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1. The setting of the problem

The cohomology theory of rings, in the form recently introduced [15], will
here be shown appropriate to the systematic treatment of the general extension
problem for rings.
The treatment is parallel to the known theory [5] of the extensions of

groups. If G is a normal subgroup of a group E, the assignment to each
e e E of the operation of conjugation by e in G induces a homomorphism 0 of
the quotient group Q E/G into the group of automorphism classes of G.
The converse problem of group extensions therefore starts with the data:
groups Q and G plus a homomorphism 0. These data are called a "Q-kernel"
by Eilenberg-Mac Lane [5]. On the center C of G the homomorphism 0
assigns to each element of Q a well defined automorphism of C; thus C may
be regarded as a module over the integral group ring of Q, and the cohomology
groups H’(Q; C) are then available. To 0 one assigns an element of H3(Q, C)
as "obstruction"; there exists an extension E of G by Q which realizes 0 if
and only if this obstruction is zero. When the obstruction is zero, the usual
description of extensions by factor sets yields a one-one correspondence be-
tween H2(Q, C) and the set of those equivalence classes of extensions of G by
Q which realize 0. These results [5] yield an algebraic interpretation of the
two- and three-dimensional cohomology groups and provide a refinement of
the usual extension theory (normally attributed to Schreier [17], but actually
initiated by HSlder [14]) in which the map 0 and the factor sets are all treated
together, in a somewhat indigestible lump.

There are subsequent and parallel studies for the extensions of associative
algebras (Hochschild [11]) and of Lie algebras (Hochschild [12, 13]). In both
cases, the algebras are taken over a field and hence have the additive structure
of a vector space over that field. Consequently the extension problem for the
additive structure involved is trivial, and only the multiplicative structure is
substantially involved in the cohomology theory. The new cohomology for
rings to be used here has as its object precisely the simultaneous treatment of
additive and multiplicative structures. For example, Everett [10] has de-
veloped the analogue of the Schreier extension theory for the case of rings,
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using factor sets for both addition and multiplication. His treatment is
rendered perspicuous by the use of the cohomology of rings.
An essential point is the observation that the automorphisms of the group

G must be replaced (2) by the "bimultiplications" of a ring A. This notion
is due to Hochschild [11], who called it a "multiplication". The same notion
has later been called a "homothetie" by Redei and his co-workers ([17], [18])
who had apparently overlooked the work of Hochschild. This development
leads to the consideration of the ring of bimultiplication classes of A.

Given these notions, the extension theory for rings becomes exactly parallel
to that for groups. For example, for groups an extension of a centerless
group is uniquely determined by the corresponding homomorphism 0. Simi-
larly, let A be a ring with the property that ax 0 xa for all x implies
a 0. Then (see the Corollary in 8) any ring extension E A is uniquely
determined, up to isomorphism, by the quotient ring E/A and the induced
homomorphism 0 of E/A into the ring of bimultiplication classes of A. Fur-
thermore, the obstruction theory carries over for rings. The most difficult
point is the demonstration (10) that every three-dimensional cohomology
class which satisfies an appropriate necessary condition can indeed be realized
as the obstruction to a suitably constructed ring extension problem.
A few remarlcs on notation. Our rings are not fashionable:they do not need

to have an identity element for multiplication. By a 1-ring we mean a ring
which does have such an identity, and by a 1-homomorphism a homomorphism
of 1-rings which carries the identity to the identity. If A is a ring, a A-
bimodule K is as usual an abelian group which is simultaneously a left
A-module and a right A-module in such wise that (xk,)y x(ly) holds for all
/c in K and all x, y in A. In the 1-case, i.e., when A is a 1-ring, we require
also that 1/c /c /1 for all/ in K.

