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WEIGHTED INEQUALITIES FOR HANKEL
CONVOLUTION OPERATORS

JORGE J. BETANCOR AND LOURDES RODRGUEZ-MESA

ABSTRACT. In this paper we obtain weighted inequalities for Hankel convolution operators. Also, a
weighted version of Mihlin-H6rmander theorem for Hankel multipliers is given. Some inequalities for
maximal functions play an important role.

I. Introduction and preliminaries

The purpose of this paper is to derive weighted inequalities for Hankel convolution
operators. As a particular case we obtain a weighted version of a Mihlin-Htrmander
type theorem for Hankel multipliers that extends the results of Gosselin and Stempak
[7, Corollary 1.2] and 16, Theorem 5].

X2/x+
Consider the measure space (I, dv) where I (0, o) and dv 2r’(/+)dx,

/z > -1/2. The measure ?’ satisfies the doubling condition, that is, there exists a
positive constant C > 0 such that

),,(B(x, 2)) < Cv(B(x, .)),

where B(x, ) {y 6 I: Ix- Y < e}, x 6 I and > 0. Let w be a nonnegative
measurable function on I. By Lp,w(y), 1 < p < c, we denote the space of
measurable functions f on I such that

Ilfllp,o If (x)lPw(x)x2+ dx < o.

When w _-- 1, to simplify the notation, we write Lp(),’) and lip instead of Lp,o(),’)
and ]lp,o, respectively. Let L denote the space of essentially bounded functions
on (0, ).
We represent by Co the space of continuous and compactly supported functions

on I.
As usual the Hankel transform h/zf of f L(V) is defined by

h.(f)(y) (xy)-z Jtz(xy)f(x)x2z+l dx, y I,
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HANKEL CONVOLUTION OPERATORS 231

where J represents the Bessel function of the first kind and order/z > -1/2. Since

h is an isometry on L2(y) and maps L (y) boundedly into Lc it follows thath can
be extended to a bounded operator from Lp (y) into Lp,(y) < p < 2, p’ _IL_

[9, Theorem 3].
P-

The convolution operation for h-transformation was investigated by Cholewinski
[6], Haimo [8] and Hirschman [10]. If f and g are in Ll(y) the convolution f#g of
f and g is defined by

(f#g)(x) (Vxf)(Y)g(Y) dy(y),

where the Hankel translation rxf of f is

(rxf)(y) D(x, y, z)f(z) dy(z), x,yl,

and

Dz (x, y, z)

2"r(/x + 1) (xt)-"J(xt)(yt)-"J.(yt)(zt)-"J(zt)t"+dt, x, y, z I.

The #-convolution defines a bilinear bounded mapping from Lp (y) Lq (y) into

Lr (y), provided that 1 < p, q, r < c and 7 + 1 [10, Theorem 2.b].
The Hankel translation rx is a contractive operator in Lp(y), for every x 6 1 and
1 < p < cx [16, p. 16].

Let k be a locally integrable function on I and consider the convolution operator
Tk defined by Tkf k#f. The function k is usually called the convolution kernel of
the operator Tk. By taking into account the fact that (rxf)(y) (ryf)(x), x, y I,
the following result follows from [5, Theorem 2.4].

THEOREM 1.1. Let 1 < p < c. Assume thefollowing conditions:
(i) There exists Cp > 0 such that IlTkfllp < Cpllfllp, f Lp(y).
(ii) There exist two positive constants a and b such thatfor every x, y I,

