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RIMS OF CANTOR TREES

J. L. FERNANDEZ AND M. . MELL,N

ABSTRACT. This paper is concerned with trees constructed with geodesic arcs in hyperbolic space. We
shall be interested in determining how close to geodesics (in hyperbolic space) are the geodesics paths
(within the tree), and also in bounding the Hausdorff dimension of the so-called rim of the tree. These
estimates and bounds are very useful in studying the Hausdorff dimension of some limit sets appearing in
the theory of Fuchsian groups and related to the asymptotic behaviour of geodesics of Riemann surfaces.

For a compact set E in the unit circle 0D := {z’ Izl 1} (or in R), its Hausdorff
dimension can be defined in terms of the content. For )7 [0, 1] the )7-content of E
is defined by

Cont, (E) := infE
where the infimum is taken over all coverings of E by balls of radius ri in 0D (or,
respectively, by intervals of radius ri in R), and the Hausdorff dimension is defined
by

dim(E) := sup{)7’ Cont,(E) > 0} inf{)7: Conto(E) 0}.

For )7 > dim(E), Cont,(E) 0, and for )7 < dim(E). Conto(E) > 0.
To estimate Hausdorff dimensions from above one simply has to exhibit an )7 and

(arbitrarily) small coverings (in terms of )7). Usually the estimation from below is
more complicated. The best technique is due to Frostman (e.g., see [Ca]): construct
a probability measure v with support on the set E and such that for all arcs J on 0D,

(0.1) v(J) CIJI"

for some constant C > 0, and exponent )7 > 0. From this inequality it follows that
for all coverings by balls {Js} of the set E,

and therefore, Cont, (E) > 1 /C > 0.
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For instance, consider the usual temary Cantor set C in [0, 1]. This set can be
described by

c:=rl U,,
where Ej denotes the family of the 2J intervals of length 1/3J constructed inductively
in the following way: E0 {I0} where I0 is the interval [0, 1], and the family j is
obtained from the family Ej_ by writing each interval Ij_ Ej_ as the disjoint
union of three intervals of equal length and keeping the two extreme intervals. The
Hausdorff dimension of C is log 2/log 3.

To obtain the upper bound for the Hausdorff dimension of C we may use the
coveting {I: I ,j} (with j fixed). Notice that

111n=2’ (1) 0

ej

and therefow for > log 2/log 3 we have Cont,(C) O. Consequently, dim(C) _<
log 2/log 3.

On the other hand, to obtain the lower bound we define a measure with suppo
in C. For each inteal I j we define

1
(I) :=-

and for any set J,

v(J) := inf v(U)

where the infimum is taken over all the coverings/A of J with arcs in {I: I UjEj }.
This measure satisfies (0.1) for 0 < log2/log 3, so Cont,(E) > 0, and hence

dim(C) > log 2/log 3.
In this paper we shall be considering tree-structures formed with geodesic arcs in

the hyperbolic space, and certain attached boundary-structures which we shall call
Rims. Next we give a model example of such trees and rims, although too particular
for applications. The general framework will be introduced in Section 2.

Let us consider the upper half plane H2 := {z: z > 0} endowed with the
hyperbolic metric. We can associate to the usual ternary Cantor set C a tree 7" in H2

as follows:
Foreach interval Ij := [aj, bj j let G (Ij) denote the geodesic inH2 with endpoints
aj and bj, and let N(Ij) denote the point in G(Ij) with largest imaginary part. We
define the set of vertices of 7" by
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The arcs in 7- will be the set of geodesic arcs from a vertex N(I) to a vertex N(I’)
whenever I j, I’ j+l, and 1’ C I.

Then the usual Cantor set appears as the collection of the endpoints of all those
piecewise geodesics in 7-. We shall call the set of these endpoints the Rim of 7",
which in this case is simply C.

Let us notice that in the applications we will always start with the tree as given as
opposed to this example where we start with the Rim as given and then construct a
tree (see Section 2).
We are interested in estimating from below the Hausdorff dimension of the Rim

from the geometric information of the tree" length of the arcs, angles between con-
secutive arcs, and branching numbers.

The main result is the following statement:

THEOREM. IfT- is a Cantor tree oforder 8, then the rim ofT, Rim(T), has non
zero O-contentfor all < 8. In particular,

dim(Rim(T)) > order of 7".

