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A WITTEN STYLE PROOF OF MORSE INEQUALITIES FOR
ORBIT SPACES

MANUEL CALAZA

ABSTRACT. Let G be a compact Lie group acting on a closed manifold M. Witten’s method is used to
prove Morse inequalities for the cohomology of the orbit space M/G.

1. Introduction

Let M be a closed manifold with a smooth action of a compact Lie group G. Let
C*®(M/G) denote the space of G-invariant smooth functions on M. Such functions
can be considered as “smooth” functions on the orbit space M/ G, defining a so called
“differentiable structure” on M/G. If f € C*®(M/G), a G-orbit F is said to be a
critical orbit of f if one of its points (and thus all of them) is a critical point of f.
A critical orbit F is said to be nondegenerate if, for any smooth transversal X of F,
the points in F N ¥ are nondegenerate critical points of f|y; if this holds for some
transversal of F, then it holds for all of them.

A function f € C*(M/G) is called a G-Morse function if its critical orbits are
nondegenerate. For such a function f, let Critg(f) be the set of its critical orbits,
which is a finite set. The existence of nondegenerate G-Morse functions was proved
by Wasserman [12]; indeed Wasserman has shown the density of the space of such
functions in C*°(M/G) with respect to the C* topology.

If F is a nondegenerate critical orbit of a function f € C*®(M/G), then the
Hessian of f defines a nondegenerate quadratic form Hr f on the normal bundle Np
of F. So Hr f yields a decomposition of Ny as direct sum of the subbundles Nr 4
and Np,_, where HF f is respectively positive and negative definite. The index of F
with respect to f is the rank mr of Np,_. All of these vector bundles are G-vector
bundles in a canonical way.

MAIN THEOREM. Let G be a compact Lie group acting on a closed manifold M of
dimension n, and G its connected component containig the identity. Let H*(M | G)
denote the real cohomology of the orbit space M/G, and B; = dim H/(M/G) (the
corresponding Betti numbers). For any G-Morse function f on M let

pj = #{F € Critg(f) | mr = j and NF,_ is G-orientable and Go-trivial} .
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Then we have the inequalities

Bo = o,
Bi—Bo = w1 — Ko,
B2—Bi+Bo < p2— p1+ po,
etc., and the equality
n n
DB =) =Du
j=0 Jj=0

The proof of this theorem is an adaptation of the method of Witten [13], especially
as it is shown by Roe in [9] (see also [1]). We fix a G-invariant Riemannian metric
on M, and the G-Morse function is used to modify the Laplacian on “basic forms” so
that its Schwarz kernel concentrates around the critical orbits, whose cohomological
contribution is thus obtained by a local study using the Koszul Slice Theorem.

In the Main Theorem, the function f: M/G — R defined by f can be considered
as a Morse function on the orbit space M/G, so that this result establishes some
kind of Morse inequalities for M/G. Nevertheless the index of f at the critical
orbits, in the classical sense!, may not be well defined—this was solved by using
intersection cohomology instead of real cohomology in the more general setting
of singular stratified spaces [5]. So the Main Theorem shows that, at least on some
singular stratified spaces, certain Morse type inequalities hold for the real cohomology
independently of having no well defined index at some critical points.

The above remarks can be shown in the following simple example. Consider the
group Z, = Z/2Z acting on S! C R? by symmetry with respect to the vertical axis.
Since the orbits are discrete, the Z,-Morse functions on S! are just the usual Morse
functions that are Z,-invariant; for instance, the “high” function f(x, y) = y is one
of them, which moreover satisfies that f is a homeomorphism of S!/Z; onto [—1, 1],
and a diffeomorphism of (S'/Z,) \ {F1, F,} onto (—1, 1), where Fj, F; are the south
and north pole orbits, which are singletons. Thus Fj, F; are the only critical points
of f in the suitable sense, where it respectively reaches the maximum and minimum.
Now the index of f at Fy is clearly zero because f(F;) = —1 and f itself induces
(FHe, f~1=¢) = ([—1, =1 + €], @) for O < € < 2. However f has no well
defined index at F; because f(F,) = 1 and (f'*¢, f17¢) = ([-1,1),[-1,1 —¢€])
for 0 < € < 2. On the other hand we clearly have mp, = 0 and mp, = 1 because
f reaches the minimum and maximum at these orbits of codimension one. But since
the Z,-action does not preserve the orientation of the tangent space of S! at the north
pole, which is equal to N, —, we get uo = 1 and ; = 0 according to the definition
in the Main Theorem. So our Morse inequalities are equalities in this case.