I(rk)(z) (ryk)(z)l dy(z) <_ (1)a
-zl>bly-xl

holds.
Thenfor every < q < p there exists Cq > Ofor which

IlZkfllq <_ Cqllfllq, f . Lq(y),

and there exists Cl > 0 such that y({x I" IZkf(x)l > .}) < --tllfll for each.
> 0 and f L(y). Moreover, Cq, q [1, p), depends only on Cp, a and b.
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Note that (1) is the Hankel version of the well-known Htirmander condition.
Any bounded function m on I defines a Hankel multiplier operator ./m by

htz(.Adm f) mh(f). It is clear that the operators ./m depend on/z. Note that if
in addition m LI(t’) and h(m) L I(t,) then by invoking [10, Theorem 2.d and
Corollary 2.e] we can write JMmf h(m)#f, for every f L(t,), that is, the
multiplier operator .Am is actually a convolution operator. In 1, Corollary 3.1 we es-
tablished conditions on a functionm Lp (t’) that implies thath(m) L (,). Using
Theorem 1.1 weprove the following result, a Hankel version ofthe Mihlin-H6rmander
multiplier theorem for the Fourier transform. This theorem is a generalization of [7,
Theorem 1.1].

Throughout this paper C will represent a positive constant not necessarily the same
in each ocurrence.

THEOREM 1.2. Let 1 < r < 2 and s > Also, assume that m C2s (I) is a
boundedfunction on I such that there exists C > 0for which

}I/rd,(x) < CR2(lz+l)/r-2u, R>OandO<t<2s. (2)

Then the Hankel multiplier operator ./m associated to m defines a bounded operator
from Lp(?,) into itself,for every 1 < p < oo, and it is ofweak type (1,1), that is,

t’({x I" I.Adm(f)(x)l > 3}) _< C Ilfll for every . > 0,

with C > 0 independent of) > 0 and f L (t’).

Note that condition (2) imposed on the multiplier m in Theorem 1.2 is similar to
the property that characterizes the class M(s, )) of Fourier multipliers in [14]. Here
the operator D plays the role of the derivative in the definition of M(s, )) [14].
Recently, Prof. K. Stempak has pointed us that condition (2) could allow to prove the
boundedness of the multiplier operator .Mm on the spaces Lp,x (’), by establishing
the Hankel version of 14, Theorems 1.2-1.5]. This will be the objective of our next
paper.

Motivated by the papers of C6rdoba and Fefferman [4], Kurtz and Wheeden [13]
and Kurtz 12] we introduce a class of kernels satisfying a Htirmander type condition
involving Lp-norm that will allow us to deduce that if the convolution operator Tk is
bounded from Lr (?’) into Lp,h (?’), for some p and r and a particular weight h, then
Tk is also bounded between other weighted Lp-spaces.

Let N \ {0}. In what follows we will consider the metric Pl on I defined by
pl(x, y) Ix ytl l/t, x, y I. We note that the following doubling condition
holds: there exists Ct > 0 such that

?’(Bl(X, 2)) < Cl’(nl(x, )), X I and > 0. (3)
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Hence (I, Pl, ’) is a space of homogeneous type in the sense of Coifman and
Weiss [5].
We denote by M the maximal function on I associated to the measure , and the

metric Pl. That is, if f is a locally integrable function on I, we define

(Ml f)(x) sup
1 fB If (z)l dr’(z), x I,

,>0 :(BI(X, )) /(x,,)

where Bl(X, ) {y E I: pl(X, y) < }, for every x E I and > 0.

Definition. Let k be a locally integrable function on I. We will say that k belongs
to K(/z, r, q, l), where/z > -1/2, < r, q < cx and 1, 2,... if k satisfies the
following conditions:

(i) There exists a non-decreasing function S defined on (0, 1) such that

EjO0__ S(2-j) <3 and

I(yk)(x) (yok)(x)lq’ de(x) < R_2,+)t/rS
P(Y, YO)

<lx-Yol<2R R

for every R > 0 and every Yo, Y I such that Pl(Y, Yo) < -.
(ii) There exists C > 0 such that

IlTkfllr,h < CIIfllq, f . Lq(y),

where hi(y) y20z+l)(/-1), y I.

The next theorem corresponds to Lemma 3.4 and Theorem 3.5 of 12].

