simple way the coeffective
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cohomology for a large family of calibrated G2-manifolds. Moreover, Theorem 5.3
and Corollary 5.4 also hold for compact completely solvable calibrated G2-manifolds.

In Section 6 we exhibit two examples of compact calibrated G2-nilmanifolds,
for which we study the G2-coeffective cohomology. The first was given in IF1].
Using Nomizu’s theorem proved in Section 5, we show that Theorem 4.2 and Corol-
lary 4.3 hold for this manifold. However, we prove that for the second example (see
Theorem 6.10 and Corollary 6.11) such results fail. Therefore, Theorem 4.2 and
Corollary 4.3 do not hold for arbitrary calibrated G2-manifolds.

2. The coeffective complex for locally conformal calibrated G2-manifolds

Let M be a Co Riemannian manifold of dimension 7 with metric (,). Denote
by (M) the Lie algebra of Coo vector fields on M and by (M) the algebra of Coo
functions on M. A 2-fold vector cross product on M is a tensor field P: (M) x
(M) -- (M) satisfying the following axioms:

(i) (P (X, Y), X) (P (X, Y), Y) 0,
(ii) liP(X, Y)I[ 2 IIXII2IIYII 2 (x, y)2,

for X, Y 3(M). A 7-dimensional Riemannian manifold M with a 2-fold vector
cross product P is called a G2-manifold. There is a representation of G2 on each
tangent space of M defined by means of the vector cross product P ([BG], [G2],
[G4], IS]). Thefundamental 3-form of M is given by

tp(X, Y, Z) (P(X, Y), Z),

for X, Y, Z (M).
The inner product on Aq (M) is given by

(2) (ct, fl) 2M c A ,fl,

for ct,/3 Aq (M), where f2M denotes the volume form on M. In [FG] it is proved that
Aq (M) splits orthogonally into G2-irreducible components A(M) of dimension l.
The representation of G2 on AI(M) is the irreducible 7-dimensional representation,
and the representations ofG2 on Aq (M) and A7-q (M) are the same because the Hodge
star .: Aq (M) AT-q (M) is an isometry. Therefore, it suffices to describe the
representations of G2 on A2(M) and A3(M). They are (see [Br], [C], [CMS], [FG],
[J 11, [J21, IS])

A72(M) {,(a A,p) c e AI(M)},
A4(M) {fle A2(M) Ifl A,cp 0},

(3) A(M) {fcP lf e ’(M)},

A73(M) {,(c A p) c e A(M)},
A327(M) {?’ eA3(M) I)’Atp=A*qg=0}.
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Now, from (2) and (3), it is easy to get

(4) A3 (M) A327(M) {y E A3 (M) y A tp 0},
(5) A(M) ) A7(M {X E A4(M) IX A tp 0}.

Recall ([Br], [C], [FG], [S]) that the G2-manifoldM is said to beparallel ifVtp 0
(or equivalently, dip d tp 0); calibrated (or almost parallel) if dtp 0; locally
conformal calibrated if dip 0 A tp, where 0 is the differential 1-form on M given
by 0 - (,dip A tp).
We need also the following:

LEMMA 2.1. Let M be a G2-manifold withfundamental 3-form tp. Then:

(i) For any differential 1-form t on M,

(,(t/ tp)/x o) -4ct.

(ii) If there is a differential 1-form tx on M such that do tx A o, then Ix-- (,do A q)) and M is locally conformal calibrated.

Proof. Part (i) follows by a straightforward computation. Suppose that/z is a
differential 1-form on M such that dip /x A tp. Then ,dip ,(/x/ tp). In this
id’entity we take the wedge product by o, obtaining

(6) , dr# A t# ,(/z A t#) A t#.

Applying to both sides of (6) and using (i), we get

,(,dip A tp) ,(,(/z A tp) m tp) -4/x,

which implies (ii). !1

Definition 2.2. Let M be a G2-manifold with fundamental 3-form t#. For each q
with 0 _< q _< 7, the space q(M) is defined by

q(M) {/3 e hq (M) I/3 A p 0}.

Also, let .mq (M) be the orthogonal complement ofq(M) in Aq (M).

LEMMA 2.3. Let M be a G2-manifold. Then we have

q(M) {0} for 0 < q < 2,
/33 (M) A3(M) A327(M),
4(M) A(M) /7(M),
Bq(M) Aa(M) for5 < q <7.
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Therefore,

4q (M) Aq(M) for O < q <2,

f[3(M A73(M),
44(M) A(M),
Jtq(M) {0} for5<q<7.

Proof. These formulas are consequences of (3)-(5). El

PROPOSITION 2.4. Let M be a G2-manifold with fundamental 3-form tp. Then
is locally conformal calibrated if and only iffor any differential 3-form y
(M) AaE7(M), the exterior differential dy belongs to A74(M) A7(M).

Proofl Suppose that M is a locally conformal calibrated G2-manifold. Then
dip 0 m 99. Let y A3(M) A327(M). From (4) it follows that

dymo d(yAtp)-yA

-y A0 Ao
0;

using (5), this proves that dy e A(M) 9 A7(M).
To show the converse, we observe that dcp e A(M) A7(M because

A3 (M). Consequently, we have

(7) dip 0 A tp + .y,

where 0 m p A(M) and y e A327 (M). Thus dy A p 0, and we deduce that

(8) Y A dcp dg A p d(g A tp) O.

Taking the wedge product by y in (7), and using (8), we get

0=yAdcp yAOAcp+yA,y
yA,y,

which implies that y 0. Then (7) becomes

dip 0 A tp,

which, by Lemma 2.1, proves that M is locally conformal calibrated. El
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COROLLARY 2.5. Let M be a G2-manifold. Then M is locally conformal cali-
brated ifand only if there exists the complex

0 ----> B3(M) A(M) A2aT(M) Ba(M)

A(M)A7(M) AS(M)
d

(9) ---- A6(M d A7(M 0,

where I denotes the restriction to 13q (M) (q 3, 4) of the exterior differential d
ofM.

