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NON-LINEAR BALAYAGE AND APPLICATIONS

MURALI RAO AND JAN SOKOLOWSKI

ABSTRACT. A theory of capacities has been extentively studied for Besov spaces [1]. However not much
seems to have been done regarding non-linear potentials. We develop some of this here as consequences
of the form of certain metric projections.

The non-linear potential theory is used to derive the form of tangent cones for a class of convex sets
in Besov spaces. Tangent cones for obstacle problem arise when studying differentiability of metric
projection. Characterising the tangent cones is the first step in these considerations. This has been done
in some of the Sobolev spaces using Hilbert space methods. In this article we describe tangent cones
for obstacle problems precisely, using non-linear potential theoretic ideas, for all Besov spaces BZ'?,
l<p<oo,l1<g<oo,a>0.

1. Introduction

Classical or linear potential theory has played a fundamental role in boundary value
problems. A particular case of these potentials, the so called equilibrium potentials,
and the resulting capacity theory are crucial in the description of small sets. In the
non-linear setting, we find a very well developed theory of capacities and capacitary
potentials in the literature; our main reference is [1]. However not much is said about
non-linear potentials.

Our main objective in this paper is the development of a theory of non-linear
potentials. We will develop some properties of these potentials that are analogues of
their classical counterparts. The theory is non linear because the sum of two potentials
is not necessarily a potential. Our main method of attack is the determination of the
form of metric projections onto special convex sets.

In Section 2 we introduce kernels on RY with values in 14 (L?' (M) spaces. The
conditions on these kernels are general enough to include the Besov B%™? spaces,
1l <p<oo,1<gqg < oo, a>0. The action of any 19(L?(M)) function on
this kernel then determines a potential on RY and the action of any measure on RY
determines a potential on 19 (L” (M)). The main result of this section, Theorem
1, characterizes the elements of 19 (L' (M)) which are non-negative on elements of
19(LP (M)) giving rise to non-negative potentials on RV as potentials of non-negative
Radon measures on RV,

We will make crucial use of Theorem 1 in Section 3 to introduce balayage and
capacitary potentials in this setup. These happen to be elements of smallest norm
in suitable closed closed convex sets. It is shown that these are given as nonlinear
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potentials. It might seem that Theorem 2 is a consequence of the results in [1].
However note that in [1], two versions of @ — p capacities are given. A first version
presented in pp. 19-23 is valid only for special kernels (such as Bessel Kernels). As
the proof on p. 22 shows one needs the (distributional) inverse of such kernels and
the fact that positive distributions are measures. This argument does not extend to the
context of Besov Spaces. In [1], another version of @ — p capacities is developed in
Sections 2.3-2.5 precisely for this purpose—see the remarks on p. 85 and p. 104 of
[1]. These remarks show that the authors consider the theory of capacities developed
for Bessel kernels in pp. 22-23 inadequate to deal with Besov Spaces. A nice abstract
theory of nonlinear capacities is developed. To do this the authors need a version of
the min-max principle which, while very interesting, is not exactly easy. On the other
hand its applicability in the context of Besov Spaces has not gone beyond a theory
of capacities. In particular it is not clear how this can be used to extend balayage
theory for Besov Spaces. And this is precisely what is needed to get tangent cones.
Balayage has not, to our knowledge, been discussed in the nonlinear setting. We do
this in Section 3.

In Section 4 we develop this nonlinear balayage further. We prove that capacity
zero sets are subsets of poles of non-linear potentials, that the set of non-linear poten-
tials while not necessarily convex is necessarily complete etc. Those are counterparts
of results for classical potential theory. Finally, in Section 5, the results of Sections 2
and 3 and the characterization of Besov B{*? spaces given in Chapter 4 of [1] allows
us to precisely describe the form of the tangent cone T¢(z) for any z in the convex
set

A={feBMRY) | f(x)=2¢¥k) qe}, l<p,g<oo,a>0.

This result of the paper generalizes the previous results [3],[4],[5] obtained in the
framework of the Hilbert space theory of Sobolev spaces combined with the linear
potential theory to the general setting of non-linear potential theory in the Besov
spaces.