For a complete statement see Section 2.3.
The order of a tree is an exponent which measures, in a certain way, the distribution

of the vertices of the tree. We refer to Section 2.2 for the proper definitions of Cantor
tree and of order of a tree.
An interesting application of this theorem on trees appear in [FM] where we

estimate the size of the set of escaping geodesics in a Riemann surface.
This paper is organized in two sections: the first contains some geometric results

which will be useful in the proof of the theorem, and the second contains the precise
definition of Cantor tree, its properties, and finally the proof of the theorem.

I. Some hyperbolic trigonometry

We need some information concerning the relations between angles, length, visual
angles (harmonic measure), and shadows in the Poincar6 disk model D := {z: Izl <
1 }. We collect this information in this section. We shall be using repeatedly the sinh
and cosh rules of hyperbolic geometry as stated in [Be, p.148], and we will use d(,
to denote hyperbolic distance. Along the way we shall introduce some convenient
notation which we shall use later on in the paper.

1.1. Angles and lengths. Let E be aclosed set on D, and z D\E. We will denote
by og(z, E) the harmonic measure from the point z of the set E in the component of
D\E which contains z.
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LEMMA 1.1.1. Let G be a geodesic in D, and z D\G. Let f denote the
component ofD\G which contains z. If I denotes the arc OD\0, then

to(z, G) 2to(z, I)

Proof. We first observe that, by symmetry, if z G then to(z, I) 1/2, and then
we apply the maximum principle.

LEMMA 1.1.2. Let Z D, and let G be a geodesic arc in D. Then

ed(z’G) cotan -to(z, G)
Moreover, there exists C > such that ifd(z, G) > 1, thenfor all u G,

--to(z, G) sin 0 < e-d(z’u) < C to(z, G) sin OuC

where Ou denotes the acute angle at u between G and the geodesic through z and u.

Proof. Let 2 denote the component of D\G which contains z, and let I denote
the complementary arc 0D\0fl.

Let L := d(z, G). Moving to H2, and mapping z to eli, and I to [-1, 1], we can
easily see that

2
to(z, I) arctan e-L.

Hence, using Lemma 1.1.1 we get eL cotan (to(z, G)).
Now let v G be chosen so that d(z, v) d(z, G) L. Without loss of

generality we may assume that z 0, and v [0, 1).
Using the sinh rule in the triangle A with vertices 0, u, and v we get

sinh L
sinh d(0, u)

sin Ou

But since L > 1, we have sinhL eL and sinhd(0, u) ed’u). Moreover,

eL cotan to(z, G)
to(z, G)

Therefore, e-d<’u) to(z, G)sin 0.

The lemma above is stated in a conformally invariant way in terms of harmonic
measure. We will use it to estimate the Lebesgue measure of boundary sets. The
method is explained in the following elementary lemma, whose proof is omitted.
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LEMMA 1.1.3. For each C > 1 there exists C’ > 0 such that ifz D\{0}, and I
denotes the arc in 01) with center z/Izl and radius C(1 Izl), thenfor all closed sets
ECI,

1 IEI < co(z, E) c’IEI
c’ III- I1

We shall also need the following result whose proof is straightforward.

LEMMA 1.1.4. Consider the two regions f2+/- ofthe unit disk D:

{2+/- z rel" 10 4- -l <

Thenfor any pair ofpoints z, w with z f2+ and w f2_ the geodesic arc ?’ from z
to w satisfies

d(y, 0) < log arg cosh--------
tan (zr/8) sin zr/4

1.2. Angles and shadows. Let and s be two geodesic arcs in D, and let
,: [a, b] -- D and r/: [c, d] ---> D be parametrizations such that ?’([a, b]),
s r/([c, d]). If , (b) r/(c), then by the angle between and s we mean the angle
from ?"(b) to r/’(c). On the other hand, if ?’(a) r/(c), then by the angle between
and s we mean the angle from ,’(a) to r/’(c). Angles are given mod 2zr, between

-zr and zr.
Given z D, e OD and 0 (0, zr), we define the O-conefrom z to as the set

Qo (z, ) of points o9 D such that the angle at z between the geodesic emanating
from z and going through to and the geodesic emanating from z with endpoint is
less than or equal to 0. We also define the O-shadowfrom z to as the set

So(z, ) "= Qo(z, ) fq D.

If J is an arc in OD such that J So(z, ), then we will denote by Qj(z) the set
Qo(z,).

For points z, u D the symbol [zu] denotes the oriented geodesic arc from
z to u. By the final endpoint of the oriented geodesic G containing the oriented
geodesic arc [zu], we mean the point r/of intersection between G and the unit cir-
cle, such that u separates z from r/. The other intersection point is the beginning
endpoint.

