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If X and Y are topological spaces, then yX denotes the set of all continuous
mappings from X into Y. For a given topology on yX, we may ask whether

yXthe natural mapping >< X --+ Y defined by (f, x) f(x) is continu-
ous; if it is, then the topology on yX is said to be admissible [1]. It is always
possible to find an admissible topology; for instance, the discrete topology
on YX is always admissible. Moreover, when X is locally compact, YX
has a unique smallest admissible topology; this is the familiar "compact-
open" topology. These and related questions concerning topologies for
function spaces have been investigated in considerable detail by several
authors [1, 4].
We are interested in the analogous situation when X and Y are Borel spaces

rather than topological spaces; in this case we define YX as the set of all Borel
mappings from X into Y. Unfortunately, it turns out that even for some
of the simplest Borel spaces, it is impossible to define a Borel structure on
YX so that is a Borel mapping; even if we impose the discrete structure on
YX, will in general not be Borel. As a substitute, we may ask ourselves
the following questions" For which subsets F of Y is it possible to impose a
Borel structure on F so that IF >< X will be Borel? If is is possible for a
given F, what can we say about the appropriate structures? In particular,
is there always a smallest such structure (corresponding to the compact-open
topology) ?

Let us introduce some terminology. We will write "space" instead of
"Borel space", "structure" instead of "Borel structure", and F instead of
F >< X. A structure R on F for which F is Borel will be called admissible;

a subset F of yX on which it is possible to impose an admissible structure is
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I.e., weakest, with fewest open sets. We remark that the local compactness condi-
tion on X may be replaced by certain other conditions on X and Y; see [1, 4].

A Borel space is a set X together with a a-ring of subsets of X called Borel sets whose
union is all of X. The a-ring of Borel sets is called the Borel structure of X, or simply its
structure. The structure of the cartesian product of two Borel spaces X and Y is taken
to be that generated by the Borel rectangles--the products of a Borel set in X and a Borel
set in Y. Our definition of Borel space is slightly more general than Mackey’s definition
[7], in which it is demanded that the structure be a a-field rather than a a-ring; as it turns
out, most of our theorems and examples refer to the more restricted kind of space any-
way. In [5] and [2], the word "measurable" is usedin the sense that "Borel" is used here.

A Borel mapping is a mapping such that the inverse image of every Borel set is
Borel. It is called "Borel function" in [7] and "measurable transformation" in [2, 5].

614
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also called admissible. We will be chiefly concerned with characterizing, for
given X and Y, the admissible sets F and the admissible structures on them.
We first state our theorems, then give some illustrations and applications.

The following three general theorems may be established fairly easily"

THEOREM A. A set consisting of a single Borel mapping is admissible.

THEOREM B. A subset of an admissible set is admissible. Indeed, if G F,
R is an admissible structure on F, and R is the subspace structure on G induced
by R, then R a is admissible on G.

THEOREM C. The union of denumerably many admissible sets is admissible.
Indeed, if F (J i__1 F and RI R2 are admissible structures on F1, F.
respectively, then the structure R on F generated by the members of all the R
is admissible on G.

Much more can be said if X and Y are assumed to be separable, i.e., to
have structures with countable generating families. To state our theorems
in this case, we need the concept of Banach class, closely related to that of
Baire class. Let X be a space, ?I a countable generating family for its struc-
ture. For each denumerable ordinal number a _>- 1, we will define a family
Q,(I) of Borel subsets of X; roughly Q,(?I) consists of all those sets that
can be constructed from /by means of at most a operations, where each
operation consists of forming a denumerable union and a complement. Thus
the union of all the Q,(I) is precisely the structure of X. Now let ! be a
countable generating family for Y, and for each denumerable ordinal a ->_ 0,
define the Banach class L,(I, ) to be the family of all functions f:X-- Y
such that for all B Q(!), f-(B) Q,+(). The union of all the Banach
classes is precisely yX. If X and Y are separable metric spaces and Y is
pathwise connected, and if 9.I and are appropriately chosen, then the
Banach classes coincide with the Baire classes,

Let F c yX. If we fix a but do not specify ?l and , then of course we
can not say whether or not F is included in the ah Banach class L,(I, !).
However, we will be interested not so much in the question of whether or not
F is in a Banach class of a specified order, but rather of whether there exists a
Banach class of any order which includes F. The answer to this question is
independent of the choice of and !. In other words, if and t are count-
able generating families for the structure of X, and ! and t for that of Y,

Ra consists of all intersections of G with members of R.
As in [7], a generating family I for the structure of a space X is a set of Borel subsets

of X with the property that every a-ring containing is the structure of X. The term
"separable" is used by analogy with its use in topology; we will apply it indiscriminately
to the space and to the structure.

