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WEIGHTED INEQUALITIES FOR HANKEL
CONVOLUTION OPERATORS

JORGE J. BETANCOR AND LOURDES RODRIGUEZ-MESA

ABSTRACT. In this paper we obtain weighted inequalities for Hankel convolution operators. Also, a
weighted version of Mihlin-Hormander theorem for Hankel multipliers is given. Some inequalities for
maximal functions play an important role.

1. Introduction and preliminaries

The purpose of this paper is to derive weighted inequalities for Hankel convolution
operators. As a particular case we obtain a weighted version of a Mihlin-Hormander
type theorem for Hankel multipliers that extends the results of Gosselin and Stempak
[7, Corollary 1.2] and [16, Theorem 5].

Consider the measure space (I, dy) where I = (0,00) and dy = ”—'}?:‘%dx,
@ > —1/2. The measure y satisfies the doubling condition, that is, there exists a
positive constant C > 0 such that

Y (B(x, 2¢€)) < Cy(B(x, €)),

where B(x,€) = {y € I: |x —y| <€}, x € I and € > 0. Let w be a nonnegative
measurable function on I. By L, ,(y), 1 < p < 0o, we denote the space of
measurable functions f on I such that

o) 1/p
ufn,,,w=[ [0 If(x)l"w(x)xz““dx} <o,

When w = 1, to simplify the notation, we write L, (y) and || ||, instead of L, (¥)
and || ||,w, respectively. Let Lo, denote the space of essentially bounded functions
on (0, 00).

We represent by Cy the space of continuous and compactly supported functions
onl.

As usual the Hankel transform 4, f of f € L1(y) is defined by

ha () = fo )L fxH dx, el
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HANKEL CONVOLUTION OPERATORS 231

where J, represents the Bessel function of the first kind and order u > —1/2. Since
h,, is anisometry on Ly (y) and maps L; (y) boundedly into L it follows that &, can
be extended to a bounded operator from L,(y) into Ly(y),1 < p <2,p' = -J’—
[9, Theorem 3].

The convolution operation for &, -transformation was investigated by Cholewinski
[6], Haimo [8] and Hirschman [10]. If f and g are in L;(y) the convolution f#g of
f and g is defined by

(FHe)(x) = fo @ HMEMdYG),  xel,

where the Hankel translation t, f of f is

(rxf)(y)=/; Dy(x,y,2) f(z)dy(2), x,yel,
and

D/.L(x’ )’, Z) o
= 22T (u + 1)? / (xt)"F I, () (1) M (pt) (28) * T 2t x,y,z € 1
0

The #-convolution defines a bilinear bounded mappmg from L,(y) x L,(y) into
L,(y), provided that 1 < p,q,r < o0 and 1 =14 ; —1[10, Theorem 2.b].
The Hankel translation 7, is a contractive operator in Ly(y), for every x € I and
1< p <o0[16,p. 16].

Let k be a locally integrable function on I and consider the convolution operator
Ty defined by Ty f = k#f. The function k is usually called the convolution kernel of
the operator Tj. By taking into account the fact that (7, f)(y) = (7, f)(x), x,y € I,
the following result follows from [5, Theorem 2.4].

THEOREM 1.1. Let 1 < p < 00. Assume the following conditions:
(i) There exists Cp, > O such that | Ty fll, < Cpll fllp, £ € Lp(¥).
(ii) There exist two positive constants a and b such that for every x,y € I,

/ (60 @ - (H@D]dr@ < a, W
|x—2z|>bly—x|

holds.
Then for every 1 < g < p there exists C4 > 0 for which

”ka"q Cq".f"q, fe Lq(y)»

and there exists C; > 0 such that y({x € I. |Th f(x)| > A}) < glllflllfor each
A > O0and f € Li(y). Moreover, C4, q € [1, p), depends only on C,, a and b.
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Note that (1) is the Hankel version of the well-known Hormander condition.