LEMMA 1,2.1. Let z, u, v D be such that the absolute value of the angle at

u between the oriented geodesic arcs [z u] and [u v] satisfies
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There is a constant C > 1 such that if

A "= min{d(z, u), d(u, v)} > C,

then thefollowing hold:

(i) d (z, v) > d(z, u) + d(u, v) 1.
(ii) If , OD denote, respectively, the final endpoint of the geodesic from z

through u, and the final endpoint of the geodesicfrom u through v, then for
all 0 < ot < rr/2,

Ol -d(z,v)e <_ w(z, S(v, 0)) <_ C a e
C

and

oo(z, S(u, ))1 ea(U,o < < C
C o(z, G(v, O))

Proof. We shall denote by A the triangle with vertices z, u, v.
(i) It follows from the cosine rule, and the estimate sinh x < ex/2 < cosh x < ex

for x > 0, that

d(z, v) > d(z, u) + d(u, v) log
1 cos (rr

(ii) Without loss of generality we assume that z 0. It follows from the sinh rule
and (i) for large C that the internal angle at v in the triangle A is at most . Therefore

v And from Lemma 1.1.3 we obtainS(v, rl) is contained in S3r/2(v,/) with/z

(1.2.1) w(0, S(v, t))
2rr

09(0, S(v,

2ct w(O, S3a-/2(U, ]d,)).

Using (1.2.1) and Lemma 1.1.2 we get

(1.2.2) 09(0, Sa(v, rl)) ot e-d(O’v)

Finally, from (1.2.2) and Lemma 1.1.2 we obtain

o(O, &(u, ))
oo(o, G(v,

ed(u,v).

The following lemmas will give some properties of shadows and cones which we
will need later.
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LEMMA 1.2.2. Let Z, 1), U l, U2 be four points in D. For each j, j 1, 2, we

define Aj as the triangle with vertices z, v, uj, we let ?’j be the interior angle of the
triangle Aj at uj, and we define j E OD as thefinal endpoint ofthe geodesicfrom v
through uj.

Assume that

yj <r/4, j=l,2

and

Qzt/2(Ul, 1) f"l Qzt/2(u2, 2) Il

Then ift, respectively , is the angle between the geodesic arcsfrom z, respectively
v, to the points U and u2 we have

ot >_ Ce-d(z’v)

with C a certain positive constant.

Proof. The geodesic from z through uj ends at a point r/j E 0D. Clearly, r/j
Srr/4(uj, j). Let I, respectively J, be the arc in 0D with extremes r/j’s, respectively
j’s. Observe that

Using Lemma 1.1.3 one sees that

to(v, J) to(v, I).

The result follows upon applying Harnack’s inequality to the harmonic function
o(., t).

LEMMA 1.2.3. Let Z, u, v D, and let e, s, denote the geodesics emanatingfrom
z and going through u and v, respectively. IfL := min{d(z, u), d(z, v)} is such that

0
eL > cotanm

16

where 0 is the angle between g and s at z, 0 <_ 0 <_ :r, then

Qrt/2(u, ) fq Qr/2(v, 7) 0

where , OD denote respectively thefinal endpoints ofg and s.
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Proof. Without loss of generality we may assume that z ,= 0, and u [0, 1). Let
us denote by I) and I0 the arcs Sr/2(u, ) and Sr/2(v, ), respectively. It is enough
to show that I, 10 are disjoint.

Notice that I) Sa(0, ) with ct 2zrw(0, I)), and I S(0, 0) with/3
2zrw(0, I). Hence to conclude that I tq I 0, it is enough to show that

(1.2.3)
1omax{a, f3} 2zr max{o(0, I)), o(0, I,)} <
2

From Lemmas 1.1.1 and 1.1.2 we have

[:= max{e-e(’"), e-a(’} max tan w(O, I) tan w(O, I,)

Since e-L < tan we get (1.2.3).

LEMMA 1.2.4. Them is a constant C such that ifz, u D with d(z, u) > C, and
0 < ot < ’i, then

a(u, ) c Q,/4(z, )

with OD the final endpoint of the geodesic emanatingfrom z and going through
U.

Proof. Without loss of generality we may assume that z 0, 1, and 0 <
u < LetE S,(u 1) andl=Sa(u 1) wherefl= 3r Then byLemmal 1.3
we have

IEI og(u, E)lll ore-a(’u),

Therefore, EI < , if C is large enough.