Recall that, for a Morse function f separating critical points, which is defined in same reasonable way
on some space, and with the usual notation f¢ = f~!(—00, a] for any a € R, one can classically define
the index of f at a critical point x to be equal to i, when H'(f%+¢, £4~¢) % 0 for small enough ¢ > 0 if
and only if i = iy, where f(x) = a and we consider relative real cohomology.
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2. The basic complex

Let (2(M), d) denote the de Rham complex of M. The basic complex of the G-
action on M is the subcomplex Q(M/G) C Q (M) of G-invariant forms o € Q (M)
such that ixa = 0if X € X(M) is tangent to the orbits of G. It was proved by
A. Verona [11] that the cohomology of the basic complex is isomorphic to the real
cohomology of M/G. Thus we shall write H*(M/G) = H*(QQ(M/G), dp), where
dj, is the restriction of d. The Hilbert space of L? differential forms on M will be
denoted by L2Q (M), and let L2Q2(M/G) be the closure of Q2(M/G) in L2Q(M).

2.1. The orthogonal projection onto the basic complex. 1f 8 denotes the coderiva-
tive induced by a fixed G-invariant Riemannian metric on M, in general § (2(M/G))¢
Q(M/G). Thus d, has an adjoint §, on Q(M/G) if the orthogonal projection
IT: L2Q(M) — L?>Q(M/G) preserves smoothness of differential forms; we would
have 8, = I1 o § in this case. So we need the following.

PROPOSITION 2.1.  We have IT(Q(M)) = Q(M/G).

This section will be devoted to proving Proposition 2.1. Observe that this result
is not obvious because of the possible existence of singular strata. Two orbits have
the same normal orbit type if they have equivalent normal slice representations [3].
The unions of the orbits with the same normal orbit type are the different strata,
which are submanifolds of M. The blowing-up construction yields a G-manifold M
with no singular orbits and an equivariant projection 7: M — M. We describe the
construction of M and t to prove Proposition 2.1 with the following idea. Since M
has no singular orbits, we have an orthogonal projection on C* differential forms,
fi: Q(M) — Q(M /G). Then we use T and I to define a projection Q(M) —
Q(M/G), which turns out to be orthogonal by construction, and thus equal to the
restriction of I1.

2.1.1. Blowing-up singular strata. Let X be a stratum of M with dimX =,
N(X) its normal bundle, and P: P(X) — X the associated projective bundle. Let
My = (M \ X) U P(X) and define 7x: Mx — M in the following way:

)= v ifveM\X,
=W =1pw) ifve P(X).

Such a set My is the blowing-up of M along X, and 7y is the blowing-up map-
ping. A differential structure of My is defined as follows by using local coordinates
(x!, ..., x5, x5!, ..., x") adapted to X on an open subset U of M. On U, the stratum
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Xisgivenby x**! = ... = x" = 0. Let (x!, ..., x5, X**!, ..., X") be the induced
coordinates on N (X), where X**!, ..., X" are the coordinates induced by the frame
of N(X) on X N U defined by 3/9x°*!,...,3/3x". Foranyi € {s +1,...,n}, let
U; = {x € U | x' # 0} and P; the part of P(X) defined by the vectors of N(X) on
X NU with X # 0. We define coordinates on U; U P; by

@i = (' Y = Gl xSt L x ) ) on U,
(] LI ] (xl’...’xs’XS+1/X',...,0,---,X"/X‘) OnPi'

In this way, a smooth structure on M x is defined by an atlas of M \ X and a covering
of X by open sets U; with coordinates as above.

This way of describing the blowing-up of a singular stratum is taken from [8]. A
different description is given in [3] and [7]; it consists of attaching a boundary to the
complement of the stratum by passing to “fiberwise polar coordinates” on a tubular
neighborhood of the stratum.