2. A general result

We derive a result for [7(L”) spaces which will be useful for applications. The
same result can be proved for the L? spaces using the same arguments.
Let M be a measure space with a o-finite measure v. Let

X=R"xMxN,

where N is the set of non-negative integers.
Fix 1 < p,q < 00, and let

lIf(-,n)Hf,’=fle(y,n)|"v(dy)=fIf(y,n)l”v(dy)-
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The space 19(L?(M)) is defined as the set of f = f(y,n),y € M, n € N such that

1fllp.g = (Znenl £ mIT)T < oo,

i.e., the sequence || f (-, n)||, € 19. The space [9(L?(M)) is a reflexive Banach space
with the dual space (19(L?(M)))’ = 19'(L?' (M)).
For any f = f(y, n) we write

Tren / FOrmyv(dy) = / £y myv(dydn).

Definition 1. By a kernel T on X we mean a non-negative function T (x, y, n),
x € RN,y e M, n € N, such that:

1. 0 < T; for each fixed (y,n), T(-, y, n) is continuous on R¥ with compact
support. For each x € RV, T'(x, y, n) is measurable in (y, n).
2. For each compact set K C RV,

fK T(x,y,n)dx € 19 (L” (M)).
3. There exists a non-negative A € [9(L?(M)) such that
P (x) = Znen f T(x,y,m)A(y,n)v(dy) = f T(x,y,n)A(y,n)v(dydn)
is stricly positive on R".
Remark 1. For all non-negative f € 19(L?(M)), the integral
17 = [ TG y.mf & mv(dydn

is well-definedonRY. T f is alower semicontinuous function on R”, from condition 1
above.
For each non-negative measure u on R" the integral

Fu= [ 16y, muian
is a well-defined non-negative function on Ml x N,

Remark 2. Condition 2 above implies that for each f e 19(LP(M)),
Tf e L} (RY). )

Moreover, the Holder inequality implies that 7 maps [9(L? (M)) continuously into
L'(u) for each 1 € 9 where

9M = {u | u non-negative Radon measure, T € 19 (L” (M))} .
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Assumption 1. 'We assume in the rest of the paper that the kernel T is such that
Tf = 0 implies f=0. We do not give conditions on T validating this. In situations of
interest, namely Besov spaces, this is true: See Theorem 4.17 in [1].

2.1. Quasi-null sets.
Now, we need the notion of a quasi-null set or a set of capacity zero.

Definition 2. A set £ is called a quasi-null set if £ C B for a Borel set B such
that

uB)=0 forallue M.

A countable union of quasi-null sets is quasi-null.

A property holds quasi everywhere, written q.e., if it holds except perhaps for a
quasi-null set.

If f € 19(LP(M)), it is easily seen from the Holder inequality that the set

{x | TIf1(x) = o0}
is quasi-null. In particular, for each f € I9(L?(M)), Tf is q.e. well defined.
Condition 2 above implies, of course, that quasi-null sets are of Lebesgue measure

Zero.
We record another simple consequence:

Consequence. If a sequence { f,,} C 19(L?(M)) tends to f € 19(L?(M)) then
for a subsequence T f,, tends to T f pointwise quasi-everywhere.

Indeed, choose a subsequence { f,,} so that

2i"fm - fnf—l "P»‘I < 00.

Then, by Fubini’s theorem and the Holder inequality, for any u € 9,

% f \Tfu = Thuldu < 5 f T1fo = fosldis

Zill for = FualpgI TRl pg < 00.

IA

Thus the u-measure of the set

{x | ZilTfo, — Tfu,|(x) = 00}

is zero for every pu € M.
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2.2. Main result.
With this setup we have the following theorem.

THEOREM 1. For g € 19 (L? (M)) the Jollowing are equivalent:

1. fg,n)f(y,n)v(dydn) > O forall f € 19(L?(M)) such that Tf > 0 g.e.
onRV,
2. g= Tu for some non-negative Radon measure . on RY .

Proof. 'We give the proof in simple steps.

