THE DERIVED SERIES OF A FINITE p-GROUP!

BY
CuarLEs R. HoBBY

The Galois groups of a class field tower form a chain of finite groups
G:, Gs, -+, such that Gy is abelian and G, = G,41/G\% , where G{%; denotes
the n*® derived group of G, . The class field tower and the chain of groups
terminate after n steps if Gyvs = (1). We shall consider the case where all
@, are p-groups. It is known [5] that the chain terminates if G, is cyclic, or
if p = 2 and G, has type (2, 2). Olga Taussky (see Magnus [4]) posed the
problem of determining whether such a chain of p-groups must always termi-
nate. N. It6 [3] gave a negative answer to this question by constructing an
infinite chain of p-groups satisfying the above conditions with G, of type
(p, p, ) and p # 2. The question of the existence or nonexistence of infinite
chains with Gy generated by two elements or with p = 2 remained open.

The main result of this paper is the following theorem.

THEOREM 1. Suppose p # 2, and let G be a noncyclic abelian p-group.
Then there exists an infinite chain of p-groups Gy, G, - - -, such that

=G, G, = Gn+1/G,(¢ﬁ.)1 , and G;’.& #= (1).
A weaker result is obtained if p = 2.

TueorEM 2. Suppose G is an abelian 2-group which contains a subgroup
having one of the types (2°,2%), (28,2, 2%), (2),2%,2,2), 0r (2,2,2,2,2). Then

there exists an infinite chain of 2-groups Gy, Ga, --- , such that Gy = G,
Gr = Gria/Gi , and GE1 5 (1),
As we noted above, the chain G;, G,, --- terminates if G, is cyclic, or if

p = 2 and Gy has type (2, 2). The remaining cases not covered by Theorem 2
are undecided. The proof of Theorem 2 is similar to that of Theorem 1 and
will not be given here. Full details can be found in the author’s thesis [2].

A second question posed by Olga Taussky [6] can be stated as follows. Can
a bound on the derived length of a p-group H be determined from the type of
H/H®? Such abound exists if H/H™ is cyclic or of type (2,2). W.Magnus
[4] showed that there is no bound if H/H" has type (3, 3, 3). A complete
answer to this question for p # 2, and a partial answer for p = 2, is given
by the next theorem.

THEOREM 3. Suppose H is a p-group and G = H/H®. The derived length
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1 This paper contains part of a doctoral thesis written at the California Institute of
Technology. The author is indebted to Dr. Olga Taussky Todd for directing this re-
search, Professor Hans Zassenhaus for many helpful suggestions, and the National
Science Foundation for financial support.
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of H cannot be determined from the type of G if G satisfies the hypothesis of either
Theorem 1 or Theorem 2.

Theorem 3 follows immediately from the observation (see the proof of
Lemma 1) that G, = G,,/GYY in the chains of Theorems 1 and 2. Thus there
is an infinite chain Gy, G, --- with G,/G° = H/H® for every n, and
QY = (1),

Our first lemma reduces the proof of Theorem 1 to the case where G has
type (p, p). We then give an explicit construction of the required chain
Gy, Gy, -+, with G, of type (p, p). This construction proceeds as follows.
We first introduce an infinite matrix group which we denote by A;. The de-
rived series of factor groups of A; are studied in detail. Then, for each =,
we let G, be a certain finite factor group of A;. It follows from our discus-
sion of A, that the chain G;, G;, - -+ has the required properties.

The following notation will be used: (z, y) = ayz 'y "; (X, Y) is the group
generated by the set of all (z, y) for xeX and yeY; {(x, y, ---, 2) is the
group generated by z, y, - -+ , z; H™ is the n*™ derived group of the group H;
R is the ring consisting of all expressions w + v+/p for u, v integers and p a
fixed odd prime; P is the ideal of R generated by /p; I. and O, are, respec-
tively, the 2 X 2 identity and zero matrices.

LemMA 1. Suppose Gy, G, --- is an mﬁmte cham of p-groups such that
G, is abelian of type (p, p), Gn = Gnyr/GS%1 , and G2y 5% (1).  Let K be anon-
cyclic abelian p-group.  Then there exists an mﬁmte chain of p-groups
Ky, K, -+, such that Ky = K, K, = Koya/K$ , and Ky = (1),

Proof. Write K as K = S X T where S has two independent generators’
say S = (u, v). We will construct an infinite chain of p-groups S;, Sy, -« >
such that S; == S, S» = 8,41/8%%, and 8%, # (1). The lemma will then
follow if we let K, = S, X T.