Proof. From Proposition 2.4 it is clear that (9) is a complex if M is locally
conformal calibrated. To prove the converse, let us first show that for any f (M)
and , /3(M) A31(M) A327(M) we have

(10) zr4od(f?,) fzr4od(,),

that is, the operator zr4od: B3(M) 44(M) is tensorial, where zr4 denotes the
orthogonal projection of A4(M) onto .A4(M) A4(M). In fact, since , A3 (M)(9
A7(M), from (4) and (5) it follows that df A y A74(M) A7(M), that is,
7r4(df A y) 0; thus zr4od(f’) r4(df A y) + zr4(fdy) fzr4(d’), which
shows (10).
Now suppose that (9) is a complex, that is, d(’) 0, for any , /3(M). Since

d, zr4od(’) d- t,, applying d to this equality we get

(11) d(zr4od(,)) 0,

for any , j3 (M). Therefore, if f is any function on M, from (10) and (11) we get

0 d(Tr4od(fy)) d(f r4od(y)) df A rr4od(y).

Since zr4od(,) A(M), there is h, (M) such that g4od(,) he tp and thus
hy (df A .tp) 0, for any f (M). But c A .q9 0 iff ct 0, for cr A I(M),
which implies that the function h, must be zero.

Therefore, zr4od(,) 0 for any , B3(M), that is, d(/3(M)) C 4(M), and
Proposition 2.4 implies that M is locally conformal calibrated. E!

For a locally conformal calibrated G2-manifold M, we denote by *(B(M)) the
cohomology ofthe complex (9). Then/q (J(M)) Hq (M) forq 6, 7. Therefore,
to find the cohomology of the complex (9) it suffices to find the cohomology groups
/’q ((M)) for 3 _< q _< 5. We need to consider another complex.

Definition 2.6. LetMbeaG2-manifold. For0 < q _< 3, the mapq tq(M)
q+l (M) is defined by

2) dq Zrq+lOd,
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where 7/’q+ _Aq+l (M) .Aq+ (M) is the orthogonal projection of Aq+l (M) onto
.mq+l (M).

From Lemma 2.3 it follows that dq d for q 0, 1. It will be convenient to
make no distinction to denote the maps and 3. In fact, unless clarity is required,
we write for each of these maps.

PROPOSITION 2.7. Let M be a G2-manifold withfundamental 3-form o. Then M
is locally conformal calibrated ifand only ifthe sequence

(13) 0-- A(M) d A(M) d_ A2(M) . A37(M)

__
A(M) 0

is a complex.

Proofl Consider c e AI(M). From (12) we see that d2(dc) rr3od(dt) 0.
This proves that d2od 0. Now, let us suppose that M is locally conformal calibrated,
and let e A2(M). Using the fact that A3(M) A(M) A37(M) A7(M), we
have

(14) dfl d23 + Y,

where d2fl e A3(M) A73(M) and y e A](M) A327(M). Proposition 2.4 implies
that d?’ e A(M) A(M). Then taking in (14) the exterior differential d of M,
we obtain

0 d(d2fl) + dy,

which means that d(r2fl) e A74(M) A7(M). Thus 3(d2fl) 0 because 3(d2fl) is
the imageofd(d2fl) by theorthogonal projection r4" A4(M) .A4(M) A4(M).

To prove the converse, let fl be a 2-form on M. Therefore, the exterior differential

d3 of/3 is

(15) dfl d2/ q- ’,

where d2 e A37(M) and y e A3(M) 9 A7(M). Applying in (15) the exterior
differential d of M, we get

(16) O d(d2fl) + dy.

Applying the projection rr4 to (16), and using (12) together with the hypothesis
d3od2 0, we obtain

o (d(d:)) + (d)
d3oa2() + 4(d/)
7r4(dy),

which means that dye A(M) A7(M). Moreover, using (10) we conclude that

d(A(M) A327(M)) C A(M) A7(M). From Proposition 2.4 it follows that M
is locally conformal calibrated. El
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For a locally conformal calibrated G2-manifold M, we denote by H*(A(M))
the cohomology of the complex (13). Then fflq(.A(M)) Hq(M) for q 0, 1.
Therefore, to find the cohomology of the complex (13) it is sufficient to find the
cohomology groups/q (.fit(M)) for 2 _< q _< 4.

3. Ellipticity of the coeffective complex

In this section, we suppose that M is a locally conformal calibrated G2-manifold
with fundamental 3-form o. First we study the ellipticity of the complex (A* (M), a).

PROPOSITION 3.1.
for any q 2.

The complex (.A*(M), l) given by (13) is elliptic in degree q

Proof. It is obvious that the complex (A* (M), ) is elliptic in degrees 0 and 1,
because the de Rham complex (A*(M), d) ofM is elliptic. The complex (A*(M), l)
is elliptic in degrees 3 and 4 if for any point m M and for any 1-form/z non-zero
at m, the complex

Aa(T,mM) (_) A37(TM),r(_) 4 *AI(TmM 0

is exact in the steps 3 and 4, where Tm*M is the cotangent space of M at m, and

(17) o’/z (2) (fl)

(18) o’bt(t3)(/) 7t’4(/z A ’),

for /3 6 A2(T*mM) and y 6 AaT(T,M). Therefore, to prove that the complex
(.A* (M), d) is elliptic in degree q 3 it is sufficient to prove that

(19) Ker (a(d3)) C Im (a(2)).
3Let y A7(TmM) be such that y Ker (a(d3)), or equivalently r4(/z A y) 0.

4This implies that ft A y 6 AT(TmM) 9 A7(T,M), and so/z A y A tpm 0. Since

,’/km A6(Tm*M), from the ellipticity of the de Rham complex it follows that there
is 0 6 AS(T,M) satisfying

(20)

Now, we use the isomorphism AOm" A2(T*mM) AS(T,M) given by AOm(fl)
/3 A 0m, for/3 A2 (Tm.M). This isomorphism implies that there is v 6 A2 (Tm.M)
such that r/= v A tpm. Thus (20) becomes

y Aq9m A 1) Aq9m 7t"3(/ZA I)) At/9m.