Step 1. Let
C={helfL”M)|h= f‘u for some non-negative Radon measure x on RV}.

We claim € is a closed convex cone in 19’ (L?' (M)).

The only item not at once clear is the closedness of €. Let {hx} C € converge to
h € 19'(LP (MD)). By choosing a subsequence if necessary we may assume hy (y, n)
converges to k(y, n) p-a.e.y forall n. If by = T i we have

/ S () (dx) = f he s A, Wy dn) < Iy lAlpg. @

The right side is bounded in k because {h;} converges in 19 (L7 (M)).

Now, P, being a strictly positive lower semicontinuous function, is bounded below
on compacts. From (2) one concludes that {u;(K)} is bounded for each compact X .
By choosing a subsequence if necessary we may assume that there is a Radon measure
w such that

li,gn / PxX)u(dx) = / p(x)u(dx)
for each continuous function ¢ with compact support in R¥. Since by assumption,
for each (y,n) € M x N, T(x, y, n) is continuous in x and has compact support, and
since hi(y, n) converges for v-a.e.y and all n to h(y, n), we have for v-a.e.y and all n
h(y, n) =limhe(y,n) = im T (y, n) = Ty, n).
This shows that 4 € € and thus € is closed.

Step 2.  'We will show that

{f e l7(LP(M)) | /F(y, n) f(y,n)v(dydn) > Oforall F € (’Z}
= {gel9(L’(M)) | Tg > 0q.e.onR"}. 3)
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The set on the left in (3) clearly contains that on the right. On the other hand let
f € 19(LP(M)) be such that

/ F(y,n)f(y,n)v(dydn) >0 forall F eC.
Since, | f| € 19(L?(M)) and F € 19 (L? (M)),

00 >/If(y,n)lF(y,n)v(dydn)=/If(y, m|T (x, y, n)u(dx)v(dy dn)

Fubini’s theorem permits interchange of the order of integration. Therefore, for all
non-negative measures 4 on R such that T € 19'(L? (M)),

0= /f(y, m)T u(y, n)v(dy dn) =/(Tf)(X)M(dx)- C))

If u € M, for any Borel set B, up also belongs to 9, where wp is the restriction of
w to B. From (4) we see that the set {Tf < 0} has u-measure zero for every u € 9,
i.e., Tf = 0 q.e. Thus the sets are identical.

Step 3. This is the last step in the proof. To this end let g € 19'(L” (M)) and
suppose

fg(y, n) f(y,n)v(dydn) > 0 for each f suchthat Tf > 0 q.e. &)

We want to show that g € €. If not, by the Hahn—Banach theorem, there is a function
@ € 19(LP(M)) and « € R such that

fF(y,n)(p(y, n)v(dydn) > aforall FeC (6)

but
fg(y, n)e(y,n)v(dydn) < a.

Now € is a cone so AF € € for all A > 0. From the first inequality in (6) with F
replaced by AF, we get

A/ F(y,n)p(y,n)v(dydn) > a forallA > 0. @)
Dividing by A and letting A — oo we infer that

/F(y,n)go(y,n)v(dydn) >0 forall Fec
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which, by step 2, implies
Te(x)>0 qe. onRY,

This last inequality in turn implies, by (5), that

fg(y, n)e(y,n)v(dydn) > 0.

But then, by the second inequality in (6), we must have ¢ > 0. However, by (7), this
cannot be valid since A can be chosen arbitrarily small.
This contradiction completes the proof. O

3. Non-linear balayage

To motivate and explain the term non-linear balayage let us recall some classical
potential theory.

Let Q be a bounded domain in R¥ and A the Dirichlet-Laplacian. A lower semi-
continuous function u on € is called superharmonic if, in the sense of distributions,
Au < 0in Q. Let G be the integral kernel of the operator (—A)~!; a famous result
of E. Riesz states:

Let u > 0 be superharmonic in Q. Then there is a unique Radon measure 1 and a
harmonic function A such that

u(x) = f G(x, y)u(dy) + h(x).

When h = 0, u is called a potential and p its Riesz-measure. This result is basic in
classical potential theory.