After the work that Banach [3] did in characterizing these families.
In this case the structures of X and Y are taken to be those generated by the closed

sets, and I and ! are taken to consist of the open spheres with rational radius.
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and if a is a denumerable ordinal such that F c L(N, ), then there is a
denumerable ordinal a’ such that F c L,(9.1’, 3’). In this ease we will
say that F is of bounded Banaeh class; this concept depends on X and Y only,
not on any particular choice of countable generating families for their struc-
tures.

THEOREM D. Assume that X and Y are separable. Then a necessary and
sufficient condition for a subset of yX to be admissible is that it be of bounded
Banach class.

THEOREM E. If X and Y are separable, then every admissible subset of yX
has a separable admissible structure.

A space Z and its structure are called regular if for all x, y e Z, there is a
Borel set in Z containing x but not y. It is known [7] that a space is separable
and regular if and only if it is isomorphic1 to a subspace of I, where I denotes
the unit interval [0, 1] with the usual Borel structure.11

THEOREM F. If X and Y are separable and regular, then every admissible
subset of yx has a separable and regular admissible structure.

The natural admissible structure on a given admissible set F is defined to
be the smallest admissible structure on F, if it exists. Alternatively, it may
be defined to be the intersection of all the admissible structures on F, in case
this is admissible. Not every admissible set need have a natural admissible
structure; the counterexample, which is due to P. R. Halmos, is given in
Section 7.
IfaeXandB c Y, define F(a, B) {f:feF, f(a) eB}. It is not hard

to prove that if B is Borel and a is arbitrary, then every admissible structure
on F must contain F(a, B). A "converse" would be that the structure gener-
ated by the F(a, B) is admissible, and it would follow that it is also natural.
This "converse" is not in general true; the best we have been able to establish
is the following:

THEOREM G. If X and Y are separable metric spaces and F contains con-
tinuous functions only, then F has a natural admissible structure, which is gener-
ated by the set of all F( a, B), where B is Borel and a is arbitrary.

We now give some applications. A space is said to have the discrete struc-
ture if every subset is Borel. Let J be the space consisting of 0 and 1 only,
and K the space of all positive integers, both with the discrete structure. If
X is an arbitrary space, then XJ and X are both admissible, and possess

Mackey [7] calls this a"separated" space. We do not use this term because we wish
to avoid confusion with "separable".

10 Two spaces are isomorphic if there is a one-one correspondence between them that
sends Borel sets into Borel sets (in both directions).

11 Mackey [7] uses the term "countably generated" for what we call "separable and
regular" spaces.
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natural admissible structures which make them isomorphic to X X and
X=IX respectively, where the X are copies of X. In particular, J is
admissible and has a natural admissible structure which makes it isomorphic
to I. These results are relatively trivial or at least easily derivable from
known results.
The situation changes when we pass to exponent spaces with nondiscrete

structures. For example, jr may be considered the set of all Borel subsets
of I. It is not itself admissible. The set of all open subsets of I is admissible,
as is the set of all closed subsets, the set of all G, etc. In general, a subset
F of jr is admissible if and only if all members of F can be constructed from
the open subsets of I by taking denumerable unions and intersections at most
a times, where a is an arbitrary denumerable ordinal number (which is fixed
for given F, but may differ for different F). Whether or not every admissible
subset of jr has a natural admissible structure remains an open question;
but if F is admissible, then we may endow it with an admissible structure in
such a way that it will be isomorphic to a subset of I.
I is not admissible. The set of all continuous functions from I into I

is admissible;more generally, a necessary and sufficient condition that a sub-
set F of I be admissible is that there exist a denumerable ordinal number
a such that all members of F are of Baire class a at most. The set H of all
continuous functions from I into I has a natural admissible structure; it is the
Borel structure of H when considered as a metric space (in the uniform
convergence topology). Again, whether or not every admissible subset of
I has a natural admissible structure remains an open question; but if F is
admissible, we may endow it with an admissible structure in such a way that,

it will be isomorphic to a subset of I.
Section 1 is devoted to a brief summary of terminology and to proving

Theorems A, B, and C. In Section 2 we give the precise definition of Banach
class and justify the remarks about these classes made above. Sections 3
and 4 are devoted to a proof of Theorem D when it is assumed that X and Y
are regular as well as separable; in Section 3 we also establish the inadmissi-
bility of jr and It. In Sections 5 and 6 we prove Theorems F and G respec-
tively. Section 7 is devoted to Halmos’s counterexample. Finally, in
Section 8 we prove Theorem E and remove the regularity restriction on the
previous proof of Theorem D.