Therefore, we have

(21) ( 7t’3(ft A 1))) A m 0.
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But the wedge product by q9m is also an isomorphism Aq9m A73 (Tm*M) A6(Tm*M)
and so, from (2 1), it follows that y zr3 (/z A v) 0, or equivalently using (17),

which proves (19).
To prove the ellipticity of the complex (A* (M), d) in degree q 4, we show

A4(Tm*M) C Im (a(3)).
4Let ,k e A(T,]M). Then . A 0m e AT(TIn*M). Now, from the ellipticity of the de

Rham complex of M, we conclude that

(22) /z A CO . A m,
for some co A6(Tm*M). Using the isomorphism Am" A37(TraM)* -----+ A6(Tm*M)
again, we obtain co y A m for some y A73 (Tin* M). Then (22) becomes

A0m /Z A y A0m 7/"4(/z A y) hm,

which implies that

(23) (. 7/’4(/Z A ’)) A 0m 0.

But Aqgm. AI(TmM)4* AT(T*mM) is an isomorphism, and hence, from (23), we
have

X 7/’4(/ A y) crtz(d3)(e ).

Thus . Im (cr,(d3)). This completes the proof. E!

Remark 3.2.
because

We note that the complex (A* (M), d) is not elliptic in degree q 2,

4y(-1)qdim (.Aq(Tn]M)) 1 7 + 21 7 + 9 5 0.
q=O

PROPOSITION 3.3.
forany q 5 3.

The complex (B*(M), 1) given by (9) is elliptic in degree q

Proof. It is obvious that the complex (/3* (M), ) is elliptic in degrees 6 and 7,
because it is the de Rham complex of M. To show that (/3* (M), d) is elliptic in degree
q 4, we must prove that for m M and for non-zero/z T,M, the complex

(24) A3(Tm*M) A37(TnM) 4 A5AT(TM ) A7(Tm*M) (TnM)
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4 $is exact in degree 4. Let to e A7(TmM) A7(TM) satisfy/x A w 0. We must
show that there is y A3 (T*mM) A327(T,M) such that w /z A y. From the
ellipticity of the de Rham complex we know that there exists y A3(TM) such
that

(25) o =/z A y.

Moreover, y y + y’ with y; 6 A(T,M) and y’ A(TnM) A327(T*mM).
Now (25) becomes

t!(26) o =/x A y =/z A y +/x A y.

But o and/x A y;’ A(Tm*M) A7(Tm*M); hence zr4(/z ^ y;) 0, that is,
y Ker (5,(d3)). From Proposition 3.1 it follows that y Im (5,(dr2)). This
means that there exists fl AZ(TM) such that y( zr3(/z/x fl).

Let v 6 A(Tin*M) A]7 (Tin*M) be the image of/z/x fl by the orthogonal projection
of AZ(Tm*M) onto A(Tm*M) A327(T,]M). Then we get

0 -"-/z A (/z A fl) =// A y1 q-/z A v,

or equivalently

(27) /z A y -/z A v.

From (25), (26) and (27) we obtain

(28) to =/z A (-v + y;’).

Now (28)implies that the form y -v+ y;’ is such that y 6 A(TIn*M) (9 A37 (TIn*M)
and w =/z A y. This proves that (24) is exact in degree 4.

Finally, we must prove that the complex

4 $AT(TmM) A7(Tm*M) AS(TM) A6(Tm*M)

is exact in degree 5. Let 6 AS(Tm*M) satisfy/z ^ 0. We must find a 4-form. A(T,,*,M) Av(TM) such that

(29) =/z A ..
By the ellipticity of the de Rham complex of M we see that there is v A4(T*mM)
such that

(30) =/z A v.

4Because i4(Zm*M) .Ai(Z*mM ii(Z*mM) i7(Zm*M) and v A (TmM) we
have

(31) v v’ + v",
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where v’ e A(Tm*M and v" A(T,n*M $ A7(Tm*M). Using Proposition 3.1, we
deduce that there exists y A73(TM) such that

(32) v’ 7/"4 (/z A )/).

From (32) it follows that

(33) 0=/zA (/zA y) =/zA v’ -I-- p, A t,

where t is the image of/z A y by the orthogonal projection of 4A (TmM) onto the
subspace A(T*mM) 9 A7(T*mM). The identity (33)implies that/z A v’ --/z A t.

Thus from (30) and (31) we conclude that

=/z ^ (-r + v").

Consider 2. -v 4- v". Then 2. A(Tm*M A7(T,M), and moreover
This proves (29) and completes the proof. E]

Remark 3.4.
because

We note that the complex (B* (M), ) is not elliptic in degree q 3,

7

-(-1)qdim (Bq(TM)) -28 4- 34- 21 4- 7 1 -9 - 0.
q=3

From Proposition 3.1 and Proposition 3.3 we have the following result.

COROLLARY 3.5. Forany compact locally conformal calibrated G2-manifold M,
the cohomology groups 3(jt(M)),/4(A(M)),/4(B(M)) and 5(B(M)) are of
finite dimension.

In order to obtain the first relations among the groups Hq (M), fiq (B(M)) and
fiq (A(M)), we proceed as follows. From (9) and (13) we can consider the diagram

(34)

where and p denote the natural inclusion and the orthogonal projection, respectively.
Using the definitions of and d, given by (9) and (12), respectively, it follows that
and p are cochain maps, that is,

(35) doi ol and dop pod.
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From (34) and (35) we get the short exact sequence of differential complexes

0 B*(M) A*(M) 4*(M) 0.

Therefore, there is the long exact sequence of cohomology groups

H2(p) /.)2 H2(d)
0 ----+ H2(M) (A(M))

H3(i)
H3 H3(p) /_)3 H3(d)/r3(/3(M)) ----+ (M) ---+ (A(M)) ----+

H4(p) /.4 Ha(d)H4(i) H4(M) -----+ (A(M))/4(/3(M)) -----+
H(i) HS(M) 0,5(B(M)) ----->

(36)

where HJ (i) and Hq (p) (3 < j < 5, 2 < q < 4) are the naturally induced maps,
and Hq (d) (2 < q < 4) is the connecting homomorphism given by

nq (d)([c]A) [dc]t e/.q+l (B(M))

for [c]ut IIq (A(M)).

PROPOSITION 3.6. Let M be a locally conformal calibrated G2-manifold. Then:

(i) H2(M) /-)2(.A(M)) ifand only if H2(d) 0;
(ii) H3(M) /-)3(.A(M)) 3(B(M)) ifand only ifH2(d) H3(d) 0;
(iii) H4(M) -/-)4(.A(M)) /-)4(/3(M)) ifand only ifn3(d) n4(d) 0;
(iv) HS(M) /-)5(B(M)) ifand only if n4(d) O.