2.1.2. Lifting vector fields tangent to singular strata. Let Z € X(M) be tangent
to the stratum X. With respect to a chart (x!, ..., x") on U as above, we have

n
Z=) 7'3/x' onU.
i=1

Let

n
Zy=Y) Z]3/9y/ on UUP,
j=1
where

ZION .oy =Z00N Ly Y Y YD
ifj=1,...,sori = j,and

- 1 . ‘
ZIGL ..y = ?Z’(y},.- LYYy YD
i

(}’,'1,-- ,y,’)’f“)’:wn,)’;,---,)’?)’:)

_dg

!

1
otherwise. Such a 4 x is a C* vector field on U; U P;. In this way we construct a C*®
vector field on My, tangent to P(X), which is projectable by tx to Z. This Zy is
called the blowing-up of Z along X. This construction allows lifting of G-invariant
vector fields on M to G-invariant vector fields on M x, because the G-invariant vector
fields on M are tangent to all the singular strata—this follows from the triviality of
G-invariant sections of the normal bundle of any stratum. This lifting will be denoted
byi: X(M)¢ — x(M)G, thus 7y, 0@ = id._

Observe that, if tx (¥) = x, the value of 4 x at X is not determined by the value of
Z on x. So this procedure does not define a lifting to My of vectors tangent to X.
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2.1.3. Lifting actions. On M x we have an action of G induced by the action of
G on M\ X and the action of G on P(X) — the last one is defined by the action of G
on the normal bundle N (X). It is easy to see that this action on My is differentiable
by using the above local coordinates. With respect to this action, the projection tx is
a G-map, yielding

13C®(M/G) C C*® (Mx/G).
Indeed we have the following.

LEMMA 2.1. Foranyo € L*Q (M) we have a € Q (M) if and only iftya €
Q(Mx)c.

Proof. If o € Q(M)g, then Ty € Q(A?X)G trivially. Now assume that « €
L2QS(M)g and X4, ..., Xs; € X(M)g.
Because 7y, o i = id, we write

(X1, ..., Xo) = a(Txd (X1), - .o Tad (X)) = (T ) @ (X0, - .-, 1(X0);

it is differentiable because Ty € Q° (ﬂ X)g-

2.1.4. Vector fields on the orbit space. Now we show that (M /G) can also be
described by using “vector fields” on M/G. We take some definitions from [10]. Let
X (M) be the space of G-invariant vector fields on M, let X (M) be the subspace
of elements of X(M)¢ tangent to the orbits of G, and let X(M/G) be the space of
derivations in C*®°(M/G) that preserve the ideals in C*°(M/G) defined by fixing any
stratum of M and taking the functions that vanish the stratum selected. It was proved
by G. W. Schwarz [10] that the sequence

0— Xg(M)g — X(M)g — X(M/G) — 0.

is exact. Thus X(M)g/Xc(M)¢ = X(M/G). Now, if € Q"(M/G), the G-
invariance of o implies that o can be determined by its value on G-invariant vector
fields; i. e., & can be described as an antisymmetric r-linear map

o x(M)Gx xx(M)G — C®(M/G)

of C*®(M/G)-modules. Moreover, since iy = 0 for all X € X5(M)g, the basic
form o can be described as an antisymmetric r-linear map

@ EM/G)x O xX(M/G) — C®(M/G)

of C®°(M/G)-modules. We point out for further use that G. W. Schwarz has proved
that X(M/G) is finitely generated over C*°(M/G) [10], so the above interpretation
of basic forms implies that Q"(M/G) is finitely generated as well. Because of this
relation between X(M/G) and Q (M /G), the homomorphlsmz X(M)g —> %(M X)G
canonically induces i*: € (M x/G) = Q(M/G) such thati* oty = id on 2(M/G).
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2.1.5. Construction of a metric on the blowing-up. Consider a singular stratum
X of the G-action on M and the blowing-up map tx: My — M. Let gbea
Riemannian metric on M. We are going to modify the metric g on M \ X inside a
tubular neighborhood of X in order to get a metric that may be smoothly extended
on Py.

For a small pyp > 0, consider the tubular neighborhood V of X of radius pp. On
V, the distance to X defines a function p that is constant on the orbits of the action.
Let ¢: (0, pg) = R* be a C* function such that ¢(p) = 1 for p close to py and
@(p) = 1/p for p close to 0.