1. Theorems A, B, and C
We first lay down a number of conventions to which we will adhere through-

out Sections 1 through 8. "Countable" and "denumerable" will mean
"of cardinality at most 0". a, , and will denote denumerable ordinal
numbers, also when decorated with subscripts, primes, etc. ft will denote the
first nondenumerable ordinal number. X, Y, and Z will denote spaces. The
structures of X and Y will be denoted S and T respectively. F will be a set
of Borel mappings from X into Y. In unquantified statements, the universal
quantifier is to be understood. The symbol | will signal the end of a proof
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In addition to the conventions laid down above, we will occasionally make
use of conventions which will be valid only throughout a section or a part of it.
The rule is that a convention stated within the statement or proof of a lemma
is valid only until the proof is completed, and all other conventions are valid
for the remainder of the section.

Let U and V be two a-rings, not necessarily on the same abstract space. A
function from U into V is called a homomorphism if for all A1, A ,... in
U we have

(131A) (J=l (A) and (A1 A) (A1) (A).

If is also one-one and its inverse is a homomorphism, then it is called an
12,somorphzsm.

LEMMA 1.1 If b’U V is a homomorphism onto, and if F generates U,
then k( F generates V.

The lemma is easily verified.

Proof of Theorem A. Let f yX, and let B be a Borel subset of Y. Then
ql]l(B) {fl X (B). Sincefand B are bothBorel, so isf-(B). |

Proof of Theorem B. The set U of all Borel subsets of F X X and the
set V of all subsets of G X X of the form C (G X X), where C is a Borel
subset of F X X, are both a-rings. The function ’U . V defined by
(C) C (G X X) is a homomorphism onto. The set F of all rectangles
of the form D X A, where D and A are Borel subsets of F and X respectively,
generates U. Hence by Lemma 1.1, (F) generates V. Now k(F) is the
set of all rectangles of the form D’ X A, where D’ and A are Borel subsets of
G and X respectively. In other words, k(F) generates the structure of
G X X. This structure is therefore identical with V. Thus for a set to be
Borel in G X X, it is necessary and sufficient that it be Borel in V.

Let B be a Borel subset of Y. Then
--1
a (B) (f, x)" f G, x X, f(x) B}

{(f, x)" feE, x e X,f(x) B} {(f, x)’f G}

7(B) (G X).

Hence 1(B) V, and hence it is a Borel subset of G X X. Hence the struc-
ture R on G makes measurable; therefore it is admissible.

Proof of Theorem C. If we take R to be the structure of F, then the struc-
ture on F X X is generated by all sets of the form G X A, where G is a

Borel subset of some F, and A is Borel in X. Hence every set that is Borel
in F X X is also Borel in F X X. Now let B be a Borel subset of Y. Then- This is a a-ring isomorphism, not to be confused with a space isomorphism.
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971(B) {(f, x)" f e F,f(x) B}

UT=l{(f, x)’fe F,f(x) B}

=(B)

but since by hypothesis each of the -1F(B) is Borel in F X, it follows that
971(B) is Borel in F X X. Hence the structure R makes 9e a Borel mapping,
and therefore it is admissible.

COROLLARY 1.2. Every denumerable subset of yX is admissible.

2. Banach classes
The definition of Banach class was sketched in the introduction. In this

section we give the precise definition, and establish the less obvious proper-
ties of Banach classes. It will be assumed that X and Y are separable.

Let ?l be an arbitrary family of Borel subsets of X. For each denumerable
ordinal a => 1, we define P,() and Q,(?I) inductively as follows"
consists of all denumerable unions of members of l, and PI(I) consists of
all complements of members of QI([) supposing Q(?I) and P(/) to have
been defined for all / < a, we define

Q.(?I) QI(U<.P(?I)) and P.(?I) PI((J<,P()).

Q.(?I) u P,(?I) is the set of all subsets of X which can be "reached from
by performing at most a operations, where each operation consists of forming
a denumerable union and a complement; if 9.I generates the structure of X,
then the union (over a) of all the Q.(?I) (or of the P.()) is the set of all
Borel subsets of X. If is a family of Borel subsets of Y, we may define
P,() and Q.() in a similar manner.

For the remainder of this section, let and ! denote countable generating
families for the structures S of X and T of Y respectively. For each de-
numerable ordinal a >- 0, we define L.(.I, ) to be the set of all functions

f:X-- Y such that for all B Q(!), we have f-i(B) e Q,+(?I).

LEMMA 2.1. yX [j .< L (7I,

This lemma follows without difficulty from the following lemma, by setting
Z=X.

LEMMA 2.2. A necessary and sucient condition that a mapping f: Z -- Ybe Borel is that for every B , f-(B) is Borel in Z.