Proof. These relations are an easy consequence of the exactness of the se-
quence (36).

Let M be a compact locally conformal calibrated G2-manifold; and let d denote
the coderivative of M. If r/is a differential q-form on M we have 8r/= (- 1)q d 0.
On the space Aq (M) of differential q-forms on M we consider the inner product (,)
given by

for r/,/z e Aq (M).

LEMMA 3.7.
A37(M), Z e A4(M)

The operator is the adjoint of l, that is, for A2(M), y e

(38) (d3e, ) (, z).

(37) (dfl, y) (fl, $y),

and
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Proof. Because d is the adjoint of d we have

(39) (dr/,/z) (r/,

for r/,/x A*(M). To prove (37), we use (39) and the decomposition d/
where A(M) A7(M). Thus (, ,) 0, and we obtain

(/, ) (d/, ) (d/, ),
which implies (37). Also (38) is an easy consequence of (39) and d,
where ’ A(M) A7(M).

Definition 3.8. We let

(40) 77(3(.A(M)) {, A37(M) Ida, dy 0},

(41) 4(4(M)) {f 99 A(M) ld(f tp) 0}.

The spaces ’’/q (A(M)) can also be defined as follows:

PROPOSITION 3.9. LetM be a compact locally conformal calibrated G2-manifold
withfundamental 3-forrn 99. Then

(42) 73(A(M)) {,A73(M) Id,Ao=0 and d,,=0},

(43) 74(e4(M)) {f o A4(M) ld(fo) 0}.

Proof. From (40) and the fact that d, 0 if and only if d, 6 A(M) A7(M)
(or equivalently, d),/ o 0) we obtain (42). Finally, (43) is an easy consequence
of (41).

Moreover, from Hodge theorem and Proposition 3.1 we have

(44) /’q (.A(M)) -q (.A(M)), q 3, 4.

4. Calibrated G-manifolds

In this section we give more details about the groups/-q (.A(M)) of a calibrated

G2-manifold M, and also details about the groups nq ((M)) of a G2-manifold M
whose holonomy group is a subgroup of G2.

THEOREM 4.1. Let M be a compact calibrated G2-manifold with fundamental
3-form o. The cohomology groups Hq (j[(M)) satisfy

(i) 3(4(M)) Hi(M),
(ii) 4(.A(M)) H(M).
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Proof. Because dip 0, the space 4(4(M)) given by (43) is

4G4(M)) {f 99 df 0},

which is naturally isomorphic to H(M). Now, from (44) it follows that/4(4(M))
4(4(M)) H(M), which proves (ii).
We define the linear map F" A (M) A37(M) by

F(ot) ,(ot A 99)

for ot e A l(M). From the description (3) of ATa(M) we know that F is an iso-
morphism. Moreover, it follows that F induces the isomorphism F*" .1 (M)
3(Z(M)) defined by

(45) F*(a) F(ot) ,(a A 99)

for ot 6 7-/l(M). In fact, let us first show that F* (7-/l (M)) C 73(t(M)). Let
ot 7-/1 (M) and put/3 ,(ot A 99). Then we obtain

(46)
d (/3) d(ot A 99)

=dot A tp ot Adtp
0,

because dot =dtp 0. Moreover, using d ot =dtp 0, we have

(47)

dfl ^ o d(fl ^ 0)
d(,(ot A 99) A 99)
-4d(,ot)

"-0.

From (46), (47) and (42) we conclude that/3 .3 (.A(M)). Furthermore, because F
is injective, it follow_s that F* is injective. Now, to prove that F* is surjective, let us

3suppose that/3 7-/ (.A(M)). Consider the 1-form ot Al(M) defined by

1- (fl A

Using that d fl 0 and dip 0, we have

A 99 d(ot A 99) -d(,(/3 A 99) m 99) d fl 0,dot

which implies that dot B2(M) {0}, and so

(48) dot O.

Also, we have

(49) d ot -d(fl A 99) O,
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because d/ A tp do 0. Now, from (48) and (49) it follows that c 7-/1 (M).
Moreover,

F*(ot) F(ct) -, (,(/ A

that is, F* is surjective. This completes the proof of (i).

THEOREM 4.2. Let M be a compact parallel G2-manifold with fundamental 3-
form tp. Then the connecting homomorphisms Ha(d) and H4(d), of the exact se-
quence (36), vanish. Therefore, we have

(50)
H4(M) H(M) 4(/(M)),
HS(M) 5(/(M)).

Proof. First we see that the connecting homomorphism H3 (d)" /.3 (.A(M)) ----+
4(B(M)) is zero. Let/ 3(.A(M)). Since the map F*: 7-/1(M) 3(4(M))
given by (45) is an isomorphism, we have/ ,(ct/xtp), where t is a harmonic 1-form
on M. Then ct is parallel (with respect to the Levi-Civita connection of M) because
the Ricci curvature of M is identically zero [Bo]. Hence t/x tp is also parallel. This
implies that the differential 4-form ct ^ tp is harmonic. Thus we obtain

d/ d (or/x tp) 0,

which implies that H3 (d) 0.
On the other hand, let f be a differentiable function on M such that it satisfies

f, tp 74(,4(M)). Then df 0 and n4(d)(f tp) [d(f tp)]t 0, because
d tp 0. This proves that n4(d) 0. Now (50) follows from Proposition 3.6 and
Theorem 4.1 (ii).

Let us consider now the quotient

/3(/(M))
(51) /2(.A(M))/HE(M)

We note that (51) is defined for any compact GE-manifold M, as the cohomology
groups/-2(.A(M)) and/r3(/(M)) are defined even if the manifold is not locally
conformal calibrated. IfM is locally conformal calibrated, then the exactness of (36)
implies that

H3(M)
Kern3 (d) __. 3(,4(M)),(52) 3(/(M)

IY-12 fl.(M) /H2 M)

and therefore (51) is of finite dimension. However, from Proposition 3.1 and Propo-
sition 3.3, we know that the dimensions of the cohomology groups 2(,4(M)) and
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3(B(M)) are not necessarily finite. Moreover, if M is ,calibrated then (52) and
Theorem 4.1 (i) imply that the dimension of (51) is > b3(M) bl (M), where bq(M)
denotes the q-th Betti number of M.