1.3. Estimates on piecewise geodesics. The following lemma will allow us to
compare polygonal piecewise geodesic paths with geodesics.

LEMMA 1.3 1. Them is a constant A0 such that if zn }oo denotes a sequence of
points in D such that

1. <_ zr/4
where # is the absolute value ofthe angle at z# between the oriented geodesic arcs
[zn-1 z#] and [Zn z#+], and such that

A := inf{d(zn, z#+)} > A0,

then thefollowing conclusions hold:

(i) d(zo, z#) ---> oz and, moreover z# converges in the Euclidean metric to a
single point in D.
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(ii) There is a constant C > 0 such that if , denotes the geodesic goingfrom zo
to := limn--,oo zn then

sup d(zn ’ < C.
n

(iii) If on denotes the maximum of the absolute values of the angles at zo and
zn between the geodesic from zo through zn, and the polygonal piecewise
geodesic pathfrom zo to Zn, then

tpn < ec-^

with C a positive constant.
(iv) Let On OD denote the final endpoint of the geodesic from zo through Zn.

Thenfor rn > n,

Qrr/2(Zm, Om) C Qrr/2(Zn, .).

Proof Observe that from Lemma 1.2.1 (i) we have

d(zn’z)>(d(zY’zJ-)) -n>n(A-l)"

Thus limn--,oo d(zn, z0) oo, and therefore zn escapes to the boundary of D. This
gives the first part of (i).

To show that (iii) holds, observe that z0 and Zn play symmetric roles here. So we
just have to check the estimate of the angle at z0. The worst case (i.e., the largest Pn)
occurs when all the intermediate angles are as large as possible,

and the lengths of the geodesic arcs involved are as small as possible,

d(zn-1, Zn) A > A0.

In that case all the points {Zn would lie on a single curve ?, of constant geodesic
curvature. For A0 large enough, this constant geodesic curvature is smaller than 1,
say cos w. The curve , is the portion inside the unit disk of a circular arc which
intersects the unit circle with angle o9. For A0 large enough the angle o is at least
r/4, say.
Now observe that for such a circular arc ,, if 0 6 , and is an endpoint of ’, say,

and if z rel ’ with d(0, z) A then the angle, tp, at 0, between the geodesic
arc [0 z] and the geodesic from 0 to the boundary point satisfies

I1 < C(1- Izl) < Ce-^.
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One deduces that our tpn satisfies

o,, <_ Ce-^.

Define n as the final endpoint of the geodesic from Zn- through zn and recall that
is the final endpoint of the geodesic from z0 through zn.
Observe that since/n < zr/4, by Lemma 1.2.4, for A0 large enough we have

(1.3.1) azr/4(Zn, n+l) C.. Qzr/2(Zn, n) C Qn./4(Zn-1, n).

Assume that A is so large that ec-^ < -. Then from (iii) we deduce that

(1.3.2) Qrt/4(Zn, n) C Qr/2(Zn, Tn).

Now

(1.3.3) diam(Qr/2(zn, On)) < C(zo)e-d(z"’z) <_ C(zo)e-(^-Dn.

From (1.3.1), (1.3.2) and (1.3.3) we deduce the second half of (i).
Observe that from the above one obtains Q. (Zn, n). From this it follows

easily that the angle at zn between the oriented geodesic arcs [z0 Zn] and [zn ] is at
most zr/2. Finally, using Lemma 1.1.4, one deduces (ii).

It remains to verify that (iv) holds. And clearly by induction it is enough to consider
the case rn n + 1. Denote by tp the bound on the tpn’s: tp ec-^ and by/ the
bound on the/n’s (/ < zr/4). From part (iii) it is easy to see that

Qrr/2(zn+l, n-I--1) C Qo+(r/2)(Zn+l, n+l)

and

(1.3.4) Q(r/2)-o-,(Zn, n+l) C Qr/2(Zn, On).

Moreover, observe that by Lemma 1.2.4 we have

(1.3.5) Q(r/2)+o(zn+l, ’n+l) C Q(r/2)-o-#(Zn, n+l)

as long as tp satisfies the inequalities tp + zr/2 < 4 (zr/2 tp fl). Combining (1.3.4)
and (1.3.5) we conclude that (iv) holds.

