
ON THE SOLUTION OF AN IMPLICIT EQUATION

BY

SMBAT ABIAN AND ARTHUR B. BROWN

In this paper a method of solving an implicit equation g(xl, x, y) 0
by successive substitutions is given. The customary hypotheses that the
function g be differentiable and that g 0 at a given point are replaced by
weaker hypotheses.

Appraisals of the remainder error are given, as well as a method of minimiz-
ing one of them. Three of the appraisals are valid regardless of miscalcula-
tions at earlier stages of the work.

It is also proved that if, in addition, the function g satisfies a Lipschitz
condition in a subset of the xi’s, then the solution y Y(xl, ..., x,) will
also satisfy a Lipschitz condition in the same subset.

In the statements and proofs which follow, unless otherwise specified the
indexirunsfromlton;(x) -= (x, ...,xn) and(x;y) (x,-..,xn;y).
All independent variables and functions mentioned are understood to be real,
and the functions single valued.

THEOREM 1. Let g(xl Xn y) =’-- g(x; y) bs a continuous function de-
fined on the closed region N c E"+1 determined by

(1) Ix,- al _-< a, [y- b] <_- ,
where al and are positive constants, and let there be constants C and D such
that

(2) g(a; b)[ < C,

and, if x u) and x v) are any two distinct points of NI

(3) 0 < C <- g(x; u) g(x; v) <= D.

Then there exist n positive constants as <= ai and a continuous function Y(x)
such that, if T is the closed region determined by x a <= a the locus of the
equation y Y(x) for x e T is the same as that of g(x; y) 0 for (x; y) e N,
where N c NI is the closed region determined by

Jx- aJ <= a, ]y- b] <= .
We shall prove Theorem 1 simultaneously with Theorem 2.

THEOREM 2. The constants as of Theorem 1 can be chosen subject only to the
condition

(4) g(x; b) < C, xi as <- a.
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Iffurthermore a constant lc is chosen so that

(5) 0 < k[D + g(x; b)[] < 2t, x e T,

and if we introduce

(6) f(x; y) --- y kg(x; y), (x; y) e N1,

and take Yo(x) as a function, not necessarily continuous, satisfying

(7) Yo(x) b <-_ , x T,
then

(8) Y,+(x) --f[x; Y(x)] Y,(x) kg[x; Y(x)], m ->- 0,

is well defined for x e T, and

(9) Y(x) lim Y,(x).

Proof of Theorems 1 and 2. Since g(x; y) is continuous, we see from (1)
and (2) that there exist n positive constants at <- al such that (4) is valid
for x all -< , i.e., for x e T. Since D > 0, from (4) we see that rela-
tion (5) is satisfied by a suitably chosen constant

Let

(10) R- max(ll kD I, 1 kC [).
From (3) and (5) we obtain 0 < kC <__ kD < 2, and therefore

(11) 0 _-< R < 1.

Since C -<_ D, we infer from (10) that

(12) R 1 kC or R kD- 1,

and correspondingly from (4) or (5), we have

(13) k lg(x; b) < (1 R)t, x e T.

From (3) and (6), for (x; u) and (x; v) e NI, with u v, we obtain

1 leD <__ f(x; u) f(x; v) <_ 1 tC,
U Y

and hence, by (10),

(14) If(x; u) f(x; v) <-- R u v

a relation which is true also when u v.
Let N N be defined as in the statement of Theorem 1. We now intro-

duce (8) and prove inductively that, for m >= 0,

(15) Y,(x) b <-_ , x e T.

From (7) we see that (15) is true for m 0. Now let us assume that (15)
is true for m j, so that for x e T the point [x; Y.(x)] e N. This, in view of
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(8), implies that Yj+l(x) is well defined for x e T. From (6) and (13) we see
that

(16) If(x; b) b < (1 R), x e T.

From (8) we obtain

Yj+l(x) b <- If[x; Y.(x)] f(x; b) + If(x; b) b I,
a relation which, in view of (14), (15) with m j, and (16), implies (15)
within j - 1. Hence we infer that forxeTandm >= 0, Y,(x) is well
defined, and (15) holds, so that the point [x; Y(x)] e N.
From (8) and (14), if m >= 1, we have

(17) Y,+(x) Y,(x) <-_ R IY,(x) Y_l(X)I, x e T.