Any bounded function m on I defines a Hankel multiplier operator M,, by
hyMum f) = mh,(f). Itis clear that the operators M,, depend on u. Note that if
in addition m € L(y) and h,(m) € L(y) then by invoking [10, Theorem 2.d and
Corollary 2.e] we can write M,, f = h,(m)#f, for every f € L(y), that is, the
multiplier operator M,, is actually a convolution operator. In [1, Corollary 3.1] we es-
tablished conditions on a functionm € L,(y) thatimplies thath,(m) € L;(y). Using
Theorem 1.1 we prove the following result, a Hankel version of the Mihlin-Hérmander
multiplier theorem for the Fourier transform. This theorem is a generalization of [7,
Theorem 1.1].

Throughout this paper C will represent a positive constant not necessarily the same
in each ocurrence.

THEOREM 1.2. Letl <r <2ands > ‘%1 Also, assume thatm € C¥(I) isa
bounded function on I such that there exists C > 0 for which

R 1 o
al o) oo
R/21\X
Then the Hankel multiplier operator M,, associated to m defines a bounded operator
Sfrom L(y) into itself, for every 1 < p < 00, and it is of weak type (1,1), that is,

1l
A
with C > 0 independent of . > Oand f € L(y).

r

1/r
dy(x)} <CR¥w+D/r=2¢ RS 0and 0<a<2s. (2)

yUx € It IMu(f)X)| > A} <C forevery A > 0,

Note that condition (2) imposed on the multiplier m in Theorem 1.2 is similar to
the property that characterizes the class M (s, A) of Fourier multipliers in [14]. Here

the operator ip plays the role of the derivative in the definition of M(s, 1) [14].

Recently, Pro%. K. Stempak has pointed us that condition (2) could allow to prove the
boundedness of the multiplier operator M,, on the spaces L x«(y), by establishing
the Hankel version of [14, Theorems 1.2-1.5]. This will be the objective of our next
paper.

Motivated by the papers of Cérdoba and Fefferman [4], Kurtz and Wheeden [13]
and Kurtz [12] we introduce a class of kernels satisfying a Hormander type condition
involving L ,-norm that will allow us to deduce that if the convolution operator Tj is
bounded from L,(y) into L, (), for some p and r and a particular weight h, then
T} is also bounded between other weighted L,-spaces.

Letl € N\ {0}. In what follows we will consider the metric p; on I defined by
o(x,y) = |x! = y|1/!, x,y € 1. We note that the following doubling condition
holds: there exists C; > 0 such that

y(Bi(x,2€)) < Ciy(Bi(x, €)), x€lande > 0. 3
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Hence (I, p;, y) is a space of homogeneous type in the sense of Coifman and
Weiss [5].

We denote by M’ the maximal function on I associated to the measure y and the
metric o;. That s, if f is a locally integrable function on I, we define

(M’ f)(x) = sup

1
- o, .
>0 Y(Bi(x,€)) Jpx,0) |f (@) dy () x €

where Bj(x,€) ={y € I: p/(x,y) <e€},foreveryx € [ ande > 0.

Definition. Letk be alocally integrable function on /. We will say that k£ belongs
to K(u,r,q,1), where p > —3,1 <r,q <ooandl = 1,2,... if k satisfies the
following conditions:

(i) There exists a non-decreasing function S defined on (0,1) such that

372182 7) <00 and

1/q
| R0 - GO dy] < g2ms (A20),
R<|x—yo|<2R R

for every R > 0 and every yo, y € I such that p;(y, yo) < %.
(ii) There exists C > 0 such that

N Tk fllrn < Cllfllgs f €Ly(y),
where h;(y) = y?®+D0-D y e I,

The next theorem corresponds to Lemma 3.4 and Theorem 3.5 of [12].

THEOREM 1.3. Letl € N\ {0}, 1 < q,r < o0,lg <randl < p < oo.
Assume thatk € K (u,r, q,1) and v and w are nonnegative measurable functions on
I satisfying the following:

(i) There exists C > 0 and x > 0 such that

Jowons ¥ Y ®) (y(B:(x, 9N E))X
JaowOMdy() y(Bix,€) )’

for every E Lebesgue measurable set, x € I and € > 0 (that is, w € A respect to

(I s Pls /'L))
(ii) There exists C > O such that for every x € I and € > 0

a/p 1/h
y (B(x, €)4/" ( f wdy) ( [ e dy) <c,
B(x,€) B(x,€)

where 1 < h < £ and v="/#-Ddy satisfies the doubling condition with respect to
the usual metric on 1.
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(iii) For every f € Co, M'(Ti f) € Lp,u(y).
Then there exists a positive constant C such that

1T fllp,w < Cll fligh,vs f €Co.
Moreover, the last constant C depends on the function S and the constants C appearing

in the hypothesis.

