A PROBLEM ABOUT PRIME NUMBERS AND THE RANDOM WALK I

BY
H. P. McKean, Jr.

Consider the set Q of 3 -dimensional lattice points (l_{1}, l_{2}, l_{3}) with $l_{1} \geqq 2$ prime, $l_{2}=l_{3}=0$. K. Itô and H. P. McKean, Jr. [1, p. 131] posed the problem of computing the probability γ that the standard 3-dimensional random walk hits Q an infinite number of times.

Given a string B of $m(\geqq 2)$ consecutive integers $\subset\left[2^{n-1}, 2^{n}\right)$, A. Selberg's sieve estimate [2, p. 290] provides the upper bound $\pi(B)<c_{1} m / \lg m$ to the number of primes in B, and this can be used to prove that $\gamma=1$.

Wiener's test (see [1, p. 128]) indicates that it is enough to check

$$
\sum_{n \geqq 1} 1 / n e(n)=+\infty, \quad e(n)=\max _{\substack{2^{n-1} \leq a<2^{n} \\ \text { aprime }}} \int_{2^{n-1}}^{2^{n}} \frac{\pi(d b)}{|b-a|}
$$

where $|b-a|$ is defined to be 1 in case $a=b$. Now, using Selberg's estimate, it is clear that, for $2^{n-1} \leqq a<2^{n}$ and $n \uparrow \infty$,

$$
\begin{aligned}
\int_{2^{n-1}}^{2^{n}} \frac{\pi(d b)}{|b-a|} & =1+\int_{2^{n-1}}^{a-1} \frac{\pi(d b)}{a-b}+\int_{a+1}^{2^{n}} \frac{\pi(d b)}{b-a} \\
& =1+\frac{\pi\left[2^{n-1}, a\right)}{a-2^{n-1}}+\int_{2^{n-1}}^{a-1} \frac{\pi[b, a) d b}{(b-a)^{2}}+\frac{\pi\left(a, 2^{n}\right]}{2^{n}-a}+\int_{a+1}^{2^{n}} \frac{\pi(a, b] d b}{(b-a)^{2}} \\
& <c_{2}+c_{3} \int_{e}^{2^{n}} \frac{d b}{b \lg b}<c_{4} \lg n
\end{aligned}
$$

i.e., $e(n)<c_{4} \lg n$, and this is good enough.
P. Erdös has proved (see the following note) that the number of points of Q with $l_{1} \leqq n$ that the sample path visits is $\sim c_{5} \times \lg _{2} n(n \uparrow \infty)$.

I learned of Selberg's estimate through the kindness of N. C. Ankeny.

References

1. K. Itô and H. P. McKean, Jr., Potentials and the random walk, Illinois J. Math., vol. 4 (1960), pp. 119-132.
2. A. Selberg, The general sieve-method and its place in prime number theory, Proceedings of the International Congress of Mathematicians, 1950, vol. I, pp. 286-292.

Massachusetts Institute of Technology
Cambridge, Massachusetts
Received July 2, 1960.