The balayage or sweeping process of H. Poincaré is the following.

Let 4 be a measure, p = Gu its potential and K a compact subset of 2. Let g be
the lower semicontinuous regularisation of

inf {u: 0 < u superharmonic, u > p on K}.

Then q is a potential with its Riesz-measure v concentrated on K. The measure v is
called the balayage of 1 on K. We shall also say that g is the balayage of p on K.
Now suppose that u has finite energy:

/Gudu<oo.

Then Gu € H{ (). H. Cartan proved that g is nothing but the “projection” of p on
the closed convex set

{u: ue H(Q),u>p qeonk}.
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In other words “balayages” are special cases of projections onto convex sets.
‘We hope this explanation will be usefull in motivating our nomenclature.
Keeping the notation of previous section, let B denote the following space of
functions on RV:

B=(Tf|fel?(LPM)}. ®)
Ifu e B,u=Tf, we define

el = llulls = 11 fllp.q -

Then B is a Banach space. By suitable choices of the kernel T and the space M we
get the Besov space BY'?, @ > 0. We return to this later.

Remark 3. Condition 2 on the kernel T guarantees that
Bc L ®RY).

We have seen that if a sequence {u;} in B converges to 4 € B then a subsequence of
u(x) converges to u(x) for quasi every x.

Remark 4. Using the strict convexity of LP-spaces it is not difficult to see that
every closed convex set in B has a unique element of smallest norm.

Theorem 1 permits the introduction of balayage into B:
Let h be any measurable function on R and let

Ch={ueBlu=hqe.}. )

Assume € is not empty. From the above remarks we infer that &, is a closed convex
subset of B and there is a unique element of smallest norm in €.

This element of smallest norm we call balayage of & and denote it by RhA.

Let us look at this a bit more closely. Let

Rh=Tep, ¢ecli(LP(M)).
Then Ty > h q.e. and for any ¢ > 0 and any f € [9(L?(M)) suchthat Tf = 0 q.e.,
Te+tf)zh qe.
In the other words ¢ + tf € €. By the definition of ¢,
lellpg <lle+1tfllpg, t >0, Tf=0qe. (10)
Written in full (10) is the same as

ZulleC I < ZalleCon) +1£C,mI7 1n
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forall # > 0 and all f such that Tf > 0 q.e. The derivative relative to ¢ of the n-th
term on the right side is

qlleC,n)+tf ¢, mIL~P / lo(y, m)+tf (v, WP~ 2(@(y, m)+1f (v, 1)) £ (7, m)v(dy) ,

12)
whose absolute value, by the Holder inequality, is dominated by

gllpC,m) + £GP F Gl loCym) + 2, mIE
= qlloC,n) + £ IS 1 F Gl -

Using this estimate and the Holder inequality we see that the series of derivatives
of the terms on right side of (11) is uniformly convergent on compacts. Therefore,
term by term differentiation of the right side in (11) is permissible and (11) says the
derivative at t = 0 is non-negative. From (12),

qzm¢unmgT/W¢0unW4¢unaﬂymnmw>zo ifTf >0qge. (13)

The function

a =a(y,n) = lloC, I ?le(y, WPy, n) (14)

belongs to 19'(LP' (M) as can be verified using the Holder inequality.
(13) and Theorem 1 imply

a=Tu (15)

for some non-negative Radon measure . on RY. Using (14) and (15) we get

e, m) = 1T ML~ @iy, m)? . (16)

This we state as:

THEOREM 2. Let h be any measurable function and suppose the closed convex
set €, is not empty. There is a unique element T ¢ of smallest norm in €, where ¢ is
given by (16) for some non-negative Radon measure i on RV,

Remark 5. 'We have not used any special properties of R¥ or the Lebesgue mea-
sure. Therefore, in Theorems 1 and 2, RY can be replaced by a locally compact
second countable space provided with a o-finite measure satisfying condition 2 of
Definition 1.

