ON THE DENSITY OF SETS OF INTEGERS POSSESSING ADDITIVE BASES

BY

BASIL GORDON AND L. A. RUBEL

Let $K = \{k_0, k_1, k_2, \dots\}$ be an infinite set of positive integers with $k_0 < k_1 < k_2 < \dots$. Let S be the set of all integers which can be expressed as the sum of distinct elements of K. It is convenient to regard 0 (the empty sum) as belonging to S. In the special case where every element of S has a unique representation as the sum of distinct elements of K, Wintner [2] has called S a π -set with basis K. For example, the set of all nonnegative integers forms a π -set whose basis consists of the powers of 2.

The relationship between a π -set and its basis can be expressed analytically by the formula

$$\sum_{n=0}^{\infty} c_n x^n = \prod_{n=0}^{\infty} (1 + x^{k_n}) \qquad (|x| < 1),$$

where c_n is the characteristic function of S, i.e., $c_n = 1$ or 0 according as n is or is not in S.

Wintner in [2] investigated the question of when a π -set has a density, i.e., when

$$\lim_{n\to\infty} (c_0+c_1+\cdots+c_n)/n = \theta$$

exists. He proved that if

$$\lim_{n\to\infty} 2^n/k_n = \theta$$

exists, then S has density θ . In the present paper it is shown that (2) is necessary, as well as sufficient, for the existence of a density except possibly in the special case $\theta = 0$. Wintner's question of whether or not every π -set has a density can then easily be answered in the negative.

We remark that our methods apply to the more general case where the k_n are positive real numbers not assumed to be integers and where S is not assumed to be a π -set, provided that multiplicities are counted properly.

Theorem. Suppose (1) holds with $\theta > 0$. Then (2) follows.

Proof. Any element $m \in S$ with $m < k_n$ can only involve k_0 , k_1 , \cdots , k_{n-1} in its representation as a sum of basis elements. There are only 2^n possible sums that can be formed from k_0 , k_1 , \cdots , k_{n-1} . Hence

$$c_0 + c_1 + \cdots + c_{k_n} \leq 2^n + 1.$$

Dividing by k_n and letting $n \to \infty$, we find that $\liminf_{n \to \infty} 2^n/k_n \ge \theta$. Hence, for any $\theta' < \theta$, we have $k_n \le 2^n/\theta' = \rho'2^n$ for $n > n(\theta')$. Write, for

Received May 14, 1959.

 $m > n(\theta')$

$$\prod_{n=0}^{\infty} (1+x^{k_n}) = (1+x^{k_m}) \prod_{n=0}^{n(\theta')} (1+x^{k_n}) \prod_{n>n(\theta'), n \neq m} (1+x^{k_n})
\geq (1+x^{k_m}) \prod_{n=0}^{n(\theta')} (1+x^{k_n}) \prod_{n>n(\theta'), n \neq m} (1+x^{\rho'2^n})
= \frac{1+x^{k_m}}{1+x^{\rho'2^m}} \frac{\prod_{n=0}^{n(\theta')} (1+x^{k_n})}{\prod_{n=0}^{n(\theta')} (1+x^{\rho'2^n})} \prod_{n=0}^{\infty} (1+x^{\rho'2^n}).$$

Applying Euler's famous identity,

$$\prod_{n=0}^{\infty} (1+y^{2^n}) = 1/(1-y),$$

we get

$$(1-x)\prod_{n=0}^{\infty}(1+x^{k_n})\geq \frac{1-x}{1-x^{\rho'}}\frac{1+x^{k_m}}{1+x^{\rho'2^m}}\prod_{n=0}^{n(\theta')}\left(\frac{1+x^{k_n}}{1+x^{\rho'2^n}}\right),$$

and finally,

$$(1-x)\sum_{n=0}^{\infty}c_n x^n \ge \theta' \frac{1+x^{k_n}}{1+x^{\rho'2^m}} \prod_{n=0}^{n(\theta')} \left(\frac{1+x^{k_n}}{1+x^{\rho'2^n}}\right).$$

If now there are infinitely many m for which $k^m < 2^m/\theta'' = \rho''2^m$ where $\theta'' > \theta$, i.e., $\rho'' < \rho = 1/\theta$, then for these values of m,

(3)
$$(1-x) \sum_{n=0}^{\infty} c_n x^n \ge \theta' \frac{1+x^{\rho''2^m}}{1+x^{\rho''2^m}} \prod_{n=0}^{(\theta')} \left(\frac{1+x^{k_n}}{1+x^{\rho''2^n}}\right).$$