As a consequence of Theorem 1.3 we obtain the following weighted version of the
Mihlin-Hérmander theorem for Hankel multipliers.

THEOREM 1.4. Letl <r <2,r <q < o0, deN\{O}and”— <d < l‘—+1
Assume that m € C%(I) is a bounded function on I such that m € Ll(y) that
h,(m) € L1(y) and that there exists C > 0 for which

R 1 a r l/r
R/2 |\ X

dy(x)] < CR*WHD/r=2a R>0and0<a <2d,
and

lhu(m)(x)| < Cx™%,  xel, @)

foracertain a > log,(C;), where C; is the constant appearing in (3) forl = 2(d +1).

Suppose also that T, m) is bounded from L, (y) into Lig,n (v), where hi(y) =
D=1y e Then M, is a bounded operator from Lgyy(y) into Lp w(y),
where 1 < h < £ and q < p < 00, provided that v and w are nonnegative
measurable functions on I satisfying condition (ii) in Theorem 1.3 and the following
one: there exists C > 0 for which

—1 p-l
/ w(y)dy(y) (f wrT dy(y)) < Cy(Bi(x,€))?,
Bi(x,€) Bi(x,€)

for everyx € I and € > 0 (that is, w € A, with respect to (I, p;, y)).

2. Inequalities for maximal functions

In this section we present certain inequalities for maximal functions that will be
useful in the sequel.
As usual the fractional maximal function M,, 0 < o < 1, associated to the measure

y and the usual metric p; on I is defined for every locally integrable function f on I
by

1
(Mo )G0) = 09— [ @Iy, xel,

where B(x,€) = {y € I: |[x — y| < €}, foreach x € I and € > 0. Note that when
a = 0 the fractional maximal function reduces to the usual maximal function.
The following result follows from [18, Theorem 4].
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PROPOSITION 2.1. Letl < p <q <o0and0 <« < 1. Let v and w be non-
negative measurable functions on I. If v=1/P=Ddy satisfies the doubling condition
with respect to the usual metric on I, then the norm inequality

00 1/q ) 1/p
(]0 |Maf<x)|"w<x)dy<x)) SC(fO If(x)l”v(x)dy(x)) ,

holds for all locally integrable function f on I, with C independent of f, provided

that
1/q 1/p
y (B(x, €))*! (f wdy) (f p=1/-D dy) <c,
B(x,€) B(x,€)

Jorall x € I and € > 0, where C does not depend on x and €.

Also, forevery I € N\ {0}, we consider the sharp maximal function M}, associated
to the metric p; already defined, given by

(M} f)(x) = sup

— |f = faeldy, xel,
e>0 Y(Bi(x, €)) By(x,€) 19

where f is locally integrable on I and fp,(,,¢) denotes the average of f on B;(x, €),
that is

1
y(Bi(x, €)) Bi(x,€)
From [2, Theorem 2] we can immediately deduce the following result.

IBixe) = fdy, xele>0.

PROPOSITION2.2. Let 1 < p < oo andl € N\ {0}. Assume that w is a
nonnegative measurable function on I that satisfies the condition (i) in Theorem 1.3.
Then there exists C > 0 such that

£ lpw < CIME )l p,w-
provided that f is a locally integrable function f on I and M' f € Lpw(®).

In the next proposition we prove a relation between the sharp and fractional max-
imal functions that will be very useful in the sequel.

