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THE SEARCH FOR TRIVIAL TYPES

TRACEY MCGRAIL

ABSTRACT. In this paper, we look at strongly minimal sets definable in a differentially closed field of
characteristic 0. In [3], Hrushovski and Sokolovid show that such sets are essentially Zariski geometries.
Thus either thre is a definable strongly minimal field nonorthogonal to D, or D is locally modular and
nontrivial, or D is trivial. We show that the strongly minimal sets defined by a certain family ofdifferential
equations are trivial. We also prove a theorem wich provides a test for the orthogonality of types over an
ordinary differential field.

1. Introduction

In this paper, we look at strongly minimal sets in the theory DCFo. In Section 2,
we use a criterion due to Rosenlicht [7] to determine whether or not each member
of a family of strongly minimal sets is orthogonal to the constants. A consequence
of this result is tat orthogonality to the constants is not definable in a differentially
closed field.

Hnashovski and Sokolovi6 [3] show that the strongly minimal sets D definable
in differentially closed fields are essentially Zariski geometries. Thus either there
is a definable strongly minimal field nonorthogonal D, or D is locally modular
and nontrivial, or D is trivial. In the first case, the field is known to be definably
isomorphic to the field of constants. In the second case, there is a definable strongly
minimal group G nonorthogonal to D. In Section 3, we use the criterion mentioned
above, along with results related to the Manin kernel of a simple abelian variety to
produce a family of trivial sets.

In Section 4, we state a generalization of a theorem due to Rosenlicht [7] that gives
us a nice test for the orthogonality of types.

All tings and fields in this paper have characteristic 0. See Marker’s account of
the model theory of differential fields [6] for notation and background. Let Jd be a
monster model of DCF0; i.e., .M is a sufficiently saturaed differentially closed field
of characteristic 0 and any differential field, k, that we mention may be considered
a (small) elementary substructure of .Ad. k may be differentially closed. We denote
the constant field of k by Ck and the deivation by . For oarn, k() denotes the
differential field generated by over k.

Wheneverwe say that p is orthogonal to the constants, wemean that p is orthogonal
to the genetic type (over t3) of the formula 3(y) 0. By a genetic realization or
solution of an equation of the form f(y) 0 over k, where f k{y}, we mean
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h A4n such that f(h) 0 and the transcendence degree of k(h)/k is maximal for
such solutions. Similarly, h is a generic point of the definable set X c__ .A//n over k if
h X and he transcendence degree of k(h)/k is maximal for any such h.

2. Orthogonality to the constants

We study a family of differential equations and a test for determining whether
or not the constant field of the associated differential extension extends the original
constant field.

In particular, we look at types over Ck which correspond to simple transcendental
extensions over k. In other words, we are interested in types over Ck, such that if
a e A//is a realization of p, then the differential field extension klaa) has algebraic
transcendence degree one over k and is, in fact, equal to the field extension k(a).

Let us look at some examples of such extensions. More details are in Kolchin [5].

Example 2.1. Letkbeadifferentialfield. Leta .A/l\k be such that Sa c k.
We say that a is primitive over k. Of course, in this case, k(a) k(a). If k is
differentially closed, we can choose b k such that 8b c. Then 8(a b) 0 and
a b Ckta)\Ck. Thus, Ck

Example 2.2. Let k be a differential field. Let a A/l\k such that 8a ca
for some c k. We say that a is exponential over k. Again, k(a) k(a). If k is
differentially closed, we can choose b k such that d cb. Then 8() 0 and

Ckla)\tTk. Thus, Ck

Example 2.3. Let k be a differential field. Let g2, g3 k be such that the
polynomial 4y3 g2y g3 has simple roots only and let c k. Let a A4\k be
such that (Sa)2 c(4a3 g2a g3). We say that a is Weierstrassan over k. If k is
differentially closed, Kolchin [5, pages 405-407] shows that k(a) k.

We will use the following two lemmas as a test for orthogonality of types.

LEMMA 2.4 [6]. Let K be a differentially closedfield. Let p, q S1 (K) be such
that p_Lq. Ifa .All realizes p, and F is the differential closure of K (a), then q is
not realized in F.