THEOREM 1.3. Let N \ {0}, 1 < q, r < c, lq < r and 1 < p < cx.
Assume that k K (/x, r, q, l) and v and w are nonnegative measurablefunctions on
I satisfying thefollowing:

(i) There exists C > 0 and X > 0 such that

fn’(x")nE w(y)dy(Y) < C (y(BI(X"! N E))fn,(x,,) w(y) dv(y) ,(B’( ))

for every E Lebesgue measurable set, x I and > 0 (that is, w Ao respect to

(I, Pl, lZ)).
(ii) There exists C > 0 such thatfor every x I and > 0

)l/h’y(B(x, ))-lq/r w dy v-/(h-) d’ < C,
(x,) (x,)

where 1 < h < q and v-/(n-)d, satisfies the doubling condition with respect to

the usual metric on I.
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(iii) For every f o, Ml (Tkf) Lp,w(?’).
Then there exists a positive constant C such that

IIZfllp, < CIIfllqh,o, f Co.
Moreover, the last constantC depends on thefunction S andthe constants C appearing
in the hypothesis.

As a consequence ofTheorem 1.3 we obtain the following weighted version of the
Mihlin-Htirmander theorem for Hankel multipliers.

THEOREM 1.4. Let 1 < r < 2, r < q < c, d N\ {0} andr < d < + 1.
Assume that m c2d(I) is a bounded function on I such that m LI(’), that

ha (m) L (’) and that there exists C > 0for which

D re(x) d,(x) < CR2(+1)/r-2, R > 0 and 0 < t < 2d,
/2

and

Ih(m)(x)l < Cx-, x I, (4)

for a certain c > log2 (Cl), where Cl is the constant appearing in (3)for 2(d+ 1).
Suppose also that Th(m is boundedfrom Lq(,) into Llq,ht(’), where hl(y)

y2(/z+l)(/-1), y I. Then .Adm is a bounded operatorfrom Lqh,v(:) into Lp,w(’),
where 1 < h < p and < < cx, provided that v and w are nonnegative
measurablefunctioqns

q P
on I satisfying condition (ii) in Theorem 1.3 and thefollowing

one: there exists C > Ofor which

fn(x,,)w(y)dg(Y)(fn(x,) < C,(B(x, ))P,

for every x I and > 0 (that is, w Ap with respect to (I, Pl, ?’)).

2. Inequalities for maximal functions

In this section we present certain inequalities for maximal functions that will be
useful in the sequel.

As usual the fractional maximal function M,, 0 < ct < 1, associated to the measure, and the usual metric Pl on I is defined for every locally integrable function f on I
by

(Maf)(x) sup
1 f. If(z)l dy(z), x I,

,>0 r’((xl ))-
where B(x, ) {y I" Ix Yl < }, for each x I and > 0. Note that when
ct 0 the fractional maximal function reduces to the usual maximal function.

The following result follows from 18, Theorem 4].
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PROPOSITION 2.1. Let 1 < p < q < oo and 0 < t < 1. Let v and w be non-
negative measurablefunctions on I. If v-1/(p-1)d), satisfies the doubling condition
with respect to the usual metric on I, then the norm inequality

(fo00 IMaf(x)lqw(x) dy(x) (fo<_ C If (x)lPv(x) d,(x)

holdsfor all locally integrable function f on I, with C independent of f, provided
that

(fB )l/q(fBy(B(x,.))a-1 wdy
(x,) (x,)

1)-1/(p-l) dy)
1/p’

_<C,

for all x I and > 0, where C does not depend on x and .
Also, for every fi N\ {0}, we consider the sharp maximal function M, associated

to the metric/91 already defined, given by

1 f
(Mf)(x) sup d,,

,>0 y(BI(X, )) JB

where f is locally integrable on I and fn,(x,,) denotes the average of f on Bt(x, ),
that is

fBl(X,,) f dy, x I, > O.
y(Bl(X,))

From [2, Theorem 2] we can immediately deduce the following result.

PROPOSITION 2.2. Let _< p < OO and 6 N \ {0}. Assume that w is a
nonnegative measurablefunction on I that satisfies the condition (i) in Theorem 1.3.
Then there exists C > 0 such that

llfllp,o < CllM(f)llp,,.

provided that f is a locally integrablefunction f on I and Mlf Lp,w(Y).