PROPOSITION 2.3. Letl =1,2,...andlet1 <r,q < 0o be such thatlq < r.
Assume that k € K(u,r,q,l). Then there exists a constant C > 0 depending on
W, r, g andl such that for every f € Lq(y) we have

M{TN) < C{MAf1IW),  yel,

wheren =1 — l-r‘L
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Proof. Suppose that f € L,(y) andk € K(u,r,q,1). Let yp € I and € > 0.
We define the functions f;, j € N, as follows:

fO(y) = f(y)X[yGI: |)'—yo|<2€](y)9 yel,
and

Fi) = fO) Xyer: 2e<iy-yol<2i*ie}s yelandjeN\/{0).

Itis clear that f = 3772, fj on I, and that Ty f = 372 k# ;.
Since Ty is a bounded operator from L, (y) into Ly, (¥), where h; (y) = y2®+D0-1,
y € I, a straightforward manipulation allows us to write

1
Y (B1(¥0, €)) JB,(30.6)

_ 2t 4 }W{ f s > }l/r
= V(Bz(yo,e)){fmo’e)y 1467 :ly ( fo)()’)‘ ()

1 1/q
<C {—————-—-/ fMEdy(y»p
B(yo,2¢)

Ik# fo)(») 1 dy ()

¥ (B(yo, 2¢€))1-"

wheren =1 - Lri.
Moreover for every j € N\ {0} we have

(k#£i)(y) = (k#fj)(vo) + /0 [(zyk) (2) — (7y,k) ()] fj (2) dy (2)

=c¢j t¢, yel

Note that ¢, j € N\ {0}, does notdependony € I. Then, forevery j € N\ {0},

6] < [ (5,0)@ = 6k @] f @] dy @)
2/e<|z—yol<2/tle

IA

, 1/q' 1/q
[ f (Tyk)(2) — (Ty,k) (2)? d )’(Z)} {/ f@I?dy (Z)]
2ie<|z—yo|<2/tle B(yp,2/*1€)
1/q

21(y, o) 1 / .
CS( 2e )[y(B(yo’zj-He))l—rp B(yo,2/+le)lf(Z)| dy@)t

when p;(y, yo) < 2/~'e. Here, as above, n = 1 — 4.
In particular, if p;(y, yo) < € we have

1A

1
lejl = CS (2—J> M, (1 FIDOG01Y,  j e N\ {0}
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Hence we conclude that

1 o0
(B v en k# _ 1d
¥ (Bi(yo, €)) Bl(yo,e)K f)(y) j;cll y(y)
1
(BN k#
S T B0 Jage RO D)
& 1

|k# ) () — ¢jldy (¥)

+2

= Y (Bi(Y0, €)) B0

c (Z s(5)+ 1) (M,05100) 7

Jj=1

IA

Then it follows that

MH(T f) (o) < C(M,(1F19) (o)) 2.

Thus the proof of the proposition is finished. O

3. Proofs of theorems

In this section we prove Theorems 1.2, 1.3 and 1.4. We recall as mentioned in
Section 1, that Theorem 1.1 is an immediate consequence of [5, Theorem 2.4].

Proof of Theorem 1.2. The proof of Theorem 1.2 follows the original one of
Hormander [11] and the one due to Gosselin and Stempak ([7, Theorem 1.1]).

Since m is a bounded function on 7, from Theorem 3 in [9] it follows that the
Hankel multiplier operator M,, associated to m is bounded from L, (y) into Ly(y).

Let ¢ be in C*(I) such that the support of Y is contained in (%, 2) and
Y o ¥(27Ix) = 1,x € I. Define the functions y;, m; and k;, j € Z, associated to
m and ¥, by ¥ (x) = v/ x), m;(x) = m(x)¥;(x) and k;(x) = h,(m;)(x), x € I
and j € Z.

By virtue of Theorem 1.1, to see that M,, is a bounded operator from L,(y) into
itself, forevery 1 < p < 2, and M,, is of weak type (1,1) it is sufficient to prove that

o0

3 f. [ EO - ORI SC xyel
x—2z|>2|y—x

j==00
for a certain C > O that does not depend on x, y € I.
In effect, assume that (5) holds. Define

n
R, = Z k; foreveryn € N.

j=n



238 JORGE J. BETANCOR AND LOURDES RODRIGUEZ-MESA

According to Theorem 1.1, for every p € [1, 2] there exists C, > 0 such that for
everyn € N,

1Tk, fllp < Cpllfllp,  feLp(¥), 1<p=2, ©)

and

(R
A 9
Since z7*J,,(z) is a bounded function on I, we can write

(m - i mi) hu f 1

j==n

v[{x e I: 1T, f®) > 1}] = € feLiy),r>0. @)

sup (M f — Tk, )(x)| = C

xel

forevery f € C.