LEMMA 2.5 [6]. Suppose F D K are differentially closed, o(v) is a formula
with parametersfrom K and every element of F that satisfies tp(v) is already in K.
Let a F\K, let p tp(a/K) and let q SI (K) be a type containing q(v). Then
plq.

We denote the differential closure of K by -diff and the algebraic closure of K by
-alg.
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PROPOSITION 2.6. Suppose K is a differentially closed field. Let a E .M and
p tp(a/K). Then p is orthogonal to the constants ifand only ifCr<a> Cr.

Proof. First suppose that p is orthogonal to the constants. Then certainly by
Lemma 2.4,
Now suppose that p is not orthogonal to the constants. Then by Lemma 2.5, there

is some c C(yia,\Cr. ButC, C2]-a,. Since Cr is algebraically closed, c

is transcendental over Cr, but algebraic over Cr<a>. So Cr<a> - Cr. I-’!

We will now describe a family of strongly minimal sets which are nonorthogonal
to the field of constants. Examples 2.1 and 2.2 fall into this family.

Remark 2.7. We will use the following representation of rational polynomials,
g(y), in one variable over an algebraically closed field k. Using partial fractions, we
can write g(y) as a sum of polynomials of the following form:

(2.1)
m a_

g(y) ci + d
.__ ui

where the ui and v are rational polynomials in k(y). Moreover, denoting au by u’(y)0y
0v just v’,or just u’, and S by v’(y) or we can put restrictions on the coefficients ci in

(2.1):

u,
(2.2)

u
u

u’ v’ vu’ + v’u (uv)’
(2.3)

U 1) Ul) UP

Notice that by (2.2) and (2.3), we can choose to write (2.1) with the ci linearly
independent over Q.

THEOREM 2.8. Let K be a differentially closed field. Suppose that f(y) is a
_E or c ovrationalfunction in Cr (y) such that is oftheform c u - where u and v are

in Cr(y)and c Cr. Let X {a . 8a f(a)}. Then X is a strongly minimal
set and is nonorthogonal to thefield ofconstants.

Proof. The equation 8y f(y) is the defining formula of X. Since s4 is
sufficiently saturated, X contains a point, a, not algebraic over K; so X must have
Morley rank 1. Moreover, the equation 8y f(y) is linear in 6y. Therfore the
Morley degree of I] must be 1. Hence, X is strongly minimal.

Now, to show that X is nonorthogonal to the constants C, by Proposition 2.6,
it is enough to show that ,K(a) [ K for a a generic point of X over K. Let a
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be such a point. Since 8a f(a), K(a) K(a). Choose b K\Cr satisfying
b f(b). (We can find such a b because K is a differentially closed field.) Consider
the following two cases.

0u

Case 1. Suppose cr where u Cr(y) and c Cr. If u(b) 0, then
since u(y) r(Y)an is algebraically closed, b C. But we chose b K\,
sou(b) 7 0. The same argument shows that u’(b) 0. Hence we can consider the
derivative of u(a.__.

u(b)

u’(a)(Sa)u(b) u(a)u’(b)(db)
(u(b))2

u’(a) \cu’Ca] u(b) u(a)u’(b)) \cu’Cb]
(u(b))2

u(a)u(b) u(a)u(b)
c(u(b))2

O.

u(b),l

Now, u_ K since a is transcendental over K Hence, u_ K(a)\Ku(b) u(b)
vCase 2. Suppose f- c where v 7r (y) and c Tr. Then

, (v(a) v(b)) v’(a)(Sa) v’(b)(,b)
1

v’(a) v’(b)
cv’(a) cv’(b)

1
c c

Since a is transcendental over K, v(a) v(b) K.
Crla\Cr.

Hence v(a)- v(b)

The following theorem of Rosenlicht [7] says that if f Cr (y) is not of the form
stated in Theorem 2.8, then we do not get new constants in the associated extension
field. For a nic treatment of this theorem see [6].

THEOREM 2.9 (Rosenlicht). Let K be a differential field such that Cr is alge-
braically closed. Let f(y) r(Y) and let a be a solution ofthe differential equation
(y) f(y), where a is transcendental over k. Suppose that 7" is not of teform

Ou

c or c where u, v . Cr (y), c . . Then

By Proposition 2.6, Theorem 2.9 is sufficient to show that the type of a generic
realization of such an equation over K is orthogonal to the field of constants.
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As another application of Theorems 2.8 and 2.9, Marker noted the following
consequence.