2. Bimultiplications of a ring

A bimultiplication of a ring A is a pair of mappings a --> aa, a ---> ao of A
into itself which satisfy the rules

(2.1) (a + b) a -t- b, (a - b) a + b,

(2.2) a(ab) (aa)b, (ab)a-- a(ba),

(2.3) a(ab)- (a(r)b,
for all elements a and b of A. The sum a r and the product ar of two
bimultiplications a and r are defined by the equations

(2.4) ( - r)a a -t- ra, a( + r) a + at,

(2.5) (ar)a- a(ra), a(ar) (aa)r

The relevance of trying to get an extension theory for rings which would go beyond
and the extension of zero rings was pointed out to me by Professor W, Krull.
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for all a in A. One verifies that z + r and zr are bimultiplications and that
under these operations the set of all bimultiplications of A is a 1-ring, denoted
by M
For each element c of A a bimultiplication #c is defined by

(2.6) tc a ca,

we call #c an inner bimultiplieation.
morphism. Since also
(2.7)

attc ac, a e A;
Clearly :A -- M is a ring homo-

,U,c O" ,U,

the image A of this homomorphism is a two-sided ideal in M. The quo-
tient ring P, M/A is called the ring of outer bimultiplications or the ring
of bimultiplication classes of A. The kernel of is that two-sided ideal
KA of A which consists of all those c e A with cx 0 xc for every x e A.
We call K the bicenter of A. We thus have the exact sequence of rings

(2.8) 0 --+ Kx -- A u M -+ Px -- 0.

Observe that KA is both a left and a right P-module, under the operations
]c --+ ale, lc , for the result of these operations does not depend upon the
choice of the bimultiplication z within its class. However, K need not be
a P-bimodule.
The bimultiplications a and r are called permutable if z(ar) (aa)r and

r(az) (ra)z for every a in A. By (2.2), a and any inner bimultiplication
are permutable;hence we can speak of two permutable outer bimultiplications.
In particular, a is self-permutable if z(aa) (aa)z for all a. The self-permu-
table bimultiplications are exactly the double homotheties considered by
Redei [16]. The set of all self-permutable bimultiplications of A need not be
a ring.
For given rings A and A, an extension of A by A is an exact sequence

0A
a
EA0

of rings and ring homomorphisms. In the l-case, when A is 1-ring, we
require also that be 1-homomorphism. Since aA is an ideM in E, the
assignment to each e in E of its inner bimultiplication yields homomorph-
ism - E M ;furthermore ny two bimultiplications in E are permutable.
Since this crries the ideal aA into inner bimultiplications of A, it induces
homomorphism

O: A PA
for which he image 0A again eonsisLs of permutable elements. The given
exgension ghus degermines 0; in ghe 1-ease, 0 is a 1-homomorphism. Given 0,
A, and A, he "extension problem" is ha of finding whether here is any
corresponding extension and, if so, how many. The "how many" is aken
in *he sense of equiwlenee: wo exgensions N and N’ are euivalen if ghere is
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ring homomorphism " E --. E’ such that the diagram

0-+A

0-A . A--0

(where each I is an identity map) is commutative. The commutativity of
this diagram automatically implies that q is an isomorphism of E to E’ and
hence, in the 1-case, that is a 1-homomorphism.
We have observed that KA is a left and right PA-module. If 0"A -- Phas an image 0h which consists of mutually permutable outer bimultiplica-

tions, then K becomes a A-bimodule according to the operations

(2.9) x (Ox), lcx (Ox), eK x e A.

In the group extension problem a special role is played by the extensions
of abelian groups. The analogous case here is the extension of a zero ring K.
A zero ring K is a ring in which the product of any two elements is zero. Each
such K is its own bicenter, and MK PK. For each 0"A -- M as above,
K becomes a A-bimodule. Indeed, given K as an additive abelian group, to
specify the structure of a A-bimodule on K is exactly the same as to specify
that K is a zero ring and that h -- MK is a homomorphism in which the image
consists of permutable bimultiplications.