In particular, if K is a compact subset of RN which is not quasi-null, there is a
measure 7 € 9 such that n(K) > 0. Replace RY and the Lebesgue measure by K
and the restriction of 7 to K to get the following, stronger version of Theorem 2:
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THEOREM 3. Let K be a non-quasi-null compact subset of RN, and let h be
measurable and suppose the set

Ch={ueB|lu=>h qeonK}

is not empty. Then, there is a measure |4 on K such that the unique element of the
smallest norm in Cy, is given by T ¢ where

0, m) = 1TpC, )L™ T uly, m)? . amn

Specialising to 2 = 1 in Theorem 3, we conclude (by condition 3 of Definition 1)
that the set Cy, is not empty.

COROLLARY 4. To each compact set K there corresponds a measure (L on K such
that T ¢, where ¢ given by (17) satisfies

Te>1, qe.onkK

and |||l p,q is minimum.

This unique element of B is called the capacitary potential of K and the capacity
of K is defined to be

C(K) = lloll?, - (18)
Using (17) we get

C(K) = ol = 1l g = [ Torduc. 19

For more information on capacities we refer to [1].

4. Applications to non-linear potential theory

In this section we shall define and study some properties of “non-linear potentials”
in our setting. The results obtained will be analogues of those in classical potential
theory. We point this out as we proceed.

As a first application we give the following extension (Theorem 5 below) of the
classical equilibrium principle:

For each compact set K there is a non-negative measure 1 on K such that Gu > 1
on K and G = 1, p a.e. This has been extended to very general kernel G’s not even
symmetric [2]. By considering the kernel LG we easily see that for each compact

i . u(x)u(y)
K and each continuous u > 0 there is a measure p such that

f G(x,y)u(dy) = u(x)q.e.on K and equals u, u a.e.
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Alas this trick does not seem to work in the non-linear case.
Consider Rh = Ty andletu = Tf € C,sothatu > hq.e. Thenforall0 <t < 1,

To+twu—Te)=tu+ (1 —-2t)Tp > h.
ie, Te+tT(f —¢) = h. Then
ITells < IT(@+t(f — DB,

ie.,

leld, < llo+t(f —@lle,, 0<t<1.
Proceeding as in the proof of Theorem 2 but replacing f by f — ¢ we get

aZloCmlg [ oIS - I mvan) 20 TS €

Recalling the definition of ¢ given in (16) and simplifying we get

fuduszu.du Yu € C.

We have the following corollary.
Use the notation V u for T, let u € B and K compact. We know from Theorem 3
that there exists a measure 4 on K such that V i is the element of smallest norm in

C,={veB: v>uqe.on K}

From above we have

fvduz/Vu.du Yv e(C,.

/udp,z/Vp,du.

But since V u is in C, it is > u q.e. on K. This implies

In particular,

u=Vu ua.e.
We thus have:

THEOREM 5. For u € B and K compact there exists 1 on K such that Vi > u
ge.onKandVu =uua.e.

For the next application we need the following simple result.
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PROPOSITION 6. Let f, — f a.e. and || full, bounded. Then f, — f weakly
in LP.

Proof. By choosing a subsequence, assume f, — v weakly. The indicator
function of every set O of finite measure is in L? and on such sets f, is uniformly
integrable because || f» ||, is bounded. So

f fn = j v by weak convergence in L?,
o o

/ fo > f f by uniform integrability .
o o
Thereforev = f. 0O

A classical result states that on bounded subsets of H(} (£2), vague convergence of
W to u is equivalent to weak convergence in Hol (R2) of Gug to Gu. An analogue of
this result is given below.

THEOREM 7. Let u; — p vaguely. Suppose
T . is bounded in 19 (L”').

Then (the potentials) W ;= T[(Tv' wi)? 11 tend to (the potential) W u = T[(f‘ w)?1]
qg.e.

Proof. Since T(-, y,n) is continuous and has compact support and uy — u
vaguely,

lim T ue(y, n) = Tu(y,n) Vy,n.

T i is bounded in 7' (L?") which in particular implies that for each n, T (-, n) is
bounded in L?'. Hence (T i (-, n))”'~! isbounded in L?. And (T 11k (y, n))? ! tends
to (Fu(y, n))? 1.