In the next proposition we prove a relation between the sharp and fractional max-
imal functions that will be very useful in the sequel.

PROPOSITION 2.3. Let 1, 2,... and let <_ r, q < oo be such that lq < r.
Assume that k K (Ix, r, q, l). Then there exists a constant C > 0 depending on

Ix, r, q and such thatfor every f Lq(y) we have

M(Tkf)(y) < C {Mo(lflq)(y)} l/q y . I,

where 0 1 lq
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Proof. Suppose that f Lq(?/)and k K(/z, r, q, l). Let Y0 I and > 0.
We define the functions f., j N, as follows"

fo(Y) f(y)xlyt: ly-yo[<2,} (Y),

and

fj(Y) f(Y)Xlyt: 2Y,<ly-Yol<2Y+l,}, y I and j 1N \ {0}.

It is clear that f Y--jo ) on I, and that Tkf Y’y%o k#fj.
Since Tk is abounded operator from Lq (1,,) into Lr,ht (/), where hi(y) y2(/z+l)(/-1),

y I, a straightforward manipulation allows us to write

1
I(k#fo)(y)l d,(y)

y(Bl(YO, .)) t(Yo,.)

1 1 }l/r{fo ir }l/r< y-2(+l)r"= d?’(y) y2(z+l)’=, (k#fo)(y) dt’(y)
g(Bt(yo, .)) t n,(yo,,

< C If(y)lq dy(y))"(B(yol 2;)) 1-n

where r/= 1 -/q.
Moreover forrevery j N \ {0} we have

(k#3)(y) (k#3)(yo) + [(ryk)(z) (ryok)(z)lfj(z)d,(z)

=cj+j, yI.

Note that cj, j N \ {0}, does not depend on y I. Then, for every j N \ {0},

I1 < f21<lz_Yol<2Y+l IOryk)(z) (ryok)(z)l If(z)l d’(z)

--< {f2J,<lz-Yol<2i+’, I(’yk)(z)--(’cyok)(z)lq’ d/(z)} 1/q’B(yo,2+,,) If(z) q d’(z)}
< CS

l(Y, Yo). 1
[f(z)lq dg(z)"J ) t’(B(yo, 2J+l)) 1-r

when PI(Y, Yo) < 2J-l Here, as above, r/= 1 -/q

In particular, if Pl (Y, Yo) < we have

1) iq l/qIyl _< CS 7 [Mn(If )(Yo)] j N \ {0}.
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Hence we conclude that

I(k#f)(y) cjl dv(y)
?’(Bl(YO, )) (Y0,’) j=l

I(k#fo)(y)ldv(y)<- /(BI(Yo, ’)) ,(Y0,,)

o

fn I(k#J))(y) cjl d?’(y)
(Bl(YO ))

+
j=:l ’ t(Yo

< C S -)- +1 (M(Iflq)(yo)) 1/q.
j=l

Then it follows that

M(Tkf)(yo) < C(M(Iflq)(yo)) 1/q.

Thus the proof of the proposition is finished, r-1

3. Proofs of theorems

In this section we prove Theorems 1.2, 1.3 and 1.4. We recall as mentioned in
Section 1, that Theorem 1.1 is an immediate consequence of [5, Theorem 2.4].

Proof of Theorem 1.2. The proof of Theorem 1.2 follows the original one of
H6rmander 11 and the one due to Gosselin and Stempak ([7, Theorem 1.1 ]).

Since rn is a bounded function on I, from Theorem 3 in [9] it follows that the
Hankel multiplier operator .Mm associated to m is bounded from L2(V) into L2(?’).

Let ap be in C(I) such that the support of P is contained in (1/2,2) and
j=-oo r(2-Jx) 1, x I. Define the functions @j, mj and kj, j Z, associated to

rn and p, by apj(x) ap(2-Jx),mj(x) m(x)apj(x) andkj(x) h,(mj)(x), x I
andj .