Now consider two finite sequences {pj }in__0 and {qj }jn=0 in D, which satisfy the
conditions of Lemma 1.3.1 and are such that for some m, 0 _< m _< n 1, we
have pj qj, j 0, 1,..., m. In particular, A0 is a common lower bound of the
lengths of the geodesic arcs between consecutive points of these sequences. Let ct,

respectively , be the angle between the geodesic arcs [PoPn] and [qoqn], respectively
[PmPn] and [qmqn]. The next lemma gives us a useful inequality between the angles
ct and/ under certain conditions.
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LEMMA 1.3.2. There arepositive constants C1, C2 such that ifAo is large enough,
and

C1M := min{min{d(pj, Pj+l),d(qj, qj+l)}} > log----
j>_m 0

where 0 denotes the angle between the geodesic arcs [PmPm+1] and [qmqm+1 ], then

>_ C2e-d(po,P) C2e-d(qo,qm).

Proof. This lemma follows from applying Lemma 1.2.2 to z P0, v Pm
qm, U Pn, and u2 qn. To apply Lemma 1.2.2 we need the following:

(i) yj < - for j 1, 2 where ?’1 (respectively ?’2) is the interior angle at Pn
(resp. qn) of the triangle with vertices Po, Pm qm, and Pn (resp. qn).

(ii) Qr/2(pn, l) N Qr/2(qn, 2) 0 where 1 (respectively 2) denotes the end-
point of the geodesic from Pm qm through Pn (resp. qn).

From Lemma 1.3.1 (iii) we deduce that

?,j < 2eC-^o

and taking A0 large enough we have (i).
On the other hand, (ii) follows from Lemma 1.2.3 if we show that

(1.3.6) e > cotan
16

where L := min{d(pm, Pn), d(qm, qn)}. But from Lemma 1.3.1 (iii) we have

> 0 -2ec-M

and from Lemma 1.2.1 (i) we get

L > M +(n-m- 1)(A0 1) > M

Hence, taking M large enough (depending on 0) we obtain (1.3.6).

2. Trees and Hausdorff dimension

2.1. Trees. In this paper by a tree 7" we shall mean a graph whose vertices, ),
are points in D, whose edges, jr, are geodesic arcs connecting pair of vertices, and
which as an abstract graph is a planar tree. By this we mean that it is connected, has
no cycles, and any pair of open edges do not intersect. (An open edge is an edge with
the two vertices that it connects removed.)
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We fix a root vertex v0 in ]) and classify the vertices according to their graph
distance from v0 into generations"

Vn {v ]): graph-distance(v, v0) n}.

The vertices in Vn are called the vertices of the nth generation. Of course, V0 = v0}.
The edges in A will be oriented away from the root, and we define An as the collection
of those edges of T connecting a vertex in Vn with a vertex in Vn+l.

For any vertex v Vn we will denote by P(v) the parent of v, that is, the
unique neighbor of o which belongs to Vn-1. Of course, v0 has no parent. Also we
will denote by H(v) the set of children of v, that is, the set of neighbors of v in
Vn+
We shall introduce now some definitions and notations that will be useful in the

rest of this_section. For a given tree 7" and for all n > 1, we use the following
notation.

Ln (’T) is the infimum of the lengths of all the edges in An.
On (7/-) is the infimum of the absolute values of the angles between any two edges

in An, if they share a common vertex. If all the vertices in Vn have only one child,
then On(T) := 2zr.

bn (T) is the supremum of the absolute values of the angles between consecutive
edges one in An-1 and the other in An.

Nn (7") + 1 is the infimum of the branching number of vertices in Vn. Recall that
the branching number of a vertex v is the number of neighbors of v.
We refer to Section for details on angle measuring.
We may write

Ln(7") inf{length[P(v)v]" v Vn+},

0n(T) inf{IZ([VUl], [vu2])l: v Vn, Ul, U2 H(v)};

(If #H(v) 1 for all v Vn, then On (T) 2r.) And

bn(7") sup{lZ([P(v)v], [vu])l" v Vn, U H(v)},

Nn (7") inf #H(v).
vVn

We will use #U to denote the cardinality of the set U.
To avoid artificial technicalities we shall require from the outset that any trees

under consideration satisfy

(2.1.1) /3(7") supbn(7") < n’/8 and
n>l

A(7") inf Ln (’T) >_ A0
n>_l

where Ao > 1 is the constant given in Lemmas 1.3.1 and 1.3.2.
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The branch from on Vn to Vm Vm (m > n) is the unique finite sequence of
vertices {vi m}i--n such that vi+ is a child of vi, we will use [on vn+ Vm] to denote
the polygonal piecewise geodesic path from vn to Vm given by the union of the edges
of the tree joining the vertices of {vi }m An infinite branch emanatingfrom on Vn
is an infinite sequence of vertices {l)i}i__.n such that 1)i+ ( H(vi).