By applying (17) with m 1, 2, s and then replacing s by m, we ob-
tain, for m >- 1,

(18) Ym+l(X) Y,(x)I <- R’ Y(x) Yo(x)l, x e T.

By (15) form 0andm 1, weobtain Y(x) Yo(x)l -< 2. Hence
we see from (11) and (18) that the sequence Y(x)} is uniformly convergent
for x e T. Therefore, Y(x) for x e T is well defined by (9). Moreover, from
(9) and (15) we conclude that for x T, Y(x) b <- , and therefore the
locus of y Y(x) for x e T is contained in N.
From (9) and (8), in view of the continuity of f(x; y) on N, we have

(19) Y(x) =- fix; Y(x)], x e T,

and from (6) we infer that

(20) g[x; Y(x)] 0, x e T.

Since, by (3), g(x; y) is a strictly monotonic function of y for fixed x, we
conclude that y Y(x) given by (9), for x e T, gives the complete locus of
the equation g(x; y) 0 for (x; y) e N.

It remains to prove that Y(x) is continuous. For this purpose, consider
the special case in which we begin with Yo(x) b. Then Yo(x) is continuous,
and (7) is satisfied. Examination of the proof shows that Y(x) is continu-
ous for x e T and m => 0. Since the sequence {Y(x)} converges uniformly
for x e T, its limit is a continuous function. But the limit must be the unique
function Y(x) already obtained. Hence Y(x) is continuous, and the proof of
Theorems 1 and 2 is complete.
We now give some appraisals of the remainder error.

THEOREM 3. For x e T and m >- 1,

(21) Y,,(x)- Y(x) < Yl(x)- Yo(x)[;=I-R
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and the factor R’/ 1 R) is minimized by taking

(22) k 2/(D + C).

Furthermore,

(23) RY,(x) Y(x) < Y,.(x) Y,._(x)I;

Hence

1 < Y.,_(x) Y(x) < 1
D g[x; Y,_(x)] C"

(26) 1_ < Y,,,(x) Y(x) < 1 .
D g[x; Y,,--l(x)] C

By (22), the left and right members of (26) are respectively

C -D D-Cand
D(D - C) C(D - C)"

(24) Y,.(x) Y(x)] < ]g[x; Y.(x)] ].
C

and, if (22) holds, then

(25) Y.,(x) Y(x)] < [g[x; Y.,_(x)][(D C)
C(D - C)

Moreover, relations (23), (24), (25) are valid regardless of errors in calculation
through Y,_I x for (23) and for (25) and through Y,(x for (24), provided
merely that Y(x) b <- for (24), and that, for (23) and (25),
Y-I(x) b <-- and Y,(x) is correctly calculated from Y,_(x).

Proof. Since

Y(x) Y(x) [Ym+(x) Ym(x)] + [Y+.(x) Y+l(x)]-t- "",

relation (21) follows from (9), (18), and the formula for the sum of a geo-
metric series.
From (4) we see that the value of kgiven in (22) satisfies (5). From (10)

and (12) we see that R, hence also Rm/( 1 R), is minimized when 1 kC
kD 1, so that (22) holds.

Relation (23) follows easily from (9), (17), and the formula for the sum
of a geometric series.

Relation (24) is proved easily from (20) by taking u Y(x) and v Y(x)
in (3).

If g[x; Y,_(x)] O, repeated application of (8) shows that each side of
(25) is zero, so that (25) is true. If g[x; Y_(x)] 0, from (8) with m
replaced by m 1 we find

Y,.(x)- Y(x)_ Y,_(x)- Y(x)_ t.
g[x Y_(x) g[x Y,,__(x)

From (3) and (20) we have
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Since C -< D, (25) then follows from (26).
To prove that (23) is valid regardless of earlier errors in clculation, we

observe that the right member of (23) depends only on Y(x) and Y_(x)
and that, as we see by comparing (7) with the given relation

Ym-l(x)- b I<= ,
Y,_l(x) can be considered to be a new function Y0(x), in which case (21)
with m 1 gives (23). The corresponding proofs for (24) and (25) are
similar.

THEOREM 4. If Yo(x) b, x e T, then

(27) lYe(x) Y(x) <= R’.
The right member of this inequality is minimized by choosing k as in (22).

Proof. In view of (8), we have

(28) Y(x) Yo(x) f(x; b) b.