Letnow A be ameasure € M (i.e., TA € 19 (L?')). Thenforeachn, TA(-,n) € L”.
From Proposition 6 we see that

[ Eray,my? 1 mav) > [ Eur,my? " Fagy,mav),
ie.,
fWuk(x)A(dx) — f Wui(dx), A € M.
Since lim inf W, > W u the above immediately implies that

Wur > Wu  qe.
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and for each A € 901,

/Wukdxe‘/‘WudA. a

Let us define the potential (non-linear) of a measure u € 90 by
Vi="Tou, 0u(y,n) = ITuC, L7 Tuly, m)?-". (20)
With this definition we see that
_ v q/

louC I = ITpC, mll, .

Thus u € M = Vyu e Band
IVl = lgull? , = ITul .
And
f Vudu = ||7v‘u||;1,:_q, .

In classical potential theory a well-known result of H. Cartan states that the set
{Gu: /Gp,dp, < o0}

is complete in Hy (S2). We extend this result below to the non-linear setting.

THEOREM 8. The space P (of non-linear potentials)
P={Vu: neM

is complete in B.

Proof. Let Vyu; be a Cauchy sequence in B. From the above, ||V u ll‘l’g =
0T i u;i,q,. Thus Ty is bounded in 19'(L?). Then as observed in the proof of
Theorem 1, uy(F) is bounded for each compact F. So (by choosing a subsequence
if necessary) we may assume that w; tends to some u (necessarily in 9t). Since
T(., y, n) is continuous with compact support,

Tux(y, n) > Tu(y, n) for each y, n. (1)
Also, V u; is a Cauchy sequence in B if and only if ¢, (-, -) is a Cauchy sequence

in [9(L?). Recall the definition of ¢, (-, -) from (20). In particular this implies that
©u, (-, n) is a Cauchy sequence in L? for each n.
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Let Vg — u in B. In particular this implies that ¢, (-, n) — g(:,n) in L? for
each n. Now

2 4
N@u G Ml = I fell” <,

with fi = (T e, m)? . . .
Further, since |V uellp = ll@w, lI5,g = 1T ell? , we see that Ty is bounded in
19'(L?"). From (21),

Tu(y,n) = Tu(y,n) Vy,n.
In other words,

fiysn) = f(y,n) = Ty, n)? .
Now ¢, (-, n) = Cin fi(-, n) where
Con = fiCmI T 7.

We have two cases: 5

If g, (-, 1) = O then |y, (- )ll, — O but then I full, = 0, ice., Fu(:,m) = 0.
So g('; n) = T“‘('v n)'

Suppose lim ||¢,, (-, n)|l, > 0. Then li;an,,. = C, > 0 since |l¢,, ¢, n)|lp, =

||fk(-,n)||93. Hence since ¢, (-,n) = Cinfi(-,n), fi(-,n) converges in L? to
(T, n))P =1
This completes the proof. O

The classical second maximum principle states that G > Gv on support v implies
inequality everywhere. We give an analogue of this in the non-linear setting.

PROPOSITION 9.  Let V. = T ¢, be defined as in (20). Then we have
Vu = Vvonsupportofv = |Vuls=I[Vvis

for any measures p, v.

Proof. Indeed,

Ivvlg = vadvstudv

/(T¢,4)dv = /gb,j‘v

10l pg 1TVl g

,

. £ 2
= ITully I Tvlpy.e =11VelslVvig
which implies ||Vv|gp < ||V ullp as required. O

IA
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This leads to a characterization of non-linear potentials:

THEOREM 10. Let u € B. Then u is a non-linear potential if and only if

veB, v>u= vl > |luls.

Proof. Letu € B and
C,={veB, v>uqe.l.

The unique element of smallest norm in C,, is a non-linear potential V ut. If u has the
smallest norm in C,, ¥ must equal V .

Conversely let ¥ = Vu and let Vv have smallest norm in C,. Then ||Vv| <
[[Vul. But Vv > Vu so from Proposition 9, ||Vv| = |[Vul. By uniqueness,
Vv=Vu. 0O

Now more generally, let V u be a non-linear potential. Then
u > Vy onsupport u = [lull = |Vull.