Proof. Necessity is obvious. To prove sufficiency, let U be the set of all
subsets B of Y such that f-(B) is Borel. U includes and is a z-ring; hence
UDT. |
Let F c yX. We shall say that F is of bounded Banach class w.r.t. (?l, !)

if there is an a such that F L,(I, ).
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LEMMA 2.3. The concept of bounded Banach class is independent of the
choice of countable generating families. In other words, if 1’ and 25’ are any
other countable generating families for S and T respectively, and if F is of bounded
Banach class w.r.t. 1, ), then it is also of bounded Banach class w.r.t. 1’, ’).

Because of Lemma 2.3, we can speak of F being of bounded Banach class
without referring to the generating families.
We supply only the idea of the proof; the details may be filled in by the

reader. Suppose f L(.I, 3). Each member of 3’ is Borel, and so can
be "reached" in denumerably many steps from 3; since 3’ is denumerable,
there is a denumerable upper bound on the number of steps needed. It
follows that there is also such an upper bound, say 3,, if we start out with
B’ e Q1(3’); that is, B’ can then be reached in at most 3’ steps from (inde-
pendent of the choice of a particular B’). Hence f- (B’) can be reached in

3" steps from sets of the form f-i(B), where B 3. But all such f-l(B) can
be reached in a q- 1 steps from g[; so f-I(B,) can be reached in a q- 1 q- 3"

steps from . Now each member of 1 can be reached in denumerably many
steps from g[’, and again 9.I has only denumerably many members; so there
s an upper bound on the number of steps necessary. Adding this upper
bound to + 1 + 3", we obtain a denumerable a’ such that

f-(B’) Q,,+I(I’).

Since a’ is independent of the choice of B’ and f, it follows that f L,, l’, ’)
and L,(.I, 3) c L,,(I’, 3’). |
We end this section with the following lemma, whose proof may be sup-

plied by the reader:

LEMMA 2.4. /f a -- 1 < /, then Q (.1) Q(9.1).

3. Theorem D: Necessity
We assume throughout this section that X and Y are separable, and fix

denumerable generating families .1 and 3 for their respective structures. Z
will be an arbitrary Borel space. We will prove that every admissible sub-
set of yX is of bounded Banach class.
The principal tool in the proof is Lemma 3.2, which says that if B is a Borel

subset of the cartesian product X X Z, then there is an a (depending on B)
such that every Z-sectionza of B may be constructed in at most a steps from
l. The idea of the proof is that since B is Borel, there must be an a such
that B may be constructed in at most a steps from rectangles in X X Z
whose X-factors are in 93. If we copy this construction step by step, but
within a given Z-section of X )< Z, then we obtain the desired construction
of the corresponding Z-section of B.
To illustrate the general necessity proof, we use Lemma 3.2 to show that

section parallel to the X-axis.
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j is not admissible. If it were, then Q--l(1) would be Borel in J I,
and so by Lemma 3.2, all the J-sections of -1(1) would be constructible
in at most a steps from N, where a is fixed. Such a section consists of the
set of all x I such that f(x) 1, where f is an arbitrary but fixed charac-
teristic function;in other words, any Borel set may be represented as such a
section, and so would be constructible in a steps from , where a is fixed.
Now this is known to be impossible if, for example, we take ?l to be a de-
numerable basis for the open sets of I (cf. [6], p. 207). |
J may be considered a subset of I’, so by Theorem B, I is not admissible

either.
We now give the formal proofs. Write Q,(N)= Q, P(?I)= P,

L(9.1, ) L. If B c X >( Z, let B denote the Z-section {xeX"
(x, z) eB} of B. For each denumerable a, let a" denote the largest limit
ordinal no larger than a, i.e., the smallest B <-a Such that - + a is
finite.1 Let a’ be the "finite tail" of a, i.e.,

LEMMA 3.1. B < 3‘ implies + ’ + 1 < 3, + 3,’.

Proof. If $ < 3‘", then since 3‘" is a limit ordinal and $’ is finite, it follows
that / ’-+- 1 <3," =< 3‘ =< 3‘ 3‘’. If >= 3‘",then’ <3‘’, and hence
25’ -+- 1 < 23,’ ($’ and 3‘’ being finite). Hence

+’+1 (-’) +2’+1

LEMMA 3.2. Let B be a Borel subset of X )< Z.
that every Z-section of B is in Q,

Then there is an such

Proof. We define N, and Ms for each a as follows: N is the set of all
sets of the form A X C, where A Q and C is a Borel subset of Z;
M {D D2 :D, De N}. Suppose N and M have been defined for
all3 < a; define N, Q(U<,M) and M, {D- D2:D, DeN,}.
We prove by transfinite induction on 3’ that D N, implies that every

Z-section of D is in Q,+,, For 3‘ 1 this follows from Lemma 3.1. Sup-
pose we have shown it for all <3‘. Then if <3‘andD eM,wehave
D D-- D, whereD,D eN. Hence for arbitraryzeZ, we have by
induction hypothesis that D, D Q+, Hence X D e ps+, But
D, as a member of Q+, is of the form U ’=l A, where

A U ,<+, P, C U a<+’+l P, (for i 1, 2, ).