COROLLARY 2.10. Let K be differencially closed. Let Xc {a 8a f(a)}
where rty) c y_ and c Cr. Then Xc is orthogonal to thefield ofconstants if
and only ifc (grthogonality to the constants is not defiable.)

Proof Let Xc be as above. If c 6 Q, then, by Remark 2.7, we can write f(y)

in the form c’ y where c’ 6 Q. Then by Theorem 2.8, X is nonorthogonal to theu
constants. However, if c Q, then Theorem 2.9 applies and Xc is orthogonal to the
constants. So Xc is orthogonal to the constants if and only if c Q. However, DCFo
is a decidable theory of fields. It is thus impossible to define Q, since the field Q
has an undecidable theory. Hence the notion of orthogonality to the constants is not
definable over a differentially closed field. [D

In contrast to Corollary 2.10, Hrushovski and Itai [2] have shown that orthogonality
to a strongly minimal set X is a definable property of parameters when X lies (in an
essential way) on curve of genus > 1.

3. A family of trivial types

Let K be a differentially closed field. We show that an equation of the form

8(y) f(y) where is not of the form c or c where u v tr(y) c x:
defines a trivial strongly minimal set.

Definition 3.1. Let p($) be a complete type (in finitely many variables) of fi-
nite Morley rank over a differential field k. Let realize p. Then k() has finite
transcendence degree over k. Call this number RD(p).

Remark 3.2. For p(x) a 1-type, RD(p) is the order of the minimal polynomial
associated to p.

For D a strongly minimal set defined overk there is a unique nonalgebraic complete
type p(:) over k containing the formula 5 D. In this case, RD(p) coincides with
what is called the absolute dimension of D.

THEOREM 3.3. Let G be a strongly minimal group defined over a differentially
closed field K. Let p(J) be the unique nonalgebraic type containing the formula

G. Then, ifG is orthogonal to the constants, RD(p) > 1.

Theorem 3.3 is due to Buium, modulo some facts about differential algebraic
groups: The model theory of groups definable in differentially closed fields implies
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that G definably embeds in a simple abelian variety Awhich does not descend to the
contants. Then G is equal to what Buium calls A#. We will give another proof of
Theorem 3.3 using a differential Galois-theoretic result of Kolchin.

Definition 3.4. Let L D K be differential fields. A differential automorphism of
L over K is an automorphism of L which commutes with the derivative , and fixes
the elements of K. The galois group of L over K, gal(L/K), is the setof differential
automorphisms of L over K.

THEOREM 3.5 (Kolchin [4]). Let L D K be differentialfields. Let L be afunction
field oftranscendence degree 1 over K such that K is algebraically closed in L and. I. Suppose that gal(L/K) is infinite. Then there exists an element d E L
such tha either d is primitive over K and L K (d), or d is exponential over K and
L K (d), or d is Weierstrassian over K and L is an algebraic extension ofK (d).
In the last case, ifK is algebraically closed the the Weierstrassian element d may be
chosen so that L K (d).

ProofofTheorem 3.3. Let G and p be as stated in the theorem. Suppose that G
is orthogonal to the constants. Suppose that RD(p) 1. Let g be a generic point of
G over K and let L K (g). By Proposition 2.6, CL Cr. Then, by Theorem 3.5
and Examples 2.1-2.3, gal(L/K) is finite. But, on the other hand, we can show that
gal(L/K) must be infinite. Since K DCF,K tq G is infinite, Let c E K tq G. Then
the sum g + c in the operation of the group G is again a generic point over K of G in
L. So, for each element of K N G, there is a corresponding differential automorphism
of L over K, making gal(L/K) infinite. Hence, L cannot have transcendence degree
1 over K. El

THEOREM 3.6.
trivial.