Relation (27) now follows from (21), (28), and (16).
The final statement of Theorem 4 follows from the property, already proved,

that R is minimized by taking/c as in (22).

THEOREM 5. Under the hypotheses of Theorem 1, and with the oi’s chosen
as in Theorem 2, if g(x; y) satisfies a Lipschitz condition in a subset of the xi’s,
the function Y(x) will also satisfy a Lipschitz condition in the same xi’s.

Proof. With p =< n and x xi for i > p, suppose that if (x;y) and
(x’; y) eN,

g(x’; y) g(x; y) <-- --. HIx x I,
where the H’s are nonnegative constants. Since

fix’, Y(x’)] f[x, Y(x)]

<= f[x’, Y(x’)] f[x, Y(x’)] + If[x, Y(x’)] f[x, Y(x)] I,
we then infer, in view of (6) and (14), that

f[x’; Y(x’)] f[x; Y(x)] -< --x kHIx" xl + R Y(x’) Y(x) !.
Using (19) we obtain

[y(x’) Y(x) < kH

and the proof is complete.
Remar]c. Given a function g(x; y) satisfying a relation like (3) but with

C and D both negative, we can obtain one satisfying (3) with positive C and D
by introducing G(x; y) -g(x; y). We observe also that a relation like (3)
does exist if Og/Oy is continuous and not zero at the point (a; b).
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The following extension of Theorems 1 and 2 can be used to obtain more
rapid convergence.

THEOREM 6. Let b(xl, xn) b(x) be a continuous function defined
on the closed region P c E determined by x ai <= ai and let

g(Xl, Xn ;y) --= g(x; y)

be a continuous function defined on the closed region N E’+ determined by
x P, Y b(x) <- , where a and are positive constants. Let, moreover,
there be positive constants C, D1, and functions C(x), D(x), not necessarily
continuous, such that for x e P

I [x; <
and, if x u x v) are distinct points of N,

C <- C(z) <- g(z; u) g(x; v) <= D(x) <- D.
U )

Then there exists a function Y(x) continuous on P, such that the locus of the
equation g x y) 0 for x y) e N is the same as that of y Y x for x e P.

Furthermore, if k(x) is any function, not necessarily continuous, such that
for xeP

0 < k(x){D(x) + g[x; b(x)] < 2f,(29)

and if

and

then

f(x; y) y k(x)g(x; y),

Yo(x) f[x; b(x)],

Ym+l(X) fix; Ym(x)],

is well defined for x P, and Y(x) limm Y(x).

(x; y) e N,

m=>0,

The proof is similar to that of Theorems 1 and 2, but one first requires
k(x) to be continuous and

(30) k(x)D(x) <= E < 2,

in order to establish the continuity of the unique function Y(x). However,
examination of the proof shows that even if ](x) is allowed to be discontinuous,
and satisfy only (29) rather than (29) and (30), the sequence of functions
{Y(x)} is convergent for each fixed x, from which, in view of the uniqueness
of the continuous solution y Y(x), the truth of the theorem follows.
Theorems 3 and 5 remain valid with R, C, D, ]c replaced by R(x), C(x),

D(x), ](x). Their proofs present no special difficulties.
The results above are easily applied to the problem of solving an equation

G(y) 0 in one unknown, and can be used when Newton’s method is not
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applicable, since G(y) is not required to be differentiable. It is clear that with
x unrestricted, the hypotheses of Theorem 1 will be satisfied if G(y) satisfies
corresponding hypotheses. We assume that G(b) 0 and can thus introduce
an equality sign in (5). The following theorem holds.

THEOREM 7. Let G(y) be a continuous function defined on the interval I
determined by Y b <- , where is a positive constant; and let there be positive
constants C and D such that

0 < IG(b) < C,

and, if u, v are distinct points of I,

C <_ G(u) G(v) <_ D.
U t)

Then there exists a unique solution Y e I of the equation G(y) O.
Furthermore, if k is a constant satisfying

and if

then

0 < k[D + [G(b)I] -<- 2,

f(y) y- toG(y), Yo f(b),

Y,+I f(Ym), m >__ O,

is well defined, and Y limm Y.
The appraisals of the remainder error given in Theorems 3 and 4 remain

valid. Also, we note that if (22) holds and D < 3C, then/R < //2,
so that the appraisal (27) is more favorable than that obtained by the method
of taking successive midpoints of intervals at the endpoints of which G(y)
has opposite signs.
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