Indeed, let C = {v € B: v > V u on support 4} and Vv be the element of smallest
norm in C. Then, By Proposition 9,

Vv > Vuonsupport u = [[Vv|| = [[Vull.

ButVueC=Vv=Vu.
Before the capacity theory came about, sets of capacity zero were also known as
Polar sets:

A set A is polar (classical potential theory) if A is a subset of the “Poles” of a
superharmonic function

AcCs N 0), s superharmonic.

We generalize this below.

THEOREM 11. A compact set K has capacity zero or quasi-null if and only if it
is polar, i.e., there is a measure v such that Vv = oo on K.
Further,forallpon K,Viu =00 pae.

Proof. Only one direction needs to be proved because the set (4 = 00) has
capacity zero for each u € B. Let K have capacity zero. Letu, € B,u, > 1on K
and |lu,|lp <27". Then )} u, =u € Bandu = ooon K and |u|p < 1.

Let 1 be any measure on K. Then o0 = f udu < ||lull |l ||7v" M|l implies that
for all measures . on K, f Vudu = oo.
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Let A, = {x € K, Vu < y}. Then [Vpu,du, = oo (as above). But
JVuydu, < [Vudu, < ypy(1) < oo where u, = pls,. This implies
u(Ay) =0.

To show that K is indeed polar let Vv be the element of smallest norm in

C.={v:veB,v>u}.

Then Vv > u q.e. and |Vv| < |lu||. O

5. Tangent cones in Besov spaces

Much of the considerations below are valid in the more general setup of the previous
sections.

In this section we will denote by B the Besov space BS'? (RV), wherea > 0,1 <
p < 00,1 < g < o0o. Our reference for Besov spaces is [1], Chapter 4. B is a
Banach space. The following characterisation of B will be used (see Theorem 4.4.1,
page 105 of [1]).

Fix a non-negative C™ function n on R¥ with support in the unit ball B(0, 1). We
will assume

/ nx)dx=1.
Let
M (x) = 2"V (2"x)

forn > 0 so that ng = n.
Then a function u € B iff there is a function sequence

f={f} el @ RY)
such that
U= T2y % fr - 22)
We may take the B-norm of u to be || f||5,4. All choices of 1 give equivalent norms.

Remark 6. u defined by (22) is in L?. To see this let g € L?'. Denoting the
(LP, L”') pairing by (-, ), we have

(lul, 1gl) < 23°2'”°'(7In *|fal, lgl) < 2802_”0‘"fn"].r"ﬁn * |g|"p’

4
q

1 ’ ’
(ZCIAE)7 (2277 gl)” < oo
We have used the fact that

IA

7n 18l < gy
because [ 7j,(x)dx = 1, here 7j,(x) = n,(—x).
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For (x,y,n) € R¥ x RY x N, let

T(x,y,n)=2""n(x —y), n=0,
v(dy) =dy Lebesgue measure.

We can verify that conditions 1, 2, 3 of Definition 1 are satisfied.
Condition 1 is immediately seen to be satisfied.

If f € LP(RY),

p
<| f T(x,y, n) f(¥)dx ) <2 f M (x = Y F@)IPdx

p
fdy (V T(x,y,n)f(x)dx ) 27PN fI18

because f Na(x — y)dy = 1 for every n. Condition 2 follows.

Similarly, condition 3 is easy to verify.

Thus the Besov space B&'? fall under our setup. The notation such as g.e. will be
as before. For ease of reference let us emphasize that elements of B are of the form
Tf for f in 19(LP(RN)) with norm || f|,q-

so that

5.1. Tangent cone.
Let ¢ € B and £ denote the closed convex set

R={feB|fx)=¢¥x) qel}. (23)
Given z € R, the tangent cone Tg(z) is the closure of the set
Cg(z) ={p € B |3t > O0suchthatz +tp € K}. 24)

Both €4(z) and T(z) are convex cones and contain all non-negative elements of B.
Put

E={xlzx)=vy@)}. (25)
Clearly every v € Tg(z) is non-negative g.e. on &.
Since T (z) is a closed convex cone, for each V € B, V — %4(z) is a closed
convex set and contains a unique element of smallest norm. This element u is the
“projection” of V on the tangent cone:

IV —uoll IV —ull, ueZ%a. (26)

As observed before, each non-negative element of B belongs to Tz(z). Suppose that
Tf > 0q.e. Since Tg(z) isacone, ug +tTf € Tg(z) forall ¢ > 0: From (26),

IV —uoll IV —uo—tTfl, t>0, Tf=0 qe.