If RD(p) 1 and p is orthogonal to the constants, then p is

Proof. Ifnot, then by the trichotomy theorem, p is locally modular and nontrivial.
Hence, p is nonorthogonal to the generic type q of a strongly minimal group. Then
q must be orthogonal to the constants (since p is)and RD(q) 1. This contradicts
Theorem 3.3. El

We are now ready to show that strongly minimal sets defined over a differentially
closed field K by an equation of the form y f(y) are trivial whenever f(y)

is of a special form.Cr(Y) and

COROLLARY 3.7. Let K be a differentially closed field. Let f(y) Cr,(y) be
au

such that is not oftheform or av where u, and v Cr(y). Let p be the typef(y) u "ofa geeric solution to the equation 8y f(y) over K. Then p is trivial.
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Proof. Clearly, RD(p) 1. Proposition 2.6 and Theorem 2.9 imply that p is
orthogonal to the constants. So, by Theorem 3.6, p is trivial. E!

With Theorem 2.8 and Corollary 3.7 we have completely described the strongly
minimal sets defined over a differentially closed field by an equation of the form
8y f(y) where f(y) is a rational polynomia in one variable over the constant field.

Hrushovski 1] has observed that a result of Jouanoulou can be extended to show
that a strongly minimal sets whose generic type over a differentially closed field has
RD 1, is either nonorthogonal to the constants or og-categoical. It is well known that
an w-categorical strongly minimal set is orthogonal to the constants. See [8].

4. Orthogonality

In this section, we are interested in questions related to the orthogonality of types.
We would like to know what other differential equations we are solving when we take
a differential field extension. The following theorem gives us a test for orthogonality
of types of a very special form.

THEOREM 4.1. Let k C K be differential fields with Cr algebraic over Ck. Let
f and f2 Ck(Y) be oftheform

n
Oy 0131

el,j-’-’-" "-f (Y) j=l
U 1,j Oy

and

Oy 01)2
+

f2(y) u2,j

with cl,j and c2,j Ck and u,j, u2,y, v, and v2 Ck(y).
Let a and a2 K satisfy tSai = bifi(ai), with b and b2 k. Then, if al and a2

are algebraically dependent over k, then each ai is algebraic over k or b2d (131 (al))
bl $ (v2 (a2)).

Remark 4.2. Theorem 4.1 is a generalization of a theorem due to Rosenlicht.
The proof ofTheorem 4.1 is essentially the same as the proof of Rosenlicht’s version,
which can be found in [6, page 77]. Simpy replace each f with f or f2, each uj with
u ,j or u2,j, and each 13 with v or v2 where appropriate.

LEMMA 4.3. Let K be a differentially closedfield. Let p, q Sl (K), andsuppose
that q is strongly minimal. Suppose a A4 realizes p, and F is the algebraic closure

ofK (a). Suppose that p is nonorthogonal to q. Then q is realzed in F.



270 TRACEY MCGRAIL

Example 4.4. This example studies a family .T" of types over tk, where k and K
are as in the statement of Theorem 4.1. If p .T’, be the type of a generic realization
over k of the differential equation 3y where m Z and m 0. We show that
if p and q are distinct types in .T’, then tley must be orthogonal by Theorem 4.1.

Recall that since the types in question are strongly minimal, by Corollary 4.3, if
tp(al/k) is nonorthogonal to tp(a2/k), then al and a2 are algebraically dependent
over k.

Let fl (Y)= ._L_ and f2(Y)= __2._ Then
y-l-m y+m2

OVa__Ly ._
(y) U Oy

where Ui ym, and V y. where mi Z, m 0 and m2 0. Let al K be a
generic solution over k to the differential equation 3y fl (y), and let a2 K be a
generic solution over k to the differential equation 8y f2(Y).

Suppose that a and a2 are algebraically dependent over k but neither is alge-
braically dependent over k. Hence by Theorem 4.1,

3(Vl (al)) t(v2(a2)).

Since 6(Vl (al)) 3(al) and t(v2(a2)) t(a2),

al a2

al + m a2 -t- m2
ala2 -b mEal ala2 -b mla2

m2al mla2

m2
----al aE.
ml

Hence,

m2( al )3a2 m23a
ml ml al + ml

But we also have

mEal

mlal + mE"

m2al) -zal m2alm|f2(a2) f2 meal + mE mEal at- mimEk,ml m!

Since ta2 f2(a2),
m2al m2al

mlal q- m m2al q- mlm2

Since al is not algebraically dependent over k, it must be the case that m m2.
Therefore, if we assume that ml - mE, then tp(al/k) is orthogonal to tp(a2/k).
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