COROLLARY 4.3. Let M be a compact parallel G2-manifold. Then

(53) H3 (M) - H (M)
/-3 (/(M))

ffI2 (.A(M) /H2 M)

Proof. From Theorem 4.1 (i) and Theorem 4.2 it follows that Ker H3(d)
3(jt(M)) Hi(M). Therefore, (53) follows from (52).

Remark 4.4. Notice that for compact calibrated G2-manifolds, (53) is satisfied if
and only if H3 (d) 0. In fact, this follows directly from (52) and Theorem 4.1 (i).

From Theorem 4.2 and Corollarff 4.3 it follows that for any compact parallel
G2-manifold M, the dimensions of (51) and/-4(/(M)) are b3(M) bl(M) and
ba(M) bo(M), respectively. In particular, for such a manifold M we get

b3(M) >_ bl(M) and b3(M) > bo(M),

which provides a proof of these topological conditions, different from the proof given
in [Bo].
Now let us consider the long exact sequence (36). In Theorem 4.2 we have proved

that the connecting homomorphisms H3(d) and Ha(d) are zero for any compact
parallel G2-manifold. Next, we show an example ofa compactparallel G2-manifold
for which H2(d) is non-zero"

Let 7 be the 7-dimensional Euclidean space ]R7 {(x0, x6) xi ,
0 < < 6}. A basis for the left invariant 1-forms on7 is given by {dxi; 0 < < 6}.
Now, we take the compact quotient F\7, where F is the uniform subgroup of 7
consisting of those elements whose coordinates are integers. Thus F\7 is a 7-
dimensional torus TT; and the 1-forms dxi (0 < < 6)all descend to 1-forms ci
(0 < < 6) on T7 such that

doti --O, 0 < <_ 6.

Consider the functions f0" 17 ]R and go: ]7 ] defined by

fo(x) sin(2zrx0), go(x) cos(2zrx0)

for x (x0 x6) e ]R7. One can check that fo(x + k) fo(x) and go(x + k)
go(x) for x e 7 and k e F. Thus both functions fo and go descend to functions f
and g on T7, respectively, and they satisfy

(54) df 2zrgct0, dg -2zrfc0.
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Consider the metric (,) on ,]7 given by

l, + + + + + +
Define the 3-form 99 on ’]I’7 by

(55) 99 0/0 A0/1 A0/3-+-0/1 A0/2 A0/4-+-0/2 A0/3 A0/5-{-0/3 A0/4 A0/6

-]-" 0/0 A 0/4 A 0/5 q- 0/1 A 0/5 A 0/6 -+- 0/0 A 0/2 A 0/6.

Then it is clear that d99 d 99 0. Therefore qi’7 is a compact parallel G2-manifold
whose fundamental 3-form is the 3-form 99 given by (55).
Now let us consider the 2-form fl on q[,7 given by

(56) /5 f0/1 A 0/3"

Using (54), we find that d/ 2zrg0/0 m 0/1 / 0/3, that is,/ is non closed. However,
since d//x 99 0, we get a2(/) 0 and therefore/ defines a non-zero cohomology
class [/]t in/2(.A(’]17)). Thus

H2(d)([]A) [d/]t 2zrg0/0 A 0/1 A 0/3 # 0,

that is, the connecting homomorphism H2(d) is non-zero. From Proposition 3.6 and
Theorem 4.1 (i) it follows that

H2(7) /-2(4(’7)),
n3 (7) H (,7) /lr3((7)),

for the compact parallel G2-manifold 7.

5. A theorem of Nomizu type for the coeffective cohomology

In this section we prove that there exists a canonical isomorphism between the
coeffective cohomology of a compact calibrated G2-nilmanifold F\K and the coef-
fective cohomology of the Lie algebra J of K. We also prove that this result holds
for compact completely solvable calibrated G2-manifolds.

Let M be a 7-dimensional compact nilmanifold; that is, M I"\K, where K
is a 7-dimensional connected, simply-connected and nilpotent Lie group, and F is
a discrete subgroup of K such that the quotient space F\K is compact. The most
immediate example of such a manifold is the torus 7. It is easy to see that each left
invariant differential form on K descends to the quotient F\K. For convenience, if
/z is a left invariant differential form on K we also denote by/z the differential form
induced on M.

Next, let us suppose that K is a G2-manifold with left invariant metric (,) and
left invariant 2-fold vector cross product P. Then the metric and the vector product
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descend to a metric (,) and a 2-fold vector cross product P on M, respectively.
Let o be the left invariant fundamental 3-form on K. Then M is a G2-nilmanifold
with fundamental form o. Moreover, M is locally conformal calibrated (in particular,
calibrated) if and only if K is locally conformal calibrated (in particular, calibrated).

Denote by J the Lie algebra of K. Let

Aq_l(j,) d Aq(fl., .d Aq+l(j, --be the Chevalley-Eilenberg complex, where Aq (J*) denotes the space ofleft invariant
differential q-forms on K. The Chevalley-Eilenberg cohomology is defined by

Hq (j*)
Ker {d: Aq (J*) ----> Aq+l (J*)
Im {d: Aq-l(j,) Aq(j*)}

In 1954 Nomizu [N] proved the following theorem which reduces the computation
of the de Rham cohomology of compact nilmanifolds to the calculation at the Lie
algebra level:

THEOREM 5.1 ([N]). Let M l"\K be a compact nilmanifold of dimension m
and denote by Vq: Hq(*) Hq(F\K), 0 < q < m, the homomorphism of
cohomology groups defined by

Vq({a}) [otl e Hq(F\K)

for {c} e nq (J*), where Yt denotes the Lie algebra ofK. Then rq is an isomorphism
for O < q < m.

(57)

and

Now we introduce the differential complexes

0 3(..,) A31(.,,) () A;7(., 4(.,,)

A(fl,*) A7(J*) -J hs(,*) A6(J*)
d A7 (J*) ----* 0

(58)

where the spaces A(J*) and the maps and are defined by relations similar to (3),
(9) and (12), respectively. Notice that the complexes (57) and (58) are differential
subcomplexes of(9) and (13), respectively. We denote by H*(B(J*)) the cohomology
of the complex (57), and by H* G4(J*)) the cohomology of (58).