Observe that G./Gi’ = (Guia/G%h)/(Gid1/GV) &2 Guy/Gide; thus
G./GY = G, for every n. It follows from the Burnside Basis Theorem [7,
page 111] that G, can be generated by two elements. Let Gi = {(a, b)), and,
recursively, let a,41, bnia be coset representatlves in Gn41 of the images of
@n, b, under the isomorphism G, = G,41/GS%:1. Then G, = (a., b,) for
every n. Let S, be the subgroup of G, X S which is generated by wua, and
b, . Then 8P = G for every t = 1, and hence 8.3} # (1). The mapping
U Uy V>V, Uy <> an+1 Sn+)1 , by buya S clearly induces an isomorphism
between S, and S,41/85% . This completes the proof.

The group 4,
Let Ay be the group generated by the two matrices

(! Vvp (1 O
() =)

Denote by A, the set of all x ¢ A; such that x — I, has elements in P" (i.e.,
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x — I, = 0,(P")). It is clear that A, is a subgroup of 4, , and that
A; D Ay, D ---. It follows from the next lemma that A4, is even normal
in Al .2

LemMma 2. (4., An) € Avim .
Proof. letxed,andyed, . Then

x— I, = 0, (P") and y — I, = 0, (P™).
Also,
oy 'y — L= (zy — yx)a 'y
=(z-L)(y— L) — (y— L)z — L)y
Therefore ayz "y — I, = Oy (P™™). Thatis, (2, y) € Anim -

Lemma 3. Ifz,yed;,and if x — y = Oy (P"), then xy " € A, .

Proof. Tt follows from  — y = O, (P") that 2y — I, = O, (P"); hence
xy_' ed,.
We will need the following relations on commutators of elements of A; .

s+¢4+1 2 2 2s+2t+2 ol 2s+t+1
(D (@) = (1 R NI m %P W’).

2 s+2t+1 t+1
mn ps +: \/p 1 — mnps++

(II) (apq, (aps’ bpt)) = a_2p3+t+q+1 modulo A23+2t+2q+4 .
(1I1) @™, (@™, ")) = """ modulo Asiarrzgrs -

The first of these relations can be verified by direct computation. The next
two follow from a computation of the commutators on the left and an applica-
tion of Lemma 3.

LemmA 4.  Every element of Ay has the form

o)

where x, Y, u, v are integers.

Proof. The generators of 4; have this form, and it is clearly preserved
under multiplication.

We wish to determine the derived series of certain factor groups A;/A . of 4.
As a first step, we determine the structure of A,/A,41 for arbitrary n.

LeMMA 5. (1) [A2k+1:A2k+2] = p2 ani;l_{l%ﬂ = <A2k+2 5 a”k, bpk> Zf k g 0.
(2) [Aok: Aski1] = p and Ay, = ((amp , b), A2k+1> ifk = 1, and m is any
integer prime to p.

2 The author wishes to thank Professor Hans Zassenhaus for calling his attention
to the group 4, and for suggesting the present short proof of Lemma 2.
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Proof of (1). Observe that a®* and b*" are in Asyy. Also,

as,,k b,pk _ (1 -I;c Stp2k+1 spk \/p)
tp" V/p 1

belongs to Aa,2 if, and only if, both of s and Lare divisible by p. The result
will follow if we show that Ag = (Aass, a”, b” ). Suppose r e Azya where

z = 1+u v
- w 142/
Then u and z are divisible by p**” since they are integers (Lemma 4) divisible
by p*v/p. Write v = sp*/p and w = tp"+/p, where s and ¢ are integers.

It follows from Lemma 3 that a®”b™ 2™ € Aspss .
Proof of (2). Suppose = € Az, where

z = (1 + u v )
w 142/

Then w and v are integers multiplied by +/p (Lemma 4) ; hence they belong to
P** By hypothesis, u and z are in P*. Thus v = mp* and z = np" for
some integers m and n. Observe that z, as an element of 4,, must have
determinant 1. It follows that m + n = 0 (p). Therefore, by (I) and
Lemma 3, (™", )" € Asqs . This shows that Ay is generated by Az
and elements of the form (a™** ", b). We see from (I) and Lemma 3 that
there are precisely p such elements which are distinct modulo Agy1 . There-
fore As/Agq is cyclic of order p. This completes the proof.

The next lemma is rather technical. It will be used in the proof of Lemma 7.