‘We modify the metric g on V' \ X leaving it invariant along the geodesics orthogonal
to X, and multiplying it by ¢(p) tangentially to the tube of radius P around X. The
new metric on M \ X extends in a differential way to a metric gx on M x. This
construction is an adaptation of a similar one in [8]. This metric has the following
property.

LEMMA 2.2. Forall x € M such that tx(X) = x,

o) o (T (75 (G0) ) € TGy

Proof. On M\V,gx = g and ty is the identity, so (1) is trivially satisfied. Now,
suppose that x € V \ X again, ty is the identity, so 7y 1(Gx) = G% which is inside
a tube T),, of radius p, where tx is conformal. So (1) follows.

Finally, suppose that x is in the singular stratum X. We use local coordinates to
check that (1) is satisfied. Let (x , ..., Xx") be local coordinates on an open subset
ucmMm containing x, and let (y', ..., y") be local coordinates definedon U; N P; C
Mx fori € {s +1,...,n}, as it is shown in Section 2.1.1. With respect to these
coordinates, Tx has the local expression

OL LYy Y O Ly Y YT Y YY),

and thus

» _ [idxs 0
( Txx = 0 A

at X, where A is the (n — 5) X (n — s) matrix with all elements zero except its ith
column which is given by

s+1

(y ) "’yi-l’ l,yi+1,...,y").

Now, by definition of Px with respect to the chart ¢;, we have T;(Px)* = (3/3y)
and by (2) we have

Txe (Te(Px)t) = x4 ((3/0)%))
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= <a/ax" + Y ys+j8/8x‘+j>

s+j#i
C (8/8x°*L,...,8/0x")
= T,(X)"

Again, by (2) we also have 7x, = 0 on
(8/0y**,...,8/3y'"", 8/8y'*, ..., 8/3y"),
and 7y, = id on

(8/3y',...,8/8y").
It follows that

% (T (5 (Gx))t N Tz (Py)) € (T(Gx)* N T (X)),

and (1) is also satisfied in this case. [J

LEMMA 2.3. Forallx € M and% € M with Tx(X) = x, the tangent bundle of the
orbit Gx contains the horizontal subbundle of the fiber bundle tx: Tty =1(Gx) - Gx.

Proof. Wedenoteby H,V C T (t; ! (Gx)) the horizontal and vertical subbun-
dles of the fiber bundle 7x: 73'(Gx) — Gx.

If x € M\ X, then x = id and V; = {0}, and the result follows trivially in this
case.

If x € X we consider the local chart ¢;, and we get the matrix representation of
Tx. given in (2). So V is the space generated by

a/dys*t1, ..., 8/08y' "1, 8/8y" !, ..., 8/8y"

at X, and H;z must be inside the subspace generated by 8/dy’, ..., d/dy* at X be-
cause 3/dy’ is orthogonal to Ty ~1(Gx) by the definition of the metnc Moreover, by
construction of blowing-up, we have

T (zz'(Gx)) N (3/3y, ..., 8/8y*) C T(G%)
at¥. Hence H; C Tz(Gx). O

2.1.6. The global blowing-up. We repeat the above blowing-up process until we
get a G-manifold with regular orbits, obtaining a tower of blowing-up projections
whose composition is the projection t: M — M. There is also a lifting of the G-
action to M, and an extension of G-invariant vector fields, i: X(M)g — I£(M)G,
that induces a homomorphism i*: (M /G) = Q2(M/G) such that i* o * = id on
QM/G).

From Lemmas 2.1, 2.2 and 2.3 we get the following.
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COROLI%RY 2.1. Foranya € L*Q(M)g we have a € Q(M)g if and only if
e € Q(M)g.

COROLLARY 2.2. There exists a G-invariant Riemannian metric on M such that
forallx € M, if t(X) = x then

o (T: (7' (Gw)") € TGy,
and Gx contains the horizontal subbundle of the fiber bundle t: 1='(Gx) — Gx.