Moreover, since lim,_, o Z};_n mj(x) = m(x), x € I, and there exists a positive
constant C such that | }}__, m;(x)| < C,n € N, x € I, we conclude that for each
f € COa

Tg,f —> Mpu f, asn — oo, uniformly in .
Hence, from (6) and (7) it follows that

IMunfllp < Cpllfllpy,  feCol<p=2,

and

yite el IMuf@l > s pecoaso

The theorem is established, in these cases, by extending M,, to L,(y) by den-
sity.

To see that M,, defines a bounded operator from L, (y) into itself, when p > 2,
it is sufficient to use duality.

We now prove (5).

Letj € Zandx,y € I. Asin [7, p. 661] we can write

(o]

/l I>2| ||(Txkj)(2)_(tykj)(Z)ldy(Z) <2 |ij(z)ld)/(z). ®)
X —2Z|>2|y—x

ly—x

Lett > 0. Holder’s inequality leads to

A

00 ) o 1/r
/ k@l dy(@) < C||<2fz)”kj||rf[ f (2fz)'2"dy<z>]
t t

IA

ClI(L + 27 2)2) Kyl 2720 252 ©)

provided that s > &+!

r
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Let A, denote the Bessel differential operator x~2#~! Dx?**1 D, According to a

well-known operational rule for the Hankel transformation [19, (5) Lemma 5.4-1],
and by [9, Theorem 3], it follows that

I+ @25kl = Il =2/ A mjlll

IA

. S Ky .y .
Clt—25A°mjll, <CY (l.)zz'f laLm;l-.  (10)
i=0

Moreover, for every i € N, AL f = o arix* (D) f, where ay;, k =
0, ..., 1, denote suitable real numbers. Hence, by (2) one has

i i 20+t w1 k+i . Ir
1akmile < €3 laxily | B*(IP) mGldy

k=0

L Al 2% 1 « 1 k+i-a 1/r
Ckg;;[/;"‘ g (ED) v (}D) ’"(x)l'dy(x)]

i ki 2/+1 1 k+i—a
CZZI/Z,.-. (;D) )
k=0 a=0

CRI-HED 0, .., (11)

IA

IA

r 1/r
dy(x)] 22l

IA

By combining (9), (10) and (11) we can conclude that

f k(D)1 dy () < CRIHEE", (12)
t

where C does not depend on ¢ and j.
Hence, from (8) and (12) it follows that

/1 1>2] ,K’xki)(Z) — (5k) @] dy (2) < C@]y — x[)>*F 9. a13)
x—z]|>2|y—x

Also, according to Bernstein’s inequality (for the Hankel transform) [7, Corol-
lary 2.2], it follows that

/ 1(7:k) () = (Tyk)) @)1 dy (2) < Clltsky —tykjlls < C2IF 1y —x]| llk; 1.
|x—z|>2|y—x|
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Holder’s inequality allows us to write
Ikl < 11+ @72H NI + (272)%) Kkl
< C272WADIT|I(1 + (272)*) k|

because s > E’r"—l
By invoking (10) and (11) again we conclude that ||k;||; < C, where C does not

depend on j, and then
f [(z2k;) @) — (1yk) (@) dy (2) < C2|y — x|. (14)
lx—z|>2|y—x|

Now from (13) and (14) it follows that

o0

> f| ooy O~ BR@IdY @
x—2z|>2|y—x

j==0

_ Z + Z f [(txkj) (2) — (Tyk;) (2) | dy (2)
(eZ: Vly-xI21}  (jeZ: 2ly-x|<1}) YI¥—2l>2y=x|

sc( Y @y Y 2f|y—x|)sc.