Setting A0 X D, we obtain (X D) u D U V=0 A, where again
AeU,<o+o,+IP, (for i 0, 1, 2, ...). Hence (X- D) uD eQo+o,+i,
and hence

D (D1 D.)z D{ D X ((X D{) u D) P+,+.

a" 0 if is finite.
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Now suppose DeN; then D =UT_IDi, where Die(J<Ms. Hence
D e iJ<P+,+l c (J,<+, P,, the last inclusion being a consequence of
Lemma 3.1. Hence D (J 1D e Q+,. This completes the induction.
N1 generates the Borel structure of X X Z, and hence the Borel structure

of X X Z is (J ,< N, hence for some % B N. Hence every Z-section of
B is in Q+,. |
To avoid confusion in the sequel, we now make the following remarks con-

cerning notation. We are concerned with elements (e.g. members x of X); with
sets (e.g. subsets A of X) and with families of sets (e.g. QI(?I) ). Functions
f:X -- Y are defined in the first instance on elements only; but the definition
can be extended to sets in the usual way, by writing f(A) {f(x):x e A/
image of A under f. We will go one step further, and estend the definition
of functions that were originallydefined on elements to families as well.
This is done in the natural way, by writing f() {f(A):A } (for an
arbitrary family ). Thusf(x) is an element, f(A) a set, andf(?l) a family.
Similar remarks hold for the inverse function; we will write f-l()) for
{f-l(B) :B e } (where is an arbitrary family). In this notation, for
example, L, can be defined as {f yX :f-l(Ql(!)) Q,+}. In which sense

f or f- is meant in a particular case will always be clear from the context.
Note that if f:X -- Y is a Borel mapping, then f-i:T -- S is a homomor-

phism (see 1). Hence

(3.3) f-l(Ql(!) Q(f-i(!)).
LEMMA 3.4. If F is an admissible subset of yX, then there is a " such that

FcL.
Proof. Impose an admissible structure U on F. Let {B, B., ...}.

Then since B. is Borel, I(B.) must be a Borel subset of F X X. Hence
by Lemma 3.2, there are a such that all F-sections of 7(B) are in Q,.
An F-section of I(B-) has the form Ix:x X, f(x) B}, where f F; i.e.,
it has the form f-l(B.). It follows that for all f e F, f-(B) e Q,. Let
a sup a - 1; then by Lemma 2.4, f-l(B.) e Q, for all j, i.e., f-(!)
Q,. Hence

f-l(Ql(25)) Ql(f-()) Q(Q,) QI(P,+) Q,+,

where the first inclusion follows from (3.3) and the two last from the defini-
tions of P, and Q,. Comparing the first and last members of this chain of
inclusions, we deduce f e 5,+1. |

4. Theorem D: Sufl:iciency in the regular case

In this section we will assume that X and Y are regular as well as separable,
and will prove that every subset of yX which is of bounded Banach class is
admissible. We will retain the notation of the previous section, but choose
l and ! in a particular way, which we describe in the next paragraph (by
Lemma 2.3, no loss of generality is involved). It is of course sufficient to
prove that every L is admissible.
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Since X and Y are separable and regular, we may assume without loss of
generality that they are subspaees of the unit interval I. Now as well as
being considered a Borel space with the usual structure, I may also be con-
sidered a topological space with the usual topology.1 This topology induces
relative subset topologies on X and on Y, which we will call the natural
topologies on X and on Y. We choose I and 3 to be denumerable bases
for the natural topologies of X and Y respectively; then I and 3 also generate
the Borel structures of X and Y. Note that the choice of particular denu-
merable bases for the natural topologies of X and Y does not affect the values
of the Q and the P. In the sequel, references to topological concepts like
continuity and the related Baire functions are to be understood as referring
to the natural topologies. Note that Q is the set of open sets of X, Q(
is the set of open sets of Y, and L0 is the set of continuous functions from X
into Y.

LEMMA 4.1. If Y I and " >- 1, then for every f L. there is a sequence
fl, f2, of members of U o< Lo such that16 f limi_fi.