Observe that Lemma 1.3.1 implies that if {vi}i is an infinite branch, then {vi}
converges in the Euclidean metric to a point in OD; we will refer to this point as the
endpoint ofthe branch {vi }i. The rim of T, Rim(T), is the set of all the endpoints of
all infinite branches of the tree 7".

For any v e )2, we will use to denote the final endpoint of the oriented geodesic
emanating from P (v) and going through v. Moreover we will define Rim(7")n as the
set

{v’. 1) Vn}

Notice that if Rim(T) then there exists a sequence {n with n Rim(7")n of
7-, such that .
We are interested in determining the size, i.e., the Hausdorff dimension of the rim

of 7", in terms of the "growth" of 7".
The following lemma will allow us to describe a kind of tree 7" such that the rim

of 7" can be written as a Cantor type set.
For simplicity we will use Qo(u) and So(u) to denote the cone Qo(u, ) and the

shadow So (u, ) respectively. We refer to Section 1.2 for the general definitions of
Qo(v, ) and So(v, ).

From Lemmas 1.2.3 and 1.2.4 we get the following result.

LEMMA 2.1.1.
then

There exists C > 0 such that if Ln(’T) > C q- log (16/0n(7-)),

(i) &r/2(u) tq &r/2(v) Ofor all u, v Vn+ such that P(u) P(v),
(ii) Qa(v) c Qa/2(P(v)),for all v V\{vo} and all t such that 4/(7-) < ct <

r/2.

We remark that it follows from Lemma 2.1.1 that if Rim(T), with :=
limn- on and vn . Vn, then is also determined as {} = Niffioli with I OD
and I, (i > 0) the arc Sa(vi) with 4/(7") < ct < r/2. Consequently, the rim of 7"
can be described as the Cantor type set

RimO’) "= N U
n=O vE Vn

Observe that Rim(T), does not depend on c, of course. However its description
above as a Cantor set, apparently depends on t, but in fact it does not. (All this
assumes 4/ < c < .)
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From Lemmas 1.1.3, 1.2.1, and 2.1.1 (ii) we have the next result.

LEMMA 2.1.2.
following hold:

There is a constant C > such that if A(T) > C, then the

(i) d(vo, v) > d(vo, P(v)) + d(P(v), v) Cfor all v ))\{vo}.
(ii) If J is an arc such that J C Sr/2(v) with v V, then

1
IJledo’ <_ w(vo, J) <_ C IJledo’o)

(iii) If v )2 and 0 < ot < zr/2, then

Ol -d(vo,v)e _< IS(v)l _< C c e
C

and

1 -d(e(o),v) IS(o)l
--e < <Cc -IS(P(o))l-

(iv) For all v );\{v0}, and 4/3(7") < ct < zr/2, the set A "= Sot(1))\Sot/2(v) is a
disjoint union oftwo arcs Jl, J2 OD such that

1
IJil -- IS(o)l i= 1,2.

The following corollary shall be frequently used.

COROLLARY 2.1.1. There exists a positive constant Co such that if Ln (’T) is
an increasing sequence, eLn(r) >_ Co and 4fl(T) < a < zr/2, then the
conclusions ofLemmas 1.3.1, 1.3.2, 2.1.1, and 2.1.2 holdfor any branch ofT.

2.2. Cantor trees.
following hold.

We say that a tree 7" is a Cantor tree if, for some s > 0, the

(i) For all 6 (0, 1) there exists n() 6 N such that for all v Vn+ with
n > n(),

length([P(v)v]) < (1 + )Ln(T),

max length([P (v) v])
min length([P (v) v])

-----> 1

when n ---> oo. Observe that length([P(v)v]) >_ Ln(T) for all v . gn+l.
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(ii) The sequence {Ln(’T)} is monotonically increasing.to infinity, and eL.(7") >
ColOn(T), with Co the constant in Corollary 2.1.1. This implies that the
conclusions of Corollary 2.1.1 hold.

(iii) There exists a sequence {rn }n=l with rn > 0 and limn-., rn/Ln-1 0
satisfying the following:
If J is an arc on 0D such that J C S/2(v), with v Vn, and moreover
IJI >_ e-d(’a) for some H(v), then

#{u H(V)Nn(T)N Qs(v)} _< er Ike-t’’)

We recall that Qs(v) denotes the cone with vertex v and shadow J; see
Section 1.2.