(j€Z: 2/ |y-x|=1} {j€Z: 21y-x|<1}

Thus (5) is established. O

Proof of Theorem 1.3. To prove Theorem 1.3 it is sufficient to use Proposi-
tions 2.1,2.2and 2.3. 0O

Proof of Theorem 1.4. First, note that h,(m) € Lo, since m € L1(y). Hence
by (4), since C; > 2%#*D, we conclude that ,(m) € Ly(y) and then T, (my = M.

Let f € Cy and let @ > O be such that f(x) = 0, x > a. We now see that
Th,myf € Lp,w(y). Itis clear that

2a [«
I Ty F12.,, = ( fo + f2 )|Thu<m>f(x)|"w(x) dy(x)=1+1J.

By Holder’s inequality, it follows, from [10, Theorem 2.b] that for every r > 1,

¥ ¥
{ fo w(x) dy(x)]

r

2a
1l < [ /0 |Th“<m>f(x>|P"dy(x)]

2 !
< ufu,':,,[ [ w(x)’dy(x)] .
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Hence, by choosing r suitably [3, Theorem 1] we conclude that |I| < oo. To
estimate J we start noting that according to (4) and [10, (2)],

x+y
[(Tehu(m))(¥)] sfl |D,L(x,y,z)lh,t(m)(z)ldy(z)
x—y
< Clx -y, x,yel

Then

a
If(y)l ————dy(y) < Cx™*, x > 2a.

(Thum @] < C f

Hence, we can write

171

IA

f2 Thom )P () dy (x)

o0
C x"*Pw(x) dy(x).
2a

IA

Now, by using [3, Lemma 4] and by proceeding as in the proof of [17, Proposi-
tion 4.5(iv)], it follows that |J| < oo.

Thus we conclude that Ty, (ny f € Lp,w(¥). By invoking [3, Theorem 3] it follows
that

Ml(Th,,(m)f) € Lpw(y).
By virtue of Theorem 1.3 to establish Theorem 1.4 it is enough to prove that

00 Yq'
{ > |(2yk) () = (k) @I dy(x)]
j=—00 R<|x—yo|<2R

<CS (pl();; )’0)) R-26+V/g

when p;(y, yo) < -2— and R > 0, and for some ! € N \ {0}, and some non-decreasing
function S defined on (0, 1) such that Z°°1 S(277) < oo. Here v, kj, ¥; and
mj, j € Z, are as in the proof of Theorem 1 2.

LetR >0, y,yo € I and j € Z. We have

1/q'

{ f 1(5,k)(x) = (e )Y dy (2)
R<|x—yo|<2R

1q'
< U |(zykp) ()17 d)/(x)] + [[ | (zyok) )1 dy(x)]
R<|x—yp|<2R R<|x—yo|<2R

/¢
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In the sequel we consider I = 2(d + 1). If pi(y, y0) < -’f-, Jensen’s inequality
leads to

/ (e k) ()19 dy (x)
R<|x—yo|<2R oty
< / f Dux, 3, Dl @I dy @)dy ()
R<|x—yo|<2R J|x—y|
.<__/ ij(z)l"'/ D,(x,y,2)dy(x)dy(z)
R/2 0
- / k@I dy @).
R/2

Also, we can see that
! w !
f [(Tyokj) ()17 dy (x) sf |kj(2)17 dy ().
R<|x—yo|<2R R/2
Hence, one has
’ ®© ’
f [(Tyk;) (x) = (Tyokj) (X)|? dy (x) <2 f ki (2)1? dy (2)
R<|x—yo|<2R R/2

provided that p;(y, yo) < %.
By [9, Theorem 3], the operational rule [19, (§) Lemma 5.4-1] and Holder’s
inequality, we get

0 ( 1/q' 0 ) , 1/q'
{/ k; (z)|? dy(z)] = [/ lkj (2)22|% 274 d}’(z)}
R/2 R/2

00 1/r
< CR—2[d—(lb+1)(,l.—;:')] [‘/0' Ihy.(AZ,mj)(Z)Ir dY(Z)]

o0 1/r
< CR-Z[d—(M.'-l)(%_%)l [f IAsz(x)lr dy(x)]
0

wheng >r,1 <r <2andd e N,d > (u+ (L - 1).