Proof. It is sufficient to prove that when Y I, the L coincide with
the Baire classes of order 7. This is known to be the case (cf. [3], p. 284,
also [6], p. 294). |

yXIf Y I, then with every f e we may associate an infinite sequence,. yXA f2 of members of yX as follows By Lemma 2.1, for every f
there is a unique 3 such that f L U ,< L, we construct the f in such a
way that f limf, and f U,<oL,. When 0, define f f
for all i. The construction is possible by Lemma 4.1; however, it is not
unique. Throughout the remainder of this section, we will consider the

yXf as fixed; in other words, with each f we associate a unique sequence

Let X {X, X} be a finite sequence of positive integers. We will
denote the sequence {Xt, X, n} by (X, n). We will also use the notation

fx instead of fx...x; thus fXn f(X,n) The empty sequence of integers will
be denoted by ;we define f f.

Let N {A, A,...} and {B, B:,-..}. Ifiandj are positive
integers, define

E(X, i, j) {f:A(A) c Bs A io f L}.

Define R to be the a-ring generated by all sets of the form E(X, i, j), where
X ranges over all finite sequences of positive integers, and i and j range over
all positive integers.

LEMMA 4.2. If Y I, then R is an admissible structure on L.
Proof. Impose the structure R on L; we wish to prove that it is ad-

That genera,ted by the open intervals.
Pointwise.



624 ROBERT J. AUMANN

missible. Define

C(j, ,/) [(f, x):fx(x) B., f L, fxe L}.
We will prove

(4.3) For each j, each17 h, and each <-_ ", C(j, h, ) is Borel in L X X.

The proof is by induction on/. If/ 0, we have

C(j, X, 0) {(f, x):fx(x) B., f L, fx is continuous}

{(/, x)’(i)(xe A, fx(A) c Bj, f L, fxe L0)}

U ,1/(f, x):A(A,)

U i=1E(h, i, j) A
(the second equality follows from the openness of B.). The last expression
is a denumerable union of Borel rectangles in L
Borel set. Now suppose that (4.3) has been proved for all a < /. For
each j, let Bk(.,1), Bk(j.2), be a sequence of basic open sets, each of whose
closures is contained in B. and for which U i1 B(.o B Suppose b,
b2 ,-.. is a convergent sequence of points in Y. If ]imn bn B., then there
must be an i such that lim_ bn e B(..), i.e.,

(4.4) (’:li) (:IN) (for all n ->- N) (b B(.,)).

Conversely, if (4.4) holds, then lim b must be in the closure of B(.,i),
and hence in B.. Therefore

C(j, , ) {(f, x):fx(x) B, f L, fxe L}
{(f, x)"lim,fx(x) B.,

{(f, x)’(i)(N)(for all n >- N)(fxn(x)

U =1LJ v= (f, x) "(for 11 n -> N) (fx(x) B(,o, f L), fxe L}
U = U= (f, x) (for all n => N)(fx(x) B(.,), f L), nd

(for all n >= N)(ia)(a < /, fXn eL,)}

U =1U v= (f, x)" (for all n >= N)
(a < , fx.(x) e B(j,) f L. An L.)}

U .Uv=x A=U.< (f, x) :fx(x) e Bo,o ,f L ,fx, eL.}

U i--iU;=l n:_u.<c(,](j, i), (), n),

The set C(/c(j, i), (, n), ) is a Borel subset of L X X by induction hypothe-
sis, and U ,< is a denumerble union; hence the last expression obtained is
Borel in L X X. This completes the inductive proof of (4.3).

1 Including the empty one.
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We now have
--1eL,(B’) {(f, x)"eLf(f, x) B-, f e L}

[(f, z):f(x) e B, f
{(/, x):f(x) e B., f eL,feL}
c(j, , ,y).

Hence by (4.3) and Lemma 2.2, is Borel. |
Lemma 4.2 establishes the admissibility of L when Y I. In the general

case, when Y is merely a subset of I, we may consider yX as a subset of Ix.
Let !8’ be a basis for the open sets of I, such that consists precisely of the
intersections of Y with members of ’. Set L L(l, ’); L is ad-
missible by Lemma 4.2. Now it may be established that L L fl yX;
hence L is also admissible. (Note that the admissibility of a set F is a
property of F alone, and not of the function space in which F happens to be
imbedded. Here L. c yX ix, and we have established the admissibility
of L in IX; but this is no different from its admissibility in the intermediate
space Y.)
We have established

LEMMA 4.5. L is admissible.

5. Theorem F
We retain the conventions of Sections 3 and 4; in particular it is ssumed

that X and Y are separable and regular. We wish to prove that every ad-
missible subset of yX has a separable and regular admissible structure. For
this it suffices to show that L has such a structure.
As in the previous section, we first assume Y I.

LEMMA 5.1. If Y I, then the structure R on L is separable and regular.