LEMMA 5.2. Let M F\K be a compact calibrated G2-nilmanifold. Suppose
that thefundamental 3-form tp on M stemsfrom a left invariantfundamental 3-form
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on K. Denote by aq" IYtq (J[(.t*)) /-)q (,A(M)), q 3, 4, the homomorphism of
cohomology groups defined by

O’q({aiA [o]A ff’lq(4(M))

for {t}A e Hq (A(.*)). Then aq is an isomorphismfor q 3, 4.

Proof. First we prove that the homomorphism fq" Jq G4(M)) ----+ Hq+3(M)
definedby fq ([ct]t) [ct/xo] for [a]. fflq (A(M)) is an isomorphism for q 3, 4.
In fact, taking into account that M is calibrated, this follows from the commutativity
of all the squares in the diagram

(59) ’ ’ A(M)A2(M) ---> A73(M)
d dA(M) A6(M) A7 (M)

and from the fact that the wedge productby tp makes the vertical arrows isomorphisms.
Moreover, if we consider the diagram (59) at the Lie algebra level it follows that

the homomorphism gq" /-)q(.m(J*)) nq+3(J*) given by gq({Ot}A
for {}4 /-)q (.m(J*)) is also an isomorphism for q 3, 4.

Therefore, we can consider the diagram

/q (,m(J*)) -- /-q (t(M)), fq ,], gq
Hq+3 (.,,) q’t’3 Hq+3 (M)

for q 3, 4. As this diagram is commutative and fq, gq and "t’q+3 are isomorphisms
for q 3, 4 (see Theorem 5.1), we see that aq is an isomorphism for q 3, 4. Vl

In order to prove a theorem ofNomizu type for the G2-coeffective cohomology, we
need to consider for the Lie algebra J the corresponding long exact sequence given
by (36) for any locally conformal calibrated G2-manifold. It will be convenient, for
J, to change the notation of the homomorphisms of (36). We write nq (p’ff), Hq (d)
and Hq (i) instead of Hq (p), Hq (d) and Hq (i), respectively. Then we have

(60)



382 MARISA FERN/,NDEZ AND LUIS UGARTE

THEOREM 5.3. LetM F\K be a compact calibrated G2-nilmanifoldfor which
thefundamental 3-form o stem,sfrom a left invariantfundamental 3-form on K. De-
note by tSq: Hq (/3(.*)) -- Hq (/3(M)), q 4, 5, the homomorphismofcohomology
groups defined by

tq({Cg}B) ----[Cg]B e /-q((M)),

for {ct}t /-q ((J*)), where denotes the Lie algebra of K. Then (q is an
isomorphismfor q 4, 5.

Proof. Let us consider the diagram

Hq_l(..,) H.’ /.q_l (,A(.,)) H__d’) jq ((,.,))H uq j, H.) ffiq

l’q-- lO’q-- lq l’q lO’q
Hq_I (M) H.p) /.q_I(,A(M)) H.d) iq (l(M))

_
Hq(M .) fflq (,A(M)),

where rq_, rq, O’q_ and Crq are the canonical isomorphisms given in Theorem 5.1
and Lemma 5.2 for q 4, 5. Notice that 5(4(J*)) 5(jr(M)) {0} and the
isomorphism (r5 is zero.

It is easy to see that the homomorphism 8q makes the squares commutative for
q 4, 5. Moreover, from (36) and (60) it follows that the two horizontal rows in
the diagram are exact. Then the Five Lemma implies that tiq is an isomorphism for
q =4,5.

COROLLARY 5.4. Let M F\K be a compact G2-nilmanifold in the conditions

of Theorem 5.3. Then there is a canonical isomorphism

3(B(J*)) 3(B(M))
/2(z[(.*))/H2 (.t* 2(t(M))/H2(M)

Proof. From the exactness of the sequence (60) it follows that

H3 (fl’*) -- Ker H3 ().(61)
3(B(j,))

/.r2 (Z[(.*))/H2 (..*)

Now, taking into account Lemma 5.2 and Theorem 5.3 it follows that the diagram

3(.A(J*)) /-4(B(J*))
,O"3 ,],t4

Ha(d) 43(A(M)) (B(M))
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is commutative. Moreover, since tr3 and t4 are isomorphisms we obtain a canonical
isomorphism

(62) KerH3() Ker H3 (d).

Finally, the result follows from (52), (61) and (62), taking into account tlat H3 (.*)
H3(M) by Theorem 5.1.

Remark 5.5. The example exhibited at the end of Section 4 shows that a theorem
ofNomizu type does not hold for the cohomology groups 2(jt(M)) and/.)3 (B(M))
of arbitrary compact calibrated G2-nilmanifolds M. In fact, it is easy to see that there
are no left invariant representatives for the cohomology classes [/]A and [d/]t,/
being the 2-form on "Jl"7 given by (56). Therefore, for the torus ’I[’7 we have

/2(.A(J*)) /2(.A(’]7)) and /3(j(j,)) /3(j(r]7)).

Remark 5.6. Hattori has extended Theorem 5.1 for compact completely solvable
manifolds (see [H]). Taking into account this result one can deduce that Lemma 5.2,
Theorem 5.3 and Corollary 5.4 still hold for compact completely solvable calibrated
G2-manifolds.

6. Examples

In this section we exhibit two examples of compact calibrated (non-parallel) G2-
nilmanifolds. The first of them, given in [F1], was the first known example of a
calibrated G2-manifold in the compact case. We prove that Theorem 4.2 holds for
this manifold. The second example is a compact calibrated G2-nilmanifold for which
Theorem 4.2 and Corollary 4.3 fail.

Next we prove some results about G2-nilmanifolds, which we shall use later.

PROPOSITION 6.1. Let M l"\K be a compact G2-nilmanifoldfor which the
fundamental 3-form q) stemsfrom a,left invariantfundamental 3-form on K. Then M
is parallel ifand only ifM is the toms 727.

