A PROBLEM ABOUT PRIME NUMBERS AND THE
RANDOM WAILK |

BY
H. P. McKEgaN, Jr.

Consider the set @ of 3-dimensional lattice points (I;, ls, l3) with [; = 2
prime, I, = I = 0. K. Ité and H. P. McKean, Jr. [1, p. 131] posed the prob-
lem of computing the probability v that the standard 3-dimensional random
walk hits @ an infinite number of times.

Given a string B of m (= 2) consecutive integers < [2"7, 2"), A. Selberg’s
sieve estimate [2, p. 290] provides the upper bound 7(B) < ¢; m/lg m to the
number of primes in B, and this can be used to prove that y = 1.

Wiener’s test (see [1, p. 128]) indicates that it is enough to check
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where | b — a | is defined to be 1 in case @ = b. Now, using Selberg’s estimate,
it is clear that, for 2" < a < 2"andn T o,
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ie., e(n) < cslgn, and this is good enough.

P. Erdos has proved (see the following note) that the number of points of
Q with I; < n that the sample path visits is ~ ¢ X Igan (n T ©).

I learned of Selberg’s estimate through the kindness of N. C. Ankeny.
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