Proof. Separability is immediate. To prove regularity let f and g be
distinct members of L. There must be an il such that f g, for other-
wise f limf lim g g. Suppose we have defined fi, i so that
f... g... then we can define i+ so that f...+ g...+. We
thus obtain an infinite sequence {i, i, }. For each k, let a and be
such that

f... e L, ,<,L, and g... e L U<L.
{a, a:, ..-I and {, .,--. are both strictly decreasing sequences of
ordinal numbers, and therefore they both terminate; that is, there are j and
ksuchthata= 0foralli_->jand= 0 for all i _-> k. Let m max (j, k)
and let h i, i}. Then gx L0, fx L0, and gx fx ;in other words,
both fx and gx are continuous, and there is an x X such that gx(x) fx(x).
Hence there are disjoint basic open sets B. and B such that fx(x) B and
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gx(x) Bk. From the continuity of f and g it now follows that there is an
Aesuchthat x eAi fx(Ai) B andg(A) Bk Hence

f eE.r(k, i,j), and g eEl(k, i,/);

but since B;. and B are disioint, so are E(),, i, j) and E(k, i,/). |
We now drop the assumption Y I and assume only Y I. We pro-

ceed as in the previous section, and construct R’ from !’ in the same way
that R was constructed from ! in the case Y I. We have just seen that
R is a separable and regular admissible structure for L. Since

L Ln yX L,
we may apply Theorem B, and deduce that (R)L is a separable and regular
admissible structure on L. This completes the proof of Theorem F.

6. Theorem G
Let landbe as in footnote 8 set {A1 ,A2, }, [B1 ,B2, }.

For each j, let B(..1), B(..2), be a sequence of members of ! each of
whose closures is contained in B. and for which U

__
Bk(j.) B.. For

each i, let [a, a2, be a denumerable dense set in A. Suppose

f:X Y

is continuous. If f(x) B, then there is an m for which f(x) Bk(,,,) By
the continuity of f, there is an i such that x e Ai and f(A) B(..) hence

(6.1) (m)(i)(Vn)(x A ,f(a,) B(,,)).

Conversely, assume (6.1) since the ai, are dense in A and f is continuous,
it follows that f(A) is included in the closure of B(.,), which in turn is a
subset of Bj. Hence f(x) ef(A) B. Thus we have shown that for
continuous f, f(x) e B is equivalent to (6.1). Hence if F contains con-
tinuous functions only, then

--1 (B.) {(f, x):f(x) e B, f e F}

(f, x)’(m)(li)(Vn)(xe Ai, f(a,) B(j.,), f e F)}

U:-_iU-_i N-i F(a, B(s,,)) X A.

If we impose on F the structure R generated by all the F(a, B), then the last
expression obtained is Borel in F X. Hence by Lemma 2.2, R is admis-
sible. But by the remarks preceding the statement of Theorem G in the
introduction, all admissible structures on F must contain R; hence R is a
natural admissible structure. This completes the proof of Theorem G.
The statement that the natural structure on the set of all continuous

members of I is the same as that induced by the uniform convergence to-
pology is a consequence of Theorem G.
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7. An admissible set without a natural admissible structure TM

LEMMA 7.1. Under the continuum hypothesis, there exists a one-one mapping
of I onto itself such that - and such that if A is an uncountable Borel

subset of I with an uncountable complement, then O(A is not Borel.

Proof. Let {A,’a < 2} be a well-ordering of the torel sets referred to
above. Begin the definition of by interchanging some point of A0 with
some point of I A0. At stage a the mapping is already defined at a
countable set. For each fl _<_ a find an unused point in A,, and let inter-
change it with an unused point in I A. When the induction is finished,
let be the identity ut all points not yet used. Then O(A,) A whenever

_-< a, and hence O(A,) is never measurable in I. |
Let U be the set of all Borel subsets of I, V (U), W the unit in-

terval [0, 1], S the structure on W generated by U V, and D the diagonal
of W W, i.e., the set {(x, x)’x W}.

LEMM 7.2. The z-ring U n V) X S on W W does not contain D.

Proof. Set T U a V. By Lemma 7.1, for each set A in T, either A or
W A is countable; let q(A) be the countable one. If C e T S, then
every "horizontal" section C of C belongs to T. Write C* for the union of
all the sets q(C), and let M be the class of all those sets C in T S for
which C* is countable. M is a a-ring included in T S and containing all
rectangles in T S; hence M T S. Since M does not contain the
diagonal, the proof of the lemma is complete.

LEMM 7.3. Both U X S and V X S contain D.

Proof. DeU S follows from DeU U. Next, O(S) is a a-ring
and includes O(U) and O(V), i.e., V und U; hence O(S) S. Define
0 X 0"W X W-->W X Wby (0 X 0)(x,y) (0(x), 0(y)). Then

(oxo)(vx) =o(v) xo(s)cYx.