3. The cubical complex
Eilenberg-Mac Lane has introduced a homology theory for an abelian group

G. This theory, which may be described in many equivalent ways ([6], [9])
is for our present purposes best considered as the homology of a certain
normalized "cubical" complex Q(G), defined as in [6]. Specifically,
Q(G)

_
Q,(G) is a certain graded differential group, with Q 0 for

n 0, and with Q for n 0 the free abelian group with generators all
2-tuples of elements of G, taken modulo a certain normalization. Each such
2-tuple of elements may conveniently be represented as an n-dimensional
cube carrying an element of G as a "label" at each of its 2 vertices. In the
sequel we need only the low dimensions, for which we tabulate the free genera-
tors of Q together with their boundaries as follows"

Dimension Generator
0 (x)

1 (x, y)

(zx

Boundary

0

(x) + (y) (x+ y)

(x,y) + (z,t) (x+ z,y- t)
--(x, z) (y, t) -[- (x - y, z -t- t)
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This is to mean, for example, that Q(G) is the free abelian group with genera-
tors all pairs (x, y) for elements x, y e G, and that 0 0:Q -- Q0 is that
homomorphism for which O(x, y) (x) - (y) (x - y). Actually, Q(G)
is to be taken with normalization; that is, modulo the subgroup generated
by all pairs (x, 0) and all pairs (0, y), while Qo(G) is taken modulo the sub-
group generated by (0). There is u simple normalization for Q, though we
shall not actually need the form of the generators of Q. and their normaliza-
tion, but only their boundary as given above.
In general Q(G) is to be exactly the complex denoted by Q/Q in [6], i.e.

with the normalization given by "slabs" and "diagonals". However the
sign of the boundary formul (12.6) in [6] is to be taken corrected and changed:
corrected by replacing S a by S a; changed by changing the total sign of 0
by the factor -1.
Q has an "ugmentation". Specifically, we may regard the group G as a

graded differential group, with trivial grading and zero differential. A homo-
morphism :Q(G) -- G of graded differential groups is then defined by setting
(x) x for x e G nd q 0 for q e Q nd n > 0. We cll the augmenta-
tion of Q.
The homology of Q in low dimensions is known. Observe first that, for

each x e G, Q has a two-dimensional cycle

THEOREM 1. There are isomorphisms

Ho(Q(G)) G, H(Q(G)) O, H(Q(G)) G/2G,

induced respectively by v, 0, and (x) x - 2G.

Proof. It is known [6] that Hq(Q(G)) is for large n isomorphic to the stable
homology H+q(G, n) of an Eilenberg-Mac Lane space K(G, n), and the bove
three groups G, O, G/2G are the known first three stable Eilenberg-Mac Lane
groups. For H the fact that (x) does yield the explicit isomorphism may
be verified either by direct calculations on Q, or by a translation according
to [6] of the known explicit representation for H,+.(G, n) found by means of
the bar construction in [8, Theorem 23.1].
Now let A be u ring. The cubical complex Q(A) of the additive group of

A may now be turned into a ring by a product which is defined in low di-
mensions as

(Pr qs) (X) (rP:
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The general definition (which was suggested by J. Dixmier) is tolerably ap-
parent, and is given in detail in [15]. In particular, if A is a 1-ring, so is
Q(A), with identity (1), and :Q(A) --* A is a 1-homomorphism. In the usual
terminology one can prove that Q(A) is a graded differential ring; in particular
this means that the product of elements u and v of dimensions m and n in Q
is an element uv of the dimension mn and with the boundary

O(uv) (Ou)v - (-1)u0v.

4. The universal embedding
If A is 1-ring, then each abelian group G gives rise to a left A-module

A (R) G, where the tensor product is taken over the ring of integers. The em-
bedding r:G A (R) G defined by 7(g) 1 (R) g has the following universal
property: if f: G -- K is any homomorphism of G into the additive group of a
left A-module K, then there exists a unique A-module homomorphism
f"A (R) G - K such that f’r f. This property is really iust a reflection of
the familiar universal properties of the tensor product for bilinear maps.
We need a similar embedding for bimodules and when A is not necessarily

a 1-ring. To fix the terminology, consider any subcategory of a category
@. We then saythata covariantfunctor T: @ -- and a natural homomorph-
ism r:G -- T(G) provide a universal embedding if for every @-map f: G -- Kof an object G of @ into an object K of there exists a unique
-map f’:T(G) -- K such that f’r f.

In [15], Lemma 1, we have already observed such embeddings in the case
when @ was the category of graded differential right A-modules and the
subcategory of modules which are also left differential modules over a given
graded differential ring. We now cite two more such cases.