2.1.7. Smoothness is preserved by I1. The regularity of the G-orbits on M means
that their connected components are the leaves of a G-invariant regular foliation F
on M. The leaves of F are mapped by 7 to the connected components of the G-orbits
of M (which are the leaves of a singular foliation). Since F is a regular G-invariant
foliation, we have the orthogonal decomposition

®3) TM=TF'®TF
of G-vector bundles, yielding
NTH = NTF* o \NTF

as G-vector bundles. Observe that the space of G-invariant sections of A TF L s
Q2 (M/G). Thus we get an orthogonal decomposition

Q (i), = @ (#/G) ® (2 (#/6)" na (#),)
defining, pointwise, an orthogonal projection
fl: o (M), — @ (M/G),

depending only on the decomposition (3). Then define T=ifl QM) —
Q(M/G), where we consider t*: Q(M)g = Q(M)g.

Claim. fa € Q(M)g and x € M, then (TTa)(x) € A\ T (Gx)** is the compo-
nent of a(x) with respect to the decomposition

@ NTM = \ TG0 & (/+\ T.(Gx)™ ® /\ Tx(Gx)"> :

To prove this claim, let B be the (possibly non-continuous) differential form on
M, defined at each x € M as the component of a(x) in A T.(Gx)** by (4). Such
a B is measurable because it is smooth in the dense open set of regular orbits whose
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complement is a finite union of manifolds of lower dimension and thus of null measure.
Furthermore, B € L?Q(M/G) because |8(x)| < |a(x)| for every x € M.
Now fix x € M and ¥ € t~!(x). We write

TiM=A®B&C,
where
A = Tz(Gx),
B = T; (t7'(Gx)) N T:(GH)*,
C =T (r ' (Gx)".

If H and V are the horizontal and vertical subbundles respectively of the fiber bundle
7: T 1(Gx) = Gx, we can write

A®B=T:(r7'(Gx)) = H; ® V;.

We have (T1 *) (%) € /\ B* ® )\ C*. But by Corollary 2.2 we know that H C A
and B C V, so we can consider (IT *@)(¥) € /\ C*, and (z*B)(%) € /\ C* again by
Corollary 2.2. Hence, (Il t*a) (%) = (z*B)(X). _ -

Since x € M is arbitrary, we get t*8 = IIt*a € Q(M/G), yielding 8 €
Q(M/G) by Corollary 2.1, and we have

B=i"t"B=i"llt"a = To;

the claim follows.

Now IT is easily seen to be an orthogonal projection, which is thus the restriction of
M: L2Q(M)g — L*Q(M/G). On the other hand we have the orthogonal projection
QM) — Q2(M)¢ defined by

1
—_ —— A* s
* Vo1<G>/G 5298

where A: G x M — M denotes the given action, and we consider any biinvariant
metric on G. Then the composition

QM) — QMg > QM/G)

is an orthogonal projection too, and thus equal to the restriction of IT. This finishes
the proof of Proposition 2.1.

2.2. The basic Dirac operator. As we said, the operator 8, on 2 (M/G), defined
as the composition

QM/G) LN QM) LN QM/G),
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is the adjoint of d, by Proposition 2.1. We define the basic Dirac operator on
Q(M/G) by

Dy = dp + 8 = 1 o Dl|gwm/c)s
where D = d + § is the Dirac operator on Q2 (M).

LEMMA 2.4. D, is essentially self-adjoint in L*Q(M/G).

Proof. Since D is essentially self-adjoint in L2Q (M), TIDII is also essentially
self-adjoint in L2Q (M) by Lemma XII.1.6 (c) of [4]. But

_(Dy O
non= (% 0)
with respect to the decomposition

L’Q(M) = L’Q(M/G) ® L*Q(M/G)*,

and the result follows. [

LEMMA 2.5. The following properties hold:

@) [6, 1] = K8 — 8K, where K = (—1)"*"[x, [Tlx on Q" (M).
(ii) Ifa € Q(M/G)and B € Q(M), thenTI(a AB) = aAll(B)and K(a AB) =
a A K(B).

(iii) Ife € Q(M/G)and B € Q(M),thenTl(aVvp) =aVII(B)and K(aVB) =
a V K(B), where aVv = (aA)*.