But since 0 is onto, (0 0)(D) D. Hence fromDeU Swe obtain
D (0 X 0)(D) e(0 X 0)(U X S) c V X S. |

Let X be the space whose underlying abstract space is W and whose struc-
jxtureis S. For eachteW, definefte byft(s) O for s, ft(t) 1.

Define F c jx by F {ft’t . W}. Let k" W --> F be the natural map, de-
fined by X(t) ft, and let e be the identity on W. Define D* c F X by
D* (X e)(D). Sinceel(J) {D.,F X- D*},itfollowsthata
necessary and sufficient condition for a structure R on F to be admissible is
that R S contains D*. Hence from Lemma 7.3 it follows that k(U) and
k(V) are admissible, whereas it follows from Lemma 7.2 that k(U) n h(V)
(which is the same as X(U n V)) is not admissible. Hence the intersection

18 I am indebted to Prof. P. R. Halmos, who supplied the substance of this section.
19 See the remarks preceding Lemma 3.4.
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of all admissible sets on F is not admissible, and therefore F has no natural
admissible structure.
X is separable and regular, and may therefore be considered a subset of I;

however, it seems unlikely that X is isomorphic to I itself (note that the
example depends on the continuum hypothesis). The question remains
open as to whether the admissible subsets of such sets as j1 or 11 have natural
admissible structures.

8. Dropping the regularity assumption: Theorems D and E
Our principal tool in this section is the idea of structure-preserving mapping.

Suppose X and X, are spaces with structures S and S, respectively. A
mapping :X -- X, is called structure-preserving if the mapping it induces19 on
S is an isomorphism onto S,. Given spaces X and Y which need not be
regular, our procedure will be to construct spaces X, and Y, which are
regular, and are connected to X and Y by means of structure-preserving
(onto) mappings ’x:X -- X, and y: Y -- Y,. We will then deduce the
desired theorems for X and Y from the corresponding theorems for X, and
Y,.
Any space X may be divided into equivalence classes by means of the

following relation" x y if and only if every Borel set that contains x also
contains y. X is regular if and only if each of these equivalence classes con-
tains exactly one point. In the general case, X, is defined to be the space
of the equivalence classes in X, with the identification structure; and rx is
the identification mapping. That X, is regular and that x is structure-
preserving is not difficult to verify. Separability carries over from X to X,.

Let F be a set of Borel mappings from X into Y. Any member f of F in-
duces a unique Borel mapping f,:X, -- Y, for which the diagram

(8.1)

f
X

X, Y,
f,

is commutative. Let us denote by F, the set of all f, induced in this way
by members f of F, and by re the function from F to F, defined by

(f) f,.

The crucial step is the proof of

LEMMA 8.2. F is admissible if and only if F, is admissible.

Proof. The "if" half is the easier one. Let R, be an admissible structure
on F,. R, induces a unique structure R on F for which r is structure-
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preserving.
diagram

If we impose R, on F, and R on F, then in the commutative

F
FX X -Y

X ’xI [r
F, X X, >Y,

F,

rF X rx will be structure-preserving. The fact that F is a Borel mapping
then follows from the corresponding fact for ,, and from the fact that the
vertical mappings are structure-preserving.
The "only if" half is slightly trickier, because if we start out with an ad-

missible structure R on F, then there may be no structure R, on F, for which
is structure-preserving. We get around this difficulty by defining a sub-

set G of F so that (G) F, and [G (which is the same as a) is one-
one. The structure R is admissible on G by Theorem B, and induces a unique
structure R, on F, for which re is structure-preserving. The remainder of
the proof follows as before from the commutativity of the diagram

GXX >Y

F, X X, Y,

To prove Theorem E, suppose F to be an admissible subset of yX, where
X and Y are separable but need not be regular. Then F, is an admissible
subset of Y*, and hence by Theorem F has a separable and regular admissible
structure, which we will call R,. But then the structure R induced2 by
R, on F will be separable. |

It remains only to establish sufficiency in Theorem D. Fix denumerable
generating families and for the structures of X and Y respectively, and
set l, rx(), , rx(); ?/, and !, are denumerable generating
families for the separable and regular spaces X, and Y,. From the com-
mutativity of diagram (8.1) and the fact that x and rr are structure-pre-
serving, it follows that

(s.3)

Since X, and Y, are separable and regular, we may apply Theorem D (cf.
Section 4), and deduce that the right side of (8.3) is admissible. But then

.0 See the proof of Lemma 8.2.
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the left side is admissible, and therefore by Lemma 8.2, L(I, ) is also
admissible.
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