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BY
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Convergence theorems play a fundamental role in the development of the
theory of subharmonic functions. The simplest such theorem asserts that the
limit of a decreasing sequence of functions subharmonic on a common region
(connected open set) is either subharmonic or identically — «. For an in-
creasing sequence of subharmonic functions the situation is more compli-
cated. It was observed first of all by T. Radé [9, p. 22] that if a sequence
of this sort is locally bounded above, then the limit function is almost sub-
harmonie (that is to say, coincides almost everywhere with a function sub-
harmonic on the region). Later, Brelot succeeded in showing [4] that the
exceptional set is not only of Lebesgue measure zero but is, in fact, of interior
capacity zero. TUtilizing the energy norm, Cartan [6] then further refined
this result to replace “interior capacity” by ‘“‘exterior capacity’’. However,
with the advent of the theorem of Choquet [7] to the effect that all Borel
sets are capacitable, the latter form of the convergence theorem is immediate
from the earlier version given by Brelot.

We shall be concerned here with the extension of the convergence theorem
to §-subharmonic functions, that is, to functions representable as differences
of subharmonic functions on a region € of k-dimensional Euclidean space.
For simplicity, the actual calculations will be carried out only for the case of
the classical 8-subharmonic functions on plane regions. It is clear, however,
that the same techniques yield corresponding results for wider classes of func-
tions and regions. For example, the classical §-subharmonic functions can
be replaced by functions similarly related to more general potential kernels,
and the plane region @ can be replaced by a region in an arbitrary Green’s
space.

A weak form of the convergence theorem was first established in [2, pp.
345-346], and we state it here for reference.

TueoreM 1. Let {w,} be a sequence of functions almost 4-subharmonic on
Q. If the sequence of total variations of the corresponding mass distributions vs
bounded, and if {w,} converges in the mean locally to a function w on Q, then

(i) w 2s almost §-subharmonic on Q, and

(ii) the sequence {m,} of mass distributions for the functions w, converges
weakly' to the mass distribution m for w.

Received December 23, 1957.
1 Weak convergence is used here in the sense of Definition 7 of (2, p. 345].
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By means of the theory of functions of potential type, this result was later
extended [3, Theorem 34] to the following analogue of the Brelot-Cartan
theorem.

TueoreM 2. Let {w,} be a sequence of quast §-subharmonic functions on Q,
and let ¢ and ¢ be functions on Q locally summable with respect to all mass dis-
tributions admitting continuous potentials.” Further, let the mass distributions

for the functions w, (n = 1, 2, --- ) have uniformly bounded total variations,
and let
1) ¢ = w, =Y (n=1,2-).

If {w,} converges pointwise quast everywhere on Q to a function w, then

(1) w s quast d-subharmonic on Q, and

(ii) the sequence {m,} of mass distributions for the functions w, converges
weakly" to the mass distribution m for w.

We recall here that ‘“quasi everywhere” means ‘“‘except for a set of ca-
pacity zero” and that a quasi é-subharmonic function is defined as a function
coinciding quasi everywhere with a §-subharmonic function.

Inasmuch as the proof given originally [3, pp. 544-545] makes use of the
theory of functions of potential type (developed specifically for the plane),
the validity of the theorem for higher-dimensional spaces is not altogether
obvious. What we propose to do in the present note is to modify our origi-
nal proof so as to remove this criticism. However, the main lines of the proof
are preserved intact; we use weak convergence of the sequence of mass dis-
tributions (as already proved in Theorem 1), together with the Choquet
theorem and the fact that every set of positive interior capacity admits a
distribution of the unit mass giving rise to a continuous potential.® The
changes that do appear in the present proof result from the observation that
the role originally played by functions of potential type can just as well be
taken over by Green’s potentials. Also, avoidance of the dependence on
functions of potential type makes the proof more elementary. The details
are as follows.

Under the hypothesis of Theorem 2 we can conclude from Theorem 1 that
{w,} converges almost everywhere to a function w* §-subharmonic on 2 and
that the corresponding sequence {m,} of mass distributions converges weakly
to the mass distribution m for w*. Let us suppose that w and w* differ on a
set of positive (exterior) capacity. In view of the fact that w and w* are

2 All s-subharmonic functions have this property, and for most of the applications ¢
and ¢ can be taken as é-subharmonic.

3 This appears as Lemma 3 of [3, p. 543], the author having been unaware that the
same result had already been established by de la Vallée Poussin [8, pp. 84-85]. In turn,
the idea of basing a proof of the convergence theorem on this lemma, as exploited in the
author’s thesis [3], has since been rediscovered for the subharmonic case by Brelot and
Choquet [5] and utilized by Anger [1]. Brelot and Choquet have also made the impor-
tant observation that the lemma in question follows directly from Lusin’s theorem.
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Baire functions, this set is a Borel set and therefore has positive interior
capacity. A routine argument shows that ==(w* — w) must exceed some
¢ > 0 on a compact set K of positive capacity. Moreover, there is no loss
of generality in supposing that K lies inside some open disc » having closure
in @ and that

2) w* —w > ¢ onK.
Now, we employ the Riesz decomposition theorem to obtain on w
3) w, = Wy + h, and w* =W + h,

where W,, and W are the Green’s potentials of m, and m, respectively, con-
fined to w, and h, and h are harmonic on w. Denoting by «, the areal mean
operator over dises with closure in w, we have «, w, = a» W, + h, and
a,w* = «, W 4+ h. From condition (1) in conjunction with the Lebesgue
convergence theorem we conclude that lim,.. o w, = a w*. Also, weak
convergence of the sequence of mass distributions yields limg.o ar W, =
o, W,! so that

h, — h on w.