Proof. For any @ € Q" (M) we have

[6, Ma = (=D xdx, Mo
= (=) Gdx T = M xd %+ * [1d x — x [1d») «
= (=1 ([x, TT]d % + » d[*, [T])ex
= (=D (%, ] %68 + 8 * [x, )
= (K$§ — 8K)«,
where
Ko =(=D"[xMlxa = —(=1)"* x [ M«
because »*a = (—1)""*" . This proves (i).
Lety € L*Q(M/G). We have
(@ ATIB), y) =(TI(B),a Vy)=(B,aVy)=(aAB,y)=(II(aAB)y)

because @ V y € Q(M/G), so the first part of (ii) follows.
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Let y € L2Q(M/G). We have

(@ VII(B), y) = (TI(B),a Ay) = (B,aAy)=(aVB,y) = (Il(aVB),y)
because @ A y € Q(M/G), yielding the first part of (iii).

The second parts of (ii) and (iii) follow from the equality K = (—1)""*" [, [T]x
on Q"(M). O

LEMMA 2.6. Any C*®(M/G)-linear operator T on (M /G) defines a bounded
operator on L*Q(M/G).

Proof. Since Q(M/G) is finitely generated as a C*°(M/G)-module, let {«;y, . . .,

oy} be a finite set of generators. Write any @ € Q(M/G) as @ = ), fio; with
fi € C®(M/G). Then

Ty fiei

So T defines a bounded operator on L2Q(M/G). O

ITa|l =

< Y IfiTeull < DU fill ITeull < constant |||
i i

LEMMA 2.7. The operator D — T1D is bounded on L*Q(M/G).

Proof. We have
D —TD = DIl - DI = (id - IT)DI1 = [D, M]II.

Thus if [D, I1] is bounded on L2Q (M /G), sois D — I1D. This holds by Lemma 2.4
because [D, IT] = [§, I1] is C®°(M/G)-linear on (M /G), which in turn follows
from Lemma 2.5 since, for all f € C*(M/G) and @ € Q(M/G), we have
[6, M) fa = (K§—4éK)(fa)
Ké(fa) —3K(fa)
= K(féa —df va)—8§(fK(x))
= fKéa —df VK@) — f6K(a)+df v K(x)
= f(K8—-68K)x
= f[é, M. O

Using Lemmas 2.4 and 2.7, we finally get the following result.

THEOREM 2.1. With the above notation, there is a complete orthonormal sys-
tem {¢;,i = 1,2,...} C QM/G) of the Hilbert space L*Q2(M/G) given by
the eigenforms of Ay with eigenvalues Ai, i = 1,2,..., satisfying the inequali-
tiesO < Ay <Ay < ---,with); 1 00 ifdim Q(M/G) = oo. In particular we have
the Hodge type decomposition

Q(M/G) = Ker A, ® Im dy, ® Im by
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Proof. Let

lellpe = |Gd+ D)Yer|,, &€ Q(M),
lellp,, = |Gd+ Dp)ta|,, «ecQM/G).

Let W*Q (M /G) be the closure of 2 (M/G) in the kth Sobolev completion W*Q (M)
of Q(M). We know that, on Q(M/G),

Dy = 1D = TIDI = DI — (D1 — [1DI) = D — (D — I1D).

So the difference Dy — D is a bounded operator on L2Q (M/G) by Lemma2.7. Hence
the norms || [|px and || ||p, x are equivalent on Q(M/G), and thus W*Q(M/G) is
the || || p, x-completion of Q(M/G). Moreover, the compactness of the inclusion
WkQ(M) — W*-1Q (M) implies the compactness of the inclusion W*Q(M/G) —
W*1Q(M/G). On the other hand, (), W*Q(M/G) C N, WkQM) = QM),
yielding (), WEQ(M/G) = L*Q(M/G) N Q(M) = Q(M/G). Combining these
facts with Lemma 2.4 and [2, Proposition 2.44], we get the stated result. O

3. Differential forms on a neighborhood of an orbit

For x € M, let F = Gx be the orbit of x. Let V be a tubular neighborhood of the
0O-section of T F+, with radius A. By the Koszul Slice Theorem [10] we know that
V = G xg B, where K = G, is the isotropy group and B is the ball of radius A in R”
centered at 0 (n = dim M, r = dim T F, v = n — r). We can take A small enough so
that the exponential map of M is a diffeomorphism of V onto some open G-invariant
subset U C M. So the composition of the canonical identity V = G xx B and
exp,, defines an equivariant diffeomorphism ¢: G xx B — U. Thus ¢* defines an
isomorphism Q(U)g = Q(G x g B)g of graded differential algebras. We also have
the following isomorphisms of graded differential algebras:

(%) Q(G xg R")6 = Q(G x R*)g,k,x=0

Q) = (R(6)6 ® AR kim0

9 = (RG)a0@ \EOQ2R)),
® = (R(G)6uem0 ® AR -

In (7), K -invariance and 1x = 0 are considered with respect to the action of K defined
by a-(z,b,v) = (za~',ba~!, av). Isomorphism (5) is defined by the canonical
projection G x R¥ — G x g R”. Isomorphism (6) is canonical because G only acts
on the first factor G. Isomorphism (7) is induced by

Q(G)y=0® /\E* ZQ(G), a®yr— aAwry,



258 MANUEL CALAZA

where wa: A\ ¥ — Q(G) is the canonical extension of the algebraic connection
w: ¥ — Q!(G) [6]. Isomorphism (8) is defined by the diffeomorphism 7 on G x
K x R’ given by 7(z,a,v) = (za™', a, av).

From (5)-(7) we get
) QU)c = (2(G)g,x=0 ® L(B))k-
In particular,
(10) C®(U/G) = C®(B/K).

4. Proof of the Main Theorem

4.1. Concentration around the critical orbits. For any G-Morse function f and
any s € R, define

A1) dps = e~ fdyest =dp, + sdfn, Sps = ef8pe=sf =8, — sdfVv,
(12) Dps=dps+6ps =Dp+s@f AN—=dfVv) =Dp+sH, Ap;= Dgy_‘..

Suppose that ¢ is a positive even Schwarz function on R with ¢ (0) = 1. Then ¢ (D, ;)
is of trace class, and let

ws = Tr (¢(Ds.)l2ei/6)) -
The following result follows with the same arguments as in [9].
PROPOSITION 4.1.  With the above notation we get the inequalities

Bo < mgy,
Bi—Bo < pi— up
B2 — B+ Bo < wy— 1+ Ko

i(—l)fﬂ,- Yo =1yus.

=0 j=0

etc., and the equality

Again with the same arguments as in [9] we get the next result.
LEMMA 4.1. With the above notation we get:

(i) H? is the endomorphism given by multiplication by |df .
(ii) HDy, s + Dy s H is an endomorphism of order zero.

Now consider the Fourier transform $ of ¢, which has compact support contained
in some interval [—p, p] for some large enough p > 0. The next result follows from
Lemma 4.1 as in Roe [9].
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LEMMA 4.2. On the product of M/ G and the complement of a 2p-neighborhood
of the union of the critical orbits of f, the Schwarz kernel of ¢ (Dy 5) tends uniformly
to zero as s —> 0.

Even though p is fixed, by dilating the metric transversally to the critical orbits, the
2p-neighborhood of the critical orbits can be made small. So, as in [9, Chapter 12],
Lemma 4.2 will be used to obtain the trace of ¢ (Dp, ) as the sum of the contributions
from the critical orbits.

For any fixed critical orbit F', we define the operator ¥ on (M / G) of multiplica-
tion by a non negative G-function on M, equal to 1 in a G-invariant 2 p-neighborhood
of F, and supported in a G-invariant 3 p-neighborhood. From Lemma 4.2 we get

Wi — Z Tr (Yr¢(Dss)|2im/6)) — 0 as s 1 oo.
FeCritg (f)

4.2. Local computation. The description of the forms given in Section 3 is useful
to simplify the calculus of the trace of the restriction of Yr¢(Dy ;) to L2Q/ (M /G).
We can simplify the problem by going from the G-manifold M to the K-space R".
To begin with, we decompose IT as follows. From the isomorphisms (5) and (6) over
QU/G)weget Q(U/G) = Q(B/K). Via this isomorphism and (9), the projection
IT: QU)s — 2(U/G) corresponds to the composition

() G.pm0 ® LBk — QUB)x —> Q(B/K),

where the first arrow is the canonical projection, and I’ is the projection defined for
B like IT for M. So

Tr (Yed (Dv,s) I2aion/e)) = Tr (Vre D ) Ioi@:/x)) »

with the obvious definitions of ¥, ¢, D}, ;, etc. in the new context of R” and K.