By virtue of Theorem 1.1, to see that ,Mm is a bounded operator from Lp(V) into
itself, for every 1 < p < 2, and .Adm is of weak type (1,1) it is sufficient to prove that

j=-o -zl>21y-xl
I(rxkj)(z) (rykj)(z)l dv(z) < C, x, y I, (5)

for a certain C > 0 that does not depend on x, y fi I.
In effect, assume that (5) holds. Define

n

R,

_
kj for every n N.
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According to Theorem 1.1, for every p [1, 2] there exists Cp > 0 such that for
every n N,

IIZR, fllp Cpllfllp, f Lp(’), < p < 2, (6)

and

Ilflll[{x > _< c, -, f Ll(y), . > 0.

Since z-J(z) is a bounded function on I, we can write

(7)

sup I(.A,4mf TR,,f)(x)[ <_ C
X.I

for every f Co.

nMoreover, since lim,,-oo -.j=-n mj(x) m(x), x I, and there exists a positive
constant C such that nj=_,, mj(x)l < C, n e N, x I, we conclude that for each
f Co,

Tnn f ./m f, as n oo, uniformly in I.

Hence, from (6) and (7) it follows that

II.Mm f llp Cp f llp, fC0,1 <p<2,

and

Ilfll
?’ [{x 6 I: I.Mmf(X)I > .}] < C1-----, f 6 Co, Z > 0.

The theorem is established, in these cases, by extending .Mm to Lp(],’) by den-
sity.

To see that .Mm defines a bounded operator from Lp (),) into itself, when p > 2,
it is sufficient to use duality.
We now prove (5).
Let j Z and x, y I. As in [7, p. 661 we can write

I(.xkj)(z) (rykj)(z)l d(z) 2 Ikj(z)l d(z). (8)
-zl>21y-xl -xl

Let > 0. H61der’s inequality leads to

ft Ikj(z)ldg,’(z) <_ CIl(2"iz)2kjllr (2Jz)-2Sr d’(z)

_< CIl(1 / (2Jz)2)Skjllr’2-2sJt2+t-2s (9)

provided that s > +
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Let Aa denote the Bessel differential operator X-2/z-1Dx2t+l D. According to a
well-known operational rule for the Hankel transformation 19, (5) Lemma 5.4-1 ],
and by [9, Theorem 3], it follows that

I1(1 + (2Jz)2)Skjllr IIh[(1 2j A)m]ll,

< Cll(1-22JA)Smjllr <_C(:)22ijl’Ailzmjllr
i=0

(10)

1D)k+iMoreover, for every N, A.f -k=Oak,ix2k(- f, where ak,i, k
0, i, denote suitable real numbers. Hence, by (2) one has

m/my Ilr C lak, ix2k _1 D
k=0 J2- X

<C IX2k O j(X) O
k=0 a=0

k+i{2Y+’()k+i-m(X,I }litC D de(x)
k=0 a=0

< c22J(-i+)r O, s.

mj(x)lrd,(x)}
1/r

m(x)lrd/(x) }
/r

22j(k-a)

(11)

By combining (9), (10) and (11) we can conclude that

Ik(z)l d(z) <_ c(2Jt)2( +-s) (12)

where C does not depend on and j.
Hence, from (8) and (12) it follows that

f I(rky)(z)- (ryky)(z)ldr,(z) <_ c(2Jly- xl)2(r-s). (13)
-zl>21y-xl

Also, according to Bemstein’s inequality (for the Hankel transform) [7, Corol-
lary 2.2], it [ollows that

fx-zl>21y-xl I(k)(z)-(yk)(z)ld’(z) Cllk-yklll C2d/ly-xl Ilkdll.
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H61der’s inequality allows us to write