As is well known [1, §7.5], (1) implies that the left-hand side of (3) tends to θ as $x \to 1$. By putting $x = x_m = 2^{-1/2^m}$ in (3) and letting $m \to \infty$, it follows that

$$\theta \ge \theta' \frac{1 + \left(\frac{1}{2}\right)^{\rho''}}{1 + \left(\frac{1}{2}\right)^{\rho'}}.$$

Since $\theta' < \theta$ is arbitrary, and $\theta \neq 0$, we have

$$1 \ge \frac{1 + (\frac{1}{2})^{\rho''}}{1 + (\frac{1}{2})^{\rho}},$$

which is impossible for $\rho'' < \rho$. This completes the proof.

Whether or not the theorem is true without the hypothesis $\theta > 0$ is an open question.

We now turn to the construction of some π -sets, including some which do not have a density. Let k_0 , k_1 , \cdots , $k_{\tau-1}$ be positive integers with

$$k_0 < k_1 < \cdots < k_{\tau-1}$$
.

Suppose that the 2^{τ} sums which can be formed by adding these integers are all distinct, and denote them by $\sigma_1, \dots, \sigma_{2^{\tau}}$. Let M be an integer such that $\sigma_i \not\equiv \sigma_j \pmod{M}$ for $i \not\equiv j$, and such that $k_0 M > k_{\tau-1}$. Then define

 k_n for all n by the formula $k_n = M^q k_r$, where $n = q\tau + r$, and $0 \le r < \tau$. It is easily verified that the resulting set $K = \{k_n\}$ is the basis of a π -set S.

For example, let $k_0 = 2$, $k_1 = 3$. Then $\sigma_1 = 0$, $\sigma_2 = 2$, $\sigma_3 = 3$, $\sigma_4 = 5$. The σ_i are incongruent (mod 4), and so M can be taken equal to 4. The resulting basis is $K = \{2, 3, 8, 12, 32, 48, \cdots\}$, where in general $k_{2i} = 2 \cdot 4^i$ and $k_{2i+1} = 3 \cdot 4^i$. In this case

$$\frac{1}{2} = \lim \inf_{n \to \infty} 2^n / k_n < \lim \sup_{n \to \infty} 2^n / k_n = \frac{2}{3}$$

and by our theorem, S cannot have a density unless it has density zero, since $\lim 2^n/k_n$ fails to exist. It is easy to prove that S does not have density zero, hence any density whatever, either directly or in the following manner. By a simple modification of the proof of our theorem, it can be proved that if

$$\theta_1 = \lim \inf 2^n / k_n$$
 and $\theta_2 = \lim \sup 2^n / k_n$,

 $_{
m then}$

$$\lim \sup_{x \to 1^{-}} (1 - x) \sum_{n=0}^{\infty} c_n x^n \ge \theta_1 \frac{1 + r^{1/\theta_2}}{1 + r^{1/\theta_1}}$$

for any r in the open interval (0, 1). If S had density zero, we would have $\lim_{n \to \infty} (1-x) \sum_{n \to \infty} c_n x^n = 0$, which is impossible since $\theta_1 = \frac{1}{2}$ and $\theta_2 = \frac{2}{3}$. More generally, for the π -sets of this special type,

$$2^n/k_n = 2^{q\tau+r}/M^q k_r.$$

It is impossible that $M < 2^r$, since $\sigma_i \equiv \sigma_j \pmod{M}$ would then hold for some $i \neq j$ by Dirichlet's box principle. If $M > 2^r$, then $2^n/k_n \to 0$, and so S has density 0 by Wintner's theorem. If $M = 2^r$, then $2^n/k_n = 2^r/k_r$, and hence $2^n/k_n \to \theta$ if and only if $k_r = 2^r/\theta$ for $r = 0, 1, \dots, \tau - 1$. In this case S consists of all multiples of $1/\theta$, a particularly simple example. All other such π -sets with $M = 2^r$ fail to have a density.

REFERENCES

- E. C. Titchmarsh, The theory of functions, 2nd ed., London, Oxford University Press, 1939.
- A. WINTNER, On restricted partitions with a basis of uniqueness, Revista de la Unión Matemática Argentina, vol. 13 (1948), pp. 99-105.

University of California Los Angeles, California Redstone Arsenal Huntsville, Alabama

University of Illinois Urbana, Illinois