For any fixed F € Critg(f), let f' € C*®(B/K) be the function that corresponds
to f|u by (10). The origin 0 is a nondegenerate critical point of f’. So taking Morse
coordinates (x;) on some K -invariant open neighborhood of 0, we get the expression
f''=1/2%; Ajx}. The number of negative ;’s is the index m of f’ at 0. Assume
that the first m ¢ of the A;’s are negative, so the decomposition

R’ =R’ &R,

defined by Hy on R” is well adapted to the coordinates (x;).
Now, from [9, Chapter 12], we know that the eigenforms of A, on ©(R") have
the expression

= )
Yoals = nh,,j(xj) exp‘(—i Z |Aj|xj?> d'xiy Ao Nd'xy,,
j=1 J



260 MANUEL CALAZA

withp=(p1,....0v), Pi €Nyg=(q1,...,qv),qi € {£1}, I = (i}, ..., i), and
where the k), ’s are the Hermite polynomials, up to a normalization. The correspond-
ing eigenvalues are

Mpaits =5 Y (NI +2p;) + Ajqp).
J

From this it follows that the absolute value of the eigenvalues of D/ on 2(R") are
also of order s as s 1 00, except the eigenvalue zero that corresponds to the election
of po = (0, ®.,,0), g0 = (1, ™#), 1, —~1,®~™r 1) in the above expression. The
set {¥p.4.1,5} is a complete orthonormal system of L2Q(R”), and thus {TT', 4,15}
generates L2Q (R¥/K) as Hilbert space.

Let y,s denote the eigenform ¥, 40, 1o, s» With

po = (0, ®,0), go = (1, ™), 1, -1,¢7m»), —1), I =(1,...,mp),

that corresponds to the eigenvalue zero of A}, and also of D;. We distinguish two
cases.

Case 1. Suppose ¥, € QR"/K).

This property means that [1' ; = v ; S0 we get
DZ,;“'Wo,s = Df,,ﬂ/’o.s = HID;‘I’O,S =0,
because D}y, s = 0. Moreover, we have the following.

LEMMA 43. Ifyos € QRY/K),and 0 # ¢ € L2QRY/K), with ¢ L Yo,
then

(D, ¥, ¥) € O(s) ass 1 0.

Proof. For
0# ¢ e L’QRY/K), ¥ Lo,

we have

(D, ¥, ¥) = (D, ¥) + ((D, — D"y, ¥)
> min{)A # 0| A is an eigenvalue of D; on Q(R")} ||¢||
+ constant,

which is of order s as s 1 00, because Dj — D’ is bounded in L2Q(R"/K) by
Lemma25. O

Case 2. Suppose ¥o,s € QR'/K).
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LEMMA 4.4. In this case we have II'yrg ; = 0; i.e., ¥o,s € Q(R"/K)*L.

Proof. w =dx; A--- Adxy, is the volume form of the K-invariant space R” . If
w is not invariant we have

1 .
Pk (@) = VoI ) j;(k wdk =0

because k*w = *w forall k € K. Then IT'y; = 0 because v, is the product of a
K -invariant function and w.

Suppose w is invariant. Then w is not horizontal because Yo, ¢ Q(R"/K). So
the regular K -orbits in R” have positive dimension. Now, since  is a volume form
on R”, it has top tangential degree along the regular G-orbits. So IT'w = 0 on the
union of regular G-orbits, which is a dense open set, yielding IT'@w = 0 on the whole
RY, and thus on the whole R*. O

As in the above case we get the following.

LEMMA 4.5. If Yo € QRY/K), and ¥ # 0 is in L2Q(R”/K), then

(D, ¥, ¥) € O(s) ass 1 oo.

Proof. 'This follows by arguing as in the above case, since in this situation we
have y L yp,. 0O

Now we can finish the proof of the Main Theorem. From Lemma 4.3 and
Lemma 4.5 we get

lim Tr (¥r¢ (D},,) Ipw@x) = lim %jl(w (D}s) Wpugitsr V¥pg,1.6)

_ 1 if g, € QRY/K),
~ 10 otherwise.

Now simply observe that
Yo,s = function d’x; A -+ Ad'xm, € R R"/K)
which means that mr = j, and N, _ is G-orientable and Go-trivial. So

i = lim u$
i s-»OOMJ,

and the Main Theorem follows from Proposition 4.1.
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