Proof. As we have seen at the end of Section 4, the toms ’]17 is a compact parallel
G2-nilmanifold. Suppose that M F\K is a compact parallel G2-nilmanifold and
denote by J the Lie algebra of K. Since M is parallel, the Ricci curvature of M is
identically zero [Bo]. Therefore, the Lie algebra J must be abelian because otherwise
there would exist a direction of strictly negative Ricci curvature and a direction
of strictly positive Ricci curvature ([Wo], [M]). Therefore, since J is abelian the
nilmanifold M l"\K must be the toms 7. I-’l

Next we obtain a characterization of Theorem 4.2 for the particular case of nil-
manifolds.
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PROPOSITION 6.2. Let M F\K be a compact calibrated G2-nilmanifold. Sup-
pose that the fundamental 3-form on M arises from a left invariantfundamental
3-form on K. Then

(63) Hs(M) - fts (13(M))

ifand only if
(64) d tp d(A(J*) (3 A7(J*)),
where J denotes the Lie algebra ofK. Moreover, if (63) is satisfied then

(65) H4(M) - H(M)/4(B(M))

ifand only if
(66) d(A73(J*)) C d(A7(J*)).

Proof. From Theorem 5.1 and Theorem 5.3 it follows that Hs (M) - s(B(M))
if and only if

HS(j,,) {c As(J,*) dc 0}
_

{c As(N*) Ida 0} 5(B(J*)).
d(A4(N*)) d(B4(J*))

Therefore, (63) is satisfied if and only if

(67) d(A4(j*)) d(B4(j*)).

But A4(,*) =/,(fl,,)(3/4 (j,,), and so (67) is equivalent to d(h(*)) C d(/4(J*)).
SinceA(J*) is generated by ,tp, from the definition ofB4(J*) we get the equivalence
between (63) and (64).

Suppose now that (64) is satisfied. Using Theorem 5.1 and Theorem 5.3 again, it
follows that H4(M) H(M) (3/-4(/3(M)) if and only if

H4(.,*) Z4(J*) H(*) (3
Z4((*))

d(A3 (.if,*)) d(3 (J*))
Ho(j,) (3 4(j(j,)),

where Z4(J*) {5 h4(j*) dot 0} and Z4((J*)) {t j4(j,) dc 0}.
Since all these spaces are finite dimensional, (65) is satisfied if and only if

(68) dim Z4(J*) -dimd(A3(j*))= 1 + dim Z4(B(J*))- dimd(B3(J*)).

From (64) we have d tp d(B4(J*)), which implies that them is y B4(J*) such
that d(.9 y) 0. Since i4(J*) i2(J*) (3 j4(j,) and A(J*) (’9), we get
Z4(J*) (*9 Y) Z4(B(J*)). Therefore, dim Z4(J*) 1 + dim Z4(B(J*)).
Using this equality, it follows that (68) is equivalent to

dimd(A3(*)) dimd(B3(J*)).
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Since j3 (.j,) ([ h3 (.j,), from the definition of the space j3 (j,) we get

(69) d(A(J*) A73(J*) A327(J*)) d(A(J*) 9 A237(J*)).
But A31(J*) is generated by 99 and, since M is calibrated, d(A(J*)) {0}. So (69)
is reduced to

d(A(J*) A327(J*)) d(A327(J*)),
which is equivalent to (66).

Remark 6.3. It follows from Remark 5.6, that Proposition 6.2 also holds for
compact completely solvable calibrated G2-manifolds.

6.1. Example 1.
Consider the 7-dimensional compact nilmanifold M F\K, where K is a

simply-connected nilpotent Lie group defined by left invariant 1-forms {c1, ct2,/5,
?’, ?’2, 71, 72} such that

dt dt2 d d7 d72 O,
(70) d?’ -Ctl/x/5,

d?’2 -or2

and F is a uniform subgroup of K. This manifold can be seen as M F (1, 2)-/(1, 2)
ql", where 2 denotes the 2-dimensional toms, H(1, 2) is the generalized Heisenberg
group which consists of all matrices of the form

0 x2 z
0 0 1 y
0 0 0 1

where x1, x, y, z 1, z . 11, and 1" (1, 2) is the subgroup ofH(1, 2) consisting of those
matrices whose entries {x, X2, y, zl, Z2} are integers (see [F1]).

THEOREM 6.4 ([F1]). There exists a vector cross product on M such that thefun-
damental 3-form is closed. Therefore, M is a compact calibrated G2-nilmanifold.

Proof. The 3-form 99 on M defined by

is closed. Consider the metric given by

Let {Eo E6} be the basis dual to {al, Y2, 02, 0, a2, fl, Yl}. Then a 2-fold vector
cross product P on M is given by P(Ei, E1) -P(E1, Ei), and P(Ei, Ei+I)
Ei+3, P(Ei+3, El) Ei+i, P(Ei+i, Ei+3) Ei (i ZT).
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From Proposition 6.1 it follows that the compact calibrated G2-nilmanifold M is
non-parallel.

PROPOSITION 6.5 ([F1 ]). The Betti numbers ofM are asfollows:
bl(M) 5, bE(M) 13, b3(M) 21.

THEOREM 6.6. The calibrated G2-manifold M satisfies
H4(M) H(M) 4(B(M)),
n5 (M) 1715 (B(M)).

Proofi From Proposition 6.2 it is sufficient to prove (64) and (66). From (70)
and (71) it is easy to verify that

* O2 A/ A }"1 A r]2-+-O A3 A ’1 A r]l --C A2 A 1 A Y2

+1 A A 2 A 2 + 1 A 2 A 1 A 2 +1 A2 A 1 A 02

and

d o d(y1 A Y2 A r]l A r/2

--C A] A 2 A 1 2 +2A A 1 A 1 A 2

d(u),

where AyzAO AOz--AflA AO. Using (71) it is easy to see
that m 0, that is, U A(*) A7(*). Therefore, (64) is satisfied or,
equivalently, H (M) (B(M)).