Since K has positive capacity, there exists a distribution ¢ of the unit mass
on K having a continuous Green’s potential U on w. Invoking the weak con-
vergence of {m,} to m and noting that U is a continuous function vanishing
on the boundary of w, we have

andq=fUdmn-—>fUdm=deq.

A corresponding convergence property holds for the harmonic functions fig-
uring in (3), as is evident from the Lebesgue convergence theorem and the
fact that each h, lies between the harmonic functions defined on « by the
Poisson integrals of ¢ and ¢. There results

fwndq%fw*dq.

Appealing once more to the Lebesgue convergence theorem, we see from (1)
and (2) that

sé[(w*-—w)dq=lim w,.dq—fwdq=0.

n->0
This contradiction completes the proof.
4 To see this, let p, be the uniform distribution of total mass 1/7r? on the disc of

radius r over which the areal mean is taken. Since the Green’s potential A, of p,is a
continuous function vanishing on the boundary of w, there follows

Wy, = [Wndpr= /‘Ardmn"—’ fArdm= /de,=a,W.
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An important observation here is that whenever {w,} is a sequence of po-
tentials, condition (1) can clearly be replaced by the following weaker condi-
tion: for all mass distributions A lying on compact subsets of @ and giving
rise to continuous potentials

(4) lim | w,d\ = f w dA.

Mass distributions A of this sort occupy an important position in the theory
of functions of potential type, and Anger [1] has employed them systemati-
cally to formulate a new approach to certain problems in potential theory.
In particular, this approach has led to a theorem [1, Satz 15] analogous to
Theorem 2 but for Q@ a compact set and {w,} a sequence of potentials.

We remark further that the present demonstration of Theorem 2 does not
entirely supplant that of [3], in view of the additional information which the
latter provides for functions of potential type.

As mentioned in [3, p. 545], the Brelot-Cartan theorem for sequences of
subharmonic functions appears as a direct consequence of Theorem 2. More-
over, even for the case of subharmonic functions Theorem 2 is considerably
stronger than the Brelot-Cartan theorem, since it applies to sequences which
may fail to be monotone. In fact, essentially the same argument as that
used in proving Corollary 34.1 of [3] shows that the mass restriction is auto-
matically fulfilled locally in the subharmonic case, and we state the result
explicitly as

TueOREM 3. Let {u.} be a sequence of quasi subharmonic functions on Q,
and let ¢ and ¢ be functions on Q locally summable with respect to all mass dis-
tributions admitting continuous potentials.” If

(5) ¢‘§un§'// (n=1)27')
and {u,} converges pointwise quast everywhere on Q to a function u, then

(i) wu s quast subharmonic on Q, and

(ii) for every bounded region Q* with closure in Q the sequence {m.} of mass

distributions for the functions u, converges weakly' on Q* to the mass distribution
m for u.

Again we note that if {u,} is a sequence of potentials, then condition (5)
can be replaced by the weaker condition corresponding to (4): for all mass

distributions A lying on compact subsets of @ and giving rise to continuous
potentials

) ll_{gf’u, d\ = fud)\.

Let us denote by S,(z) the closed disc of radius r about 2z, and by u.v(2)
the integral mean of a suitable function » over the circumference of S,(z).
The proof of Theorem 3 is based on the following auxiliary result.
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Lemma. Let {u.} be a sequence of subharmonic functions on Q, and let {m.,}
be the corresponding sequence of megative mass distributions. If the sequence
{ur ua(2)} is bounded for each disc S.(2) C Q, then the sequence {m,(K)} s
bounded for each compact subset K of Q.°

Proof. By the usual covering theorems there is no loss of generality in
supposing that K = Sz(0) and that Sz/(0) lies in © for some R’ > R. For-
mulas due to F. Riesz (see [9, pp. 35-36]) then show that the total variation
on Sr(0) of m, can be computed as 8 u, u,(0)/8 log 7 |,=r. We recall also
that u, u.(0) is an increasing convex function of log r on [0, R’]. Since the
given hypothesis yields constants M and M’ such that

M = ﬂRun(O) = ur un(O) =M (n = 1) 2, - )>

it is easily seen that {8 u, u,(0)/8 log 7 |,~z} is bounded, and the lemma is
established.

The lemma, together with condition (5) (or the weaker condition (6)
in the case of potentials), permits us to apply Theorem 2 to the sequence
{u.} on any bounded region Q* with closure in €. From conclusion (ii) it
is then obvious that m is a negative mass distribution, so that the limit func-
tion 4 must be quasi subharmonic. This completes the proof of Theorem 3.
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