r

By proceeding as in the proof of Theorem 1.2 it folfows that

o0 1/r o
{/0 | Ay GOl dy(x)} < CHEF-D),
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: R
Hence, if p;(y, y0) < 7, then

1/q'

[ f 1(5yk)(6) = (2yk )OI dy(x)}
R<|x—yo|<2R

00 , 1/q'
<2 [/ Ik @)1 dy(z>]

< CR™H4-W+DG =2 (EF -d) (15)

providedthatg >r,1 <r <2andd € Nwithd > (u + 1)(— - —)
On the other hand, by invoking [9, Theorem 3] and [19, Lemma 5.4-1] again, we
have

1/q'

[ / [(Tykj) (x) = (Tyokj) (x)|7 dy(x)]
R<|x—yo|<2R

o0
< CR™-WHDG=3)] { /0 | ALIm; () ()™ T (x)

1/r
— (xy0) * Ju (xyo)]I" dy(x)]

withg >r,1 <r <2andd €N, d>(u+1)(———)

Now, by taking into account the fact that (1 D)[z"‘J @] = —z7* ' 1(2),
z € I, that the function z7#J,(z) is bounded on I and that Af WJ&) =

Y ioakix* (L DY f(x), where i € Nand ax;, k = 0,...,i, denotes suitable
real numbers, we can conclude that

1/q
[ [ 15,k (6) = (Ek) ()] dy(x)]
R<|x—yo|<2R
< CR™2@-w+DG-2)

00 B
(e
d<a+p<2d

1/r
[y) ™ Tu(xy) = (xyo)™ Ju(xyo)]| dy(t)]

—2[d—(u+1)(L-1 2 j(B—d+bx!
< CR™W-w+DG=7) Z |y2f _yoﬂIZZJ(ﬂ d+82)
1<p<2(d+1)
2[d—(u+D(E -1 i(B—d+bt!
< CR [d—(u+1)(; -] Z pz(y,yo)ZﬂZZJ(ﬂ d+5-)
1<=l

whereq >r,1 <r <2andd e N, d>(u+1)(—-—~
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Hence, if 2/ 0,(y, yo) < 1 then

1/¢’
{ f |tk () = (T ()17 dy(x)]
R<|x—yo|<2R
< Cpi(y, yo)22 (1=d+E8) p=2d=(u+ DG =) (16)

withg 27,1 <r <2andd € N,d > (u+ 1D} — ).
By combining (15) and (16) we can obtain

o0

) [ / ek () = (k)OI dy(x)]
R<|x—yo|<2R

j=—o0

< X ot
(J€Z: 2 pi(y,y0)21}  (J€Z: 2 py(y,y0) <1}

1/q'
X / (zyk;) (x) = (Tyok)) ()T dy(x)]
R<|x—yo|<2R

1/q'

< CRAWHDU=D=d]

Py, 30240, an
when p;(y, yo) < %,qgr,l<r52andﬁ1:—1 <d < “—'r-tl+l.
Hence by defining S(¢) = €2d=4 ¢ ¢ (0, 1), (17) can be rewritten as
o0 , 1/q'
3 [ / GO~ Gk dy(x)}
j=—00 <|x—=yol<
<Cs (——”’(yI; y")) R™2w+D/g (18)

R
for pi(y, y0) < -
By taking into account the fact that k = Z;?_._oo k;, from (18) we deduce that

1/¢'
[ f (5, ) (x) = (£ k) ()17 dy(x)] <cs (M) R-2+D/a,
R<|x—yp|<2R R

for pi(y, yo) < %.
Then, since T is bounded from L, (y) into Ly 4, (y), k € K(u,1q, q,1), and the
proof of Theorem 1.4 can be finished by using Theorem 1.3. O

Acknowledgement. We are indebted to Professor K. Stempak for comments con-
cerning an earlier draft of this paper and for turning our attention to the paper of B.
Muckenhoupt, R. Wheeden and W-S. Young [14].
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