IIkj I1 _< I1(1 + (2z)2)-s I1 I1(1 + (2z)2)’k I1’
< C2-2JOz+l)/rll(1 + (2Jz)E)skjllr,

because s > g+l.
By invoking (10) and (11) again we conclude that Ilk2 II1 _< C, where C does not

depend on j, and then

f I(rk2)(z)- (ryk2)(z)l dT(z) <_ C22Iy xl.
-zl>21y-xl

Now from (13) and (14) it follows that

(14)

j=-oo -zl>21y-xl
I(rk)(z) (ryk)(z)l de(z)

Z: 2J ly-xl>_
(rk)(z) (ryk)(z)l

-zl>21y-xl
d,(z)

{jZ: 2Jly-xl<l}

< C (2j lY- x I)2 erS") -t 2j lY- x < C.
{jZ: 2ly-xl>_1} {jZ: 211y-xl<l}

Thus (5) is established, r-1

Proof of Theorem 1.3.
tions 2.1, 2.2 and 2.3.

To prove Theorem 1.3 it is sufficient to use Proposi-

Proof of Theorem 1.4. First, note that ha(m) L, since m LI(,). Hence
by (4), since CI >_ 22(tt+), we conclude that ha(m) L (,) and then Tha(m m.

Letf C0andleta > 0 be such that f(x 0, x > a. We now see that

Th,,(m)f Lp,w(y). It is clear that

(f02a

f2)IITh.(,,,)fll,,----- / ITh.(m)f(x)lPw(x)dy(x) I + J.
a

By H61der’s inequality, it follows, from 10, Theorem 2.b] that for every r > 1,

III < IZh,,(m)f(x)l pr’ dy(x) w(x) dy(x)

< Ilfll p w(x) d(x)pr’
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Hence, by choosing r suitably [3, Theorem 1] we conclude that III < c. To
estimate J we start noting that according to (4) and [10, (2)],

x+y

I(:xh(m))(y)l < D(x, y, z)lh(m)(z)l a(z)
dlx-yl

< CIx-yl-’, x,yl.

Then

a If(y)l
d’(y) < Cx-’,I(Th,,(m)f)(x)l <_ C

Ix- yl’
x> 2a.

Hence, we can write

IJI I(Zh,,(m)f)(x)lPw(x) d’(x)
a

< C x-Pw(x) dy(x).
a

Now, by using [3, Lemma 4] and by proceeding as in the proof of [17, Proposi-
tion 4.5(iv)], it follows that JI < c.

Thus we conclude that Th,(m)f Lp,w(/). By invoking [3, Theorem 3] it follows
that

MI (Th,(m) f) Lp,w(’).

By virtue of Theorem 1.3 to establish Theorem 1.4 it is enough to prove that

{j=__ fR<lx-Yol<2R I(:ykj)(x) (ryokj)(x)lq’ dy(x) }
1/q’

< CS(PI(-Y))R-20z+l)/q,

when PI(Y, Yo) < and R > 0, and for some N \ {0}, and some non-decreasing
function S defined on (0, 1) such that y S(2-y) < x. Here ap, ky, pj and
my, j Z, are as in the proof of Theorem 1.2.

Let R > 0, y, Yo I and j Z. We have

I(r.ykj)(x) (ryoky)(x)lq’ dy(x)
<lx-Yol<2R

< I(’cykj)(x)lq’ d),’(x) "t-
< Ix-yo <2R < Ix-yo <2R

I/q’

I(’yokj)(x)lq’ d’(x)
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In the sequel we consider 2(d + 1). If Pt(y, y0) < -, Jensen’s inequality
leads to

I(rykj)(x)lq’ dy(x)
<Ix-Yol <2R

fR fx+y< D(x, y, z)lkj(z)lq’ dy(z)d?’(x)
<lx-Yol<2R ,I Ix-yl

< Ikj(z)l q’ Dz(x, y, z) d’(x) d’(z)
/2

Ikj(z)l q’ d’(z).
/2

Also, we can see that

fR<lx-Yol<2R I(ryokd)(x)lq’ d’(x) < Ikd(z)l q’ d,(z).
/2

Hence, one has

fR<lx-Yol<2R I(rykj)(x) (yokj)(x)lq’ d,(x) < 2 Ikj(z)lq’ d’(z)
/2

Rprovided that PI(Y, Yo) < "f.
By [9, Theorem 3], the operational rule [19, (5) Lemma 5.4-1] and H/51der’s

inequality, we get

Ik (z)l d,(z) Ikj(z)z2dlq’z-2dq’d’(z)
]2 ]2

<_ CR_2[d_(iz+l)(,_,)] l foO }
l/r’