LemMA 6. Let N be a normal subgroup of A1. If NA.y, 2 A, for some n
and some r = 1, then NA,im =2 A, for every m = r.

Proof. We proceed by induction on m (where we need only consider
m = 2), and suppose that N4, 1 2 A,. The lemma will follow if we show
that NA,1m 2 Auima, for then NA,in = N-NAnim 2D NAnim 2 A

Observe that NA,ym—1 =2 Anim—s since NA,iny 2 A, and m = 2. Sup-
pose n + m — 2 = 2k. Then, by Lemma 5, ¢ = (¢, b) belongs to
NA,yma ; hence ¢ = xy for some z ¢ N, y € Auim—z. Since N is normal in
Arand (A1, Anima) & Anpm, we have (@, zy) = (a, ) modulo 4,4+ Where
(@, ) e N. Similarly, (b, zy) = (b, ) modulo A,y where (b, x) e N. It
now follows from (II), (III), and Lemma 5, that

An+m—1 = (An-l-m ) (ba xy)’ (a7 xy));

hence Apymi1 & NAnim -

Ifn+m — 2 = 2k + 1, then o € Ayim—2. Therefore o = zy for some
2eN,YeAnima. Then (xy, b) = (x,b) modulo A,in, where (x, b) eN.
By Lemma 5, Ayim1 = Asqr = (Anjm, (2, b)); hence Apyma S NApim.
This completes the proof.
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Lemma 7. Let g(m) = m + 2[m/2] + 1, where [m/2] denotes the greatest
integer in m/2. Then APA; = Aym if t = g(m).

Proof. If m = 2k, then, by Lemma 4, A,/Ami: is cycllc Therefore
Ap’ = (A, A1) S Asmis = Agemy . Observe that (@™, b), a*, and
b belong to A, . It follows from (II) and (IIT) that A’ contams elements
congruent to a 2t and 5" modulo Agys = Agmye. Thus, by Lemma 5,
AP Agpys D Agmyy since p % 2. Therefore, by Lemma 6, AP A, D Ay for
every t = g(m).

Ifm = 2k + 1, then AP = (Am, An) C Asn = Ayimy . Also, o’ * and
b»** belong to Am , 50 (a*, b’k) AP, We see from (I) that (a , %) is con-
gruent to (a” * , b) modulo Ag,s. Thus, by Lemma 5, A% Agrs 2 Agys .
It follows from Lemma 6 that APA, D Ayye = Ay for every t = g(m).
This completes the proof.

Let g(m) = m + 2[m/2] + 1, and define a new function f on the positive
integers by

f1) =2=y9@1), f(n)=g(f(n-1)) if n>L
Then the next lemma is just a restatement of Lemma 7.
Lemma 8. Ift = f(n), then (A1/A)™ = As;m/A..

We can now prove Theorem 1.

Proof of Theorem 1. Let G, Ai/Asey for n = 1, 2 . Then, by
Lemma 5, Gi = A;/A4; is a noncyche group of order P, and consequently
G, is abelian of type (p, p). By Lemma 8, G%1 = Ajm/Aswmsn ; hence

Gr1/Gih = (A1/Aswin)/ A/ Asnin) = Ar/Asmy = Gn. Also,

G = Ao/ Asmsn #= (1)
since f(n) < f(n 4+ 1). Theorem 1 now follows from Lemma 1.

Remark 1. We state without proof two further properties of the p-groups
Ai/A, . These properties are easy consequences of (I), (II), (III) and
Lemmas 5 and 6.

1. The lower central series of A;/A,is Ai/An, A2/An, As/An, * -

2. The upper central series of A1/A, 18 Aps/An, An—2/An, Ans/An, -+

Remark 2. P. Hall [1, Theorem 2.57] showed that if p # 2 and if G is a
p-group of minimal order for which G™ s (1), then | G| (the order of @)
satisfies

2”+n I G I 2"-1(2”-}-1).
The upper bound of this inequality was refined by N. Itd [3] to p’%. An
additional refinement can be obtained from the group 4,. To do this, pick a
subgroup H of A; such that A;m4y © H C Ay and [Asm:H] = p. Then
His normal in 4;. If G = Ay/H, then G = A;u/H # D). It follows
from Lemma 5 and the definition of f(n) that G has order p’ "1 Therefore
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the upper bound in Hall’s inequality can be reduced to pznﬂ“l. It is interest-
ing to note that this is precisely the upper bound found by Hall in the special
case p = 2.
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