The tree described in the introduction is a Cantor tree with 0, rn a constant,
and s < log 2/log 3.
We define the order of the Cantor tree 7/- as the supremum of all s satisfying the

above conditions. Observe that for each s < order of 7, the conditions above are
satisfied.

2.2. Rate of growth of a Cantor tree.
following two useful estimates"

For a Cantor tree as above we have the

(2.2.1)
(2.2.2)

Nn(T) > MSe-r"esL"(7")
Nn("f’) <_ Ce(I+’)Ln(7") for n > n()

where M and C are absolute constants (M 2/(zrC02)).
Notice that the inequalities above imply that the order of 7 is at most 1. Here we

are using the fact that Ln increases to c and that rn/Ln-1 tends to 0.
To verify (2.2.1) observe that if we take J := S,/2(u) with u H(v) (v Vn),

then from Lemma 2.1.2 (iii) (which holds because of condition (ii) of the definition
of Cantor tree), JI > 1 / Co e-a(’’u), and therefore condition (iii) of the definition of
a Cantor tree says that

1 ISr/2(u)l< eTM(2.2.3)
Nn (7") e-" a(’o’’)

Besides, from Lemma 2.1.2, (iii), it follows that

(C) e-d(u’’) _< IS,/2(U)le -do’o,’) _< rC22 e-d("’")
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and by definition of Ln (T),

e-a(vo,v) 2

Now, using (2.2.3) we obtain (2.2.1).
To verify (2.2.2) observe that for all 4fl(T) < c < zr/2, from Lemma 2.1.1 we

have

U &(u) c &(v)
ucH(v)

and moreover, the union is a disjoint union. Then by comparing Lebesgue measures
and using Lemma 2.1.2 again, and from the property (ii) of a Cantor tree, we obtain
(2.2.2).

2.3. Dimension ofrims ofCantor trees. Now we are ready to prove the theorem
mentioned in the introduction which gives a relation between the size of the rim and
the order of a Cantor tree, and which also tells us about distances and angles between
the piecewise geodesics forming the tree.

THEOREM. A Cantor tree 7" oforder 3 has thefollowing properties:

(i) The rim ofT, Rim(T), has non zero O-contentfor all rl < 3. In particular,

dim(Rim(T)) >_ order ofT.

(ii) All piecewise geodesic paths within the tree are quasigeodesics (in the hy-
perbolic metric) with afixed constant; more precisely there exists a constant
C (depending on all the constants appearing in the definition of the Cantor
tree 7") such that if l)j }7----’m is a branch ofT, then

sup d(z, [VmVn]) < C.
E[1)m l)m+ ...On]

In particular, if limj_,o vy belongs to the rim ofT, then

sup d(z, [v0]) < C.
zEtvovt ...1

(iii) If {uj}7=m and {vj}__m are two branches in T such that uy vy for j
m, m + 1,..., s with m < s < n 1, then

ed(um’us) --ed(vm’vs) > C --wherec (respectively) denotes the interiorangle at Um Vm (resp. us vs)
ofthe triangle with vertices Un, Vn, and Um= Vm (resp. us vs), and C is a
positive constant.
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For more on the theory of quasigeodesics we refer to [GH].

Proof. Property (iii) follows directly from Lemma 1.3.2 which holds due to the
second property of a Cantor tree. The Property (ii) is a consequence ofLemma 1.3.1
(ii) and the fact that if e is a geodesic arc in D, and C is a positive constant, then the
region

f2={zD: d(z,) < C}

is hyperbolically convex.

It remains only to prove (i). First, we fix r/< 8, and we define := (8 r/)/(2r/).
Then we take r/1 (r/(1 + ), 8) such that properties (i)-(iii) of the Cantor tree 7"
hold for s r/1. We will denote by {rn }n-- the sequence given by property (iii) (with
s r/).

Letusfixct such that4#(’T) < t < r/2. We recall that # (’T) < r/8, (see(2.1.1)).
We have already described the rim of ’T, Rim(T), as the Cantor type set

Rim(T):= N U I.
n=0 vVn

with Iv D, and Iv Su (vi) for vi Vn, n > O.
As we mentioned in the introduction to show that the set Rim(T) has non zero

r/-content it is enough to construct a probability measure v with support on Rim(T)
and such that for all arcs J on D,

(2.3.1) v(J) <_ C IJI
for some positive constant C > 0.