Arguing as in the last section we have:
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THEOREM 12. There is a Radon measure 11y such that
V—uy=-Tyo, 27
where
v ql - pl v p'-—l
¢ =00, m) = 1 FuoC, WIL™ (Fuoy,m)" . @8)
More can be said about the measure p:
THEOREM 13. Let ug be as in Theorem 12. Then:

(1) fuduo>0, VueTa@.
(2) o is concentrated on E.
3) f upduo =0, ie., Woisconcentrated on {ug = 0}.

@) o 0,
[ Vau =~ [ Tonia@n = -ifmlf, <0. @9

Proof. (1)Note that T(z) is a cone, so ug + tu € Tg(z) for each ¢t > 0 and
u € Tg(z). Hence
IV —uoll < IV —uo —tull.

Write V — ug = —T¢ and follow the proof leading to inequality (13) of the last
section to get (1).

(2) It is known that D = D(R") is a multiplier for B: u € B, ¢ € D implies
ou € B. See [7], page 140.
Let ¢ € D; then ¢(z — ¥) € B. Hence if t = |lp]l3},

2=V +to@z—=yY)=(1+tp)(z—¥) =0.
It follows that

oiz—¥)€eTa(z), ¢eD.
From property 1, already established,

f¢(z—1/f)duozo, oeD.

This can only happen if f o(z — ¥)duy = 0i.e., uo is concentrated on E.

(3) ug € Ta(z), hence tug € Tg(z) for all ¢t > 0. Therefore,

NV —uoll < |V —uo+tuoll ift<1.
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Writing V — ug = —T¢p and following the proof leading to the inequality (13) of
the last section (as in (1) above) we get

/uoduo <0.

But since ug is in Tg(z), (1) and the last inequality give (3). Since ug > 0 q.e. on E
(all elements of T g(z) satisfy this) we see that u is concentrated on the set {ug = 0}.

(4) Integrate both sides of (27) relative to pg and use (3) to get (29). 0O

The following corollary characterizes the tangent cone ¥ g(z):

COROLLARY 14. V € Tg(2) if and only if

~

V=0 qge.on E.

Proof. Immediate from (29). 0O

REFERENCES

[1] D.R. Adams and L. I. Hedberg, Function spaces and potential theory, Springer-Verlag, Berlin, 1996.

[2] Masanori Kishi, An existence theorem in potential theory, Nagoya Math. J. 27(1966), 133-137.

[3]1 M. Rao and J. Sokotowski, Differential stability of solutions to parametric optimization problems,
Math. Methods Appl. Sci. 14(1991), 281-294.

[4] —__, Sensitivity analysis of unilateral problems in Hg () and applications, Numer. Funct.
Anal. Optim. 14(1993), 125-143.

[5] Polyhedricity of convex sets in Sobolev space Hg (R), Nagoya Math. J. 130(1993), 101-

110.
[6) ——, Tangent cones in Besov spaces, INRIA-Lorraine, Rapport de Recherche, June 1997.
[7] H. Triebel, Theory of function spaces, Birkhéuser, Basel, 1983.

Murali Rao, Department of Mathematics, University of Florida, Gainesville, FL
32611

rao@math.ufl.edu

Jan Sokolowski, Institut Elie Cartan, Laboratoire de Mathématiques, Université Henri
Poincaré Nancy I, B.P. 239, 54506 Vandoeuvre lés Nancy Cedex, France

Systems Research Institute of the Polish Academy of Sciences, ul. Newelska 6, 01-
447 Warszawa, Poland

sokolows@iecn.u-nancy.fr