Ihu(Admj)(z)lr’ d?,(z)

< CR-2[d-(lz+l)(- )] IAdmj(x)l d,(x)

whenq>_r, <r_<2andd6N, d>(/z+l)(- +/-).
By proceeding as in the proof of Theorem 1.2 it follows that

d ir C22J(+-d)IA,mj(x) d?’(x) <
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Hence, if tOl (y, Yo) < -, then

I((xl (o:l(xl
<lx-yol<2R

2 Ik(z)l d(z)

CR-a-("+l(-12j(-a (15)

provided thin q r, 1 < r 2 and d N with d >
On the other hand, by invoNng [9, Theorem 3] and 19, Lemma 5.4-1 again, we

have

(y(xl (r.(xlq’ g(x

CR--("+II(- 1 I[m(x)((xy)-"J.(xy)
l/r

(xyo)-"J.(xyo))]l dg(x)

withqr, 1 <r2anddN,d>(+l)(;-).
Now, by taNng into account the fact that (D)[z-"J.(z)] -z-"-lJ.+(z),

z I, that the function z-"J.(z) is bounded on I and that .f(x)
1D)k+i=oa,ixzt( f(x), where N and a,i, k 0,..., i, denotes suitable

real numbers, we can conclude that

I(rl(xl (.l(xll’(x<lx-Yol<2R
< CR-(e-(.+I(-

}
1/r

[(xy)-"J.(xy) (xyo)-"J.(xyo)] dg(t)

S CR--("+1(-1 lY
1(+

c-e-(.+1(’- (y, y0)2(-e+

whereqr, <r2anddN,d>(+l)(-).
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Hence, if 2J PI(Y, Y0) < then

I(’ykj)(x) (’yokj)(x)lq’ dy(x)
<lx-yol<2R

e.t2- -2[d-(+l)(-<_ CPl(y, y0)222j(1-d+ R (16)

withq >_ r, < r _< 2andd N,d > (/z + 1)( ).
By combining (15) and (16) we can obtain. I(ykj)(x) (r,yokj)(x)lq’ dy(x)

j=-oo <lx-Yol<2R

{jEZ: 2Jpt(y,yo)>_l} {jEZ: 2Jpt(y,yo)<l}

x fR<lx-yol<2R I(ykj)(x) (ykj)(x)lq’ dy(x) }
1/q’

< CR2[(a+I)( y0)2(d-e-*2;)-d]pl,y -,

when Pl (Y, Yo) < - q > r, < r < 2 and +l < d < - + 1

Hence by defining S() -, (0, 1), (17) can be rewritten as

(17)

j=-oo <lx-Yol<2R
I(rykj)(x) (ryokj)(x)lq’ dy(x) }

1/q’

< CS(PI(Y’Y,,))R-2(Iz+I)/qR
(18)

R
for Pl (Y, Yo) < --.

2
By taking into account the fact that k ooY4---oo kj, from (18) we deduce that

I(ryk)(x) (ryok)(x)lq’ dv(x)
< Ix-yo <2R

<_ CS (PI( Y) ) R-2(l+l)/q

Rfor Pl(Y, Yo) < .
Then, since Tk is bounded from Lq(y) into Llq,h,(?’), k K(lz, lq, q, I), and the

proof of Theorem 1.4 can be finished by using Theorem 1.3, rq

Acknowledgement. We are indebted to Professor K. Stempak for comments con-
ceming an earlier draft of this paper and for turning our attention to the paper of B.
Muckenhoupt, R. Wheeden and W-S. Young 14].
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