First, we will define the measure v(Io) inductively, for each v )2, (from one
generation to the next). First, v(Ioo) 1, and then for all v V\{v0},

1
v(Io) v(Io f3 Rim(T)):= #H(P(v)i’ v(It,(o)).

In other terms, the mass of the parent is equidistributed among its children. Next, for
any set J C 0D,

v(J) "= inf2 v(U),

where the infimum is taken over all the coverings R of J with arcs in {Iv: v ;}.
The set-function v defined above is a measure (e.g., see [R]).
Now, we verify that (2.3.1) holds for J Iv, v )2. From Lemma 2.1.2 and

the property (i) of a Cantor tree, there exists n N such that for all v Vn+l with

1 -(I+,)L.(’) Ilol e_Z.(-)e < < Co(2.3.2)
Co Ih,(o)
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To simplify notation we will write Ln and Nn instead of Ln (7") and Nn (T), respec-
tively.

Since lim# "rolL,,-1 0, and {Ln} is a sequence increasing to cxz, we can take
n2 N large enough so that for all n > n2,

(2.3.3) e(0,_0(l+,))Ln > __C (_o, ern+t
MOt \2/

2with M --o"
Let ko max{n1,
We will prove inductively that for all v Vk+,

(2.3.4) v(lo) <_ c’ Izlo

with C’ a positive constant. Notice that since rk+ > 0, (2.3.4) would imply that
(2.3.1) holds for Io. But (2.3.4) is a stronger inequality, which we shall use later; see
(2.3.9) and (2.3.10).

koIt is clear that there exists C’ > 0 such that all Io with v t.J#=0 Vn satisfy (2.3.4).
Now consider the arc Io with v V,+ and k > k0. By definition, we have

v(le(,)) v(leo,))
v(Io) <

#n(P(v)) N
Using the inductive hypothesis, and (2.3.2), we get

v(Iv) < C’ IIe()ln C’ (Ce(+’)L’llvl)
e Nk e Nk

Moreover, (see (2.2.1)) we know that

1 e

Nk Mot

Hence, we have

MOte(Ot-o(l+,))L, IfIn"
And from (2.3.3) it follows that Iv satisfies (2.3.4).

Finally, we verify that (2.3.1) holds for an arbitrary arc J C 0D. Let us as-
sume that J Iv for all v V, and J fq Rim(T) (otheise v(J) 0). If
J O Rim(T) I for any v Vo, then JI c for some positive constant c, and
therefore

iv(J) lJ
So, we may assume that J C I, for some v 6 Vko.
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Let Iu be the smallest arc in the family {Iu,: w Ui>_ko Vi containing the arc J,
and denote by m the generation of the vertex u, i.e., u Vm.
We have

(2.3.5) v(J) < E v(Iw) < #{w e H(u)" I, N J Rim(T) 0}
well(u) Nm

lu,OJf3Rim(T)0

Let us fix Io with to H(u) such that Io fq J q Rim(Y) 0. (Notice that there
is at least one to H(u) such that Io q J fq Rim(T) =/= 0, because J fq Rim(Y) - 0
and J C Sa/2(u)).

From Lemma 2.1.1 (ii) we get Io fq Rim(T) C S,/(w), and from the definition
of I we have J

_
lw. Then, by Lemma 2.1.2 it follows that

1 e_aoo,w(2.3.6) IJI CIII C
Using the fact that S(w) C S/(u) for all w H(u) (this follows from

Lemma 2.1.1), and (2.3.6), it is not difficult to see that there exists an arc J1 in
0D and a positive constant c depending only on C0 such that

(2.3.7) J C J1 C S/2(u) and e-ao’ < IJl < (1 +c)lJI,
C0

and such that

(2.3.8) {w H(u): I J Rim(T) fl} C {w H(u) Qjt (u)}.

From propeay (iii) of a Cantor tree (with s ) for J1 and (2.3.7) we have

IJl IJI nt#{w H(u) Qj, (u)} < e < (1 + c) eTM
Nm e-otd(’u) e-od(v’u)

and therefore using (2.3.5) and (2.3.8) we get

IJIn
(2.3.9) v(J) < (1 + c)OteTM v(lo)e-d(vo,u)

From (2.3.9), (2.3.4), and Lemma 2.1.2, it follows that

(2.3.10) v(J) C’ IJInt
e-(O -o)d(vo,u)

Since J C Iu, by Lemma 2.1.2 we have

(2.3.11) JI Co e-ao’u.

Finflly, since 0 0 > 0 from (2.3.10) and (2.3.11), we get (2.3.1).
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