To prove (66), we note that

2 --1 A2 A2 +ffl A A 1 + 2 A 1 A 2 +fiE A A 2,

3 --UlA3Ay2--UlAU2A0--VAy2A01--U2A3A

4 --UlAY1AY2+UlA01A02+3AY2A01--3AY1A02,

5 --UlAU2A02+UA3Ay--yAy2A02--U2A3Ay2,

6 --Ul A A 2 Ul AU2 A 1 + 1 A 1 A 2 +U2 A A 1,

3Ay2A02--u2AyAy2+u2A0A02+3Ay1A

fo a basis of the space A(*). The fo is closed and therefore, to prove (66)
it is sufficient to prove that di d(A7(*)) for 2 5 5 7. Let us consider

2 =Ul AU2 A 2 + 2 AOl AO2, 3 =Ul A A 2-- V1A 2 AOl,

4=--uAyAy2--UlAOlAO2, 5=UlAU2AO2--y1Ay2AO2,

6 Ul A A 2 + 1 A 1 A 2, 7 -- A 2 A 2 --U2 A V1 A 2.
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A straightforward computation using (70) shows that d(r.oi) d(Id.i) and/zi/x 9
/zi A .tp 0 for 2 < < 7. Then it follows from (3) that/zi A237(*) and so (66)
is satisfied.

COROLLARY 6.7. The calibrated G2-manifold M satisfies

H3(M) Hi(M)
/3((M))

ffI2 (t(M) /H2 M)

Proof. Proposition 3.6 and Theorem 6.6 imply that the connecting homo-
morphism H3(d) is zero. Therefore, taking into account Remark 4.4, the result
follows.

6.2. Example 2.
Let K be the 7-dimensional connected, simply-connected and nilpotent Lie group

defined by left invariant 1-forms {120 126} such that

(72)

d12o d121 d122 d123 0,
d124 120 A 121 "- 121 A 3 + 2 A 3,

d5 0 A 3 W 1 A 3,

d6 -0 A 0 A 3 + 3 A 5.

Since the coefficients in the structure equations given by (72) are integers, a well-
known result of Mal’iev [Ma] implies that K has a uniform subgroup 1". Consider
the compact nilmanifold N F\K.

THEOREM 6.8. There exists a vector cross product on N for which the funda-
mental 3-form is closed. Therefore N is a compact calibrated (non-parallel) G2-
nilmanifold.

Proof. Let t# be the 3-form on N defined by

(73) o 120 A 121 A 123 q- 121 A 122 A 124 q- 122 A 123 A 125 " 123 A 124 A 126
-I- 120 A 124 A 125 q- 121 A 125 A 126 "" 120 A 122 A 126"

From (72) it is easy to verify that o is closed.
Define a metric on N by

+ + + + + +
Let {Eo,..., E6} be the basis dual to {120 ,126}. Then a 2-fold vector cross
product P on N is given by P(Ei, Ej) -P(Ej, El), and P(Ei, Ei+I) El+3,
P(Ei+3, Ei) El+l, P(Ei+I, Ei+3) Ei (i . ZT). One can check that P sat-
isfies the axioms for a 2-fold vector cross product and moreover, that the form o
given by (73) is the fundamental 3-form. Finally, from Proposition 6.1 it follows that
d tp 0, that is, the calibrated G2-nilmanifold N is not parallel. I-’1
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PROPOSITION 6.9. The Betti numbers ofN are asfollows:

bl (N) 4, b2(N) 8, b3(N) 13.

Proof. An easy computation, using Theorem 5.1, permits to obtain explicitly all
the de Rham cohomology groups of N.

THEOREM 6.10. For the calibrated G2-manifold N we have

H4(N) - H(N) 4(/(N)),
HS(N) (B(N)).

Proofi First we prove that condition (64) in Proposition 6.2 is satisfied. It will
be convenient to introduce an abbreviated notation for wedge products. We write
0/ij 0/i A 0/j, 0/ijk 0/i A 0/j A 0/k, and so forth.

From (72) and (73) it is easy to verify that

--0/2456 "- 0/0356 0/0146 "" 0/0125 "" 0/1236 0/0234 0/1345,

and

d o d(-0/2456 -0/0146)

--0/01236 0/01245 "F" 0/01256 0/01345 -F" 0/02345 -F" 0/02346 "k 0/12346 0/12356

d(),

where y -0/2456 0/0146 --F- 20/1345. Moreover, from (73) we have y/x cp 0, that
is, y A(J*) A7(J*). Therefore (64) is satisfied or, equivalently, HS(N)
5(3(N)).

Next we show that H4(N) H(N) 9/-r4(I(N)) by proving that the condi-
tion (66) in Proposition 6.2 is not satisfied. To see this, it is sufficient to find a 3-form
/z in A73 (J*) such that d/x

Let us consider/x 0/024 + 0/056 0/126 0/145. Using (73) it is easy to see that
/z *(0/3/x o); therefore, fromthe description (3) it follows that/x A73(J*). Now,
an easy computation using (72) shows that

(74)

d(0/024) -0/0123,

d(0/056) --0/0136,

d(0/126) --0/0123 "F" 0/1235,

d(0/145) --0/0134 0/1235.

Therefore d/x 0/0134 0/0136. Moreover, a long but easy calculation shows that if
is a 3-form in A327(J*) for which d/x dr/then r/must be a linear combination of

the forms

0/056, r/2 0/024 -F- 0/126, r/3 0/024 -F- 0/145
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and any other closed 3-form in A327(fl.*). (Notice that r/i A p Oi A ,tp 0, that is,
3

r/i E A27(N for 1, 2, 3.) So d/z ’ d(A7(J*)) if and only if there do not exist
.l, .2, .3 E N satisfying

(75) d/z .ldr/1 + .2dr/2 q- .3dr/3.

From (74) we obtain

.ldr/1 q- .2dr/2 q- .3dr/3 -(.1 -+" 2.2 q- .3)ot0123 .30t0134
+ 10136 q- (,2 ,3)Cg1235

Therefore, since d/z ot0134 0136, it follows that (75) is equivalent to

(76) [ ’ "+" 2,k2 -+ 3 O,
,2--,3 0,

where )l ,3 --1. Since there does not exist 2 satisfying the equations (76)
with ,1 3 -1, we get d/x if d(AaE7(J*)). Therefore the condition (66) is not
satisfied.

COROLLARY 6.11. For the calibrated G2-manifold N we have

H3(N) HI(N)9 3(/3(N))
ff-I2 (.A(N) /H2 N)

Proof. Theorem 6.10 and Proposition 3.6 imply that the connecting homomor-
phism H3(d) is non-zero, because Ha(d) is identically zero. Therefore the result
follows taking into account Remark 4.4.
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