Suppose first that A is a 1-ring, @ is the category of abelian groups, and
the category of A-bimodules. Set T(G) A (R) G (R) A, where the tensor
product is taken over the ring of integers. Then T(G) has a natural structure
as a A-bimodule, in that a typical element # (R) g (R) , with , e A and g e G,
is multiplied on the left and right by an element k e A according to

A map r:G T(G) may be defined by rg 1 (R) g (R) 1. To eachf:G --* K,
where K is a bimodule, there is a corresponding f’:T(G) K, defined by
f’(t (R) g (R) ) tf(g). Hence T and in this case yield a universal em-
bedding into bimodules.
Suppose second that A is a ring, @ is again the category of abelian groups,

and 3C the category of A-bimodules. This case differs from the preceding one
in that A need not have an identity, while even if it does, its bimodules K
need not satisfy 1./ k. 1. We now set

T(G) =Gq- A (R) G-k G(R) Aq- A(R)G(R) A,

a direct sum of tensor products (over the ring of integers) in which a typical
element will have the form a + t (R) b -k c (R) -b/ (R) d (R) "r for a, b, c, d



322 SAUNDERS MAC LANE

in G and #, 9, , ,, in A. Then T(G) is a A-bimodule, where the left and
right operations of ), e A are defined by

,(at(R)b-t--c(R) -t- fl (R) d (R) ,)

A map r" G ----> T(G) is defined by r(g) g for g e G. To each f: G -- K,
where K is a bimodule, there is a unique corresponding f" T(G) -- K given by

f’(a + # (R) b -t- c (R) , + fl (R) d (R) ,) f(a) + t f(b) + f(c), -+-flf(d).

Hence T and r yield a universal embedding for bimodules.
If Horn (G, K) denotes as usual the group of homomorphisms of G into

K while HomA denotes the group of bimodule homomorphisms, the universal
property of T (G)may be summarized in either case by the fact that f --yields an isomorphism

(4.1) Hom (G, K) --- HomA (T(G), K).

5. The bar construction

The homology of the ring A will be obtained from the cubical complex
Q(A) by a variant of the Eilenberg-Mac Lane bar construction. This con-
struction/ operates relative to a fixed base ring A, and provides a graded
differential A-module B(Q, v) from the data v" Q -- A, where Q is any given
differential ring and v a homomorphism of graded differential rings. Here
the base ring is regarded as a graded differential ring with trivial grading
(i.e., all elements are of degree zero) and trivial differential (i.e., Ox 0 for
all x e A).
The explicit definition of / is as follows. As a h-bimodule,/(Q, 7) is

the direct sum :=0/, where/0 T(Z) and/ T(Q (R) (R) Q) for
n > 0 is obtained by applying the universal embedding functor of 4 to
the tensor product over the ring of integers of n factors Q. We write

(5.1) [ul lug] r(ul (R) (R) u), ueQ

for the generators of/. Let the grading of Q be denoted by writing du for
the degree of a homogeneous element u of Q; then the grading of/ is defined
by the requirement that the element (5.1) is homogeneous when the u are
homogeneous and has the degree

(5.2) d[u I"" u] n + du + + du,,.

The boundary operator (differential) 0" / --/ has the form
where the 0r and 0 are A-bimodule homomorphisms defined, in terms of the
product and the differential 0Q of Q, by the formulas
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Or[Ull [U] (--1)-1 [Ul[ ]OoU, ]U,],
i=1

n--1

u.] I’" u.] + (- 1) [u I"" [u, ui+l l"" u-]
i=l

+ (-

Here the signs ei are the following"

i d[ul lug], i- O, 1, n.

One readily verifies that these definitions do give/ the structure of a graded
differential A-bimodule.
In the special case when A is the 1-ring Z of integers, this bar construction is

exactly the original one discovered by Eilenberg-Mac Lane [7]. The general
case, provided A is a 1-ring, is that discussed in more detail in [15]; there it
is shown how/ may be obtained from an acyclic construction B(Q, 7) re-
sembling the acyclic bar construction of Cartan [2]. Note however that the
direct application of Cartan’s theory, which is formulated for augmented
algebras, does not give the above construction, which must be formulated for
rings "augmented" by the homomorphism 7.

In case A is a 1-ring, we require also that Q be a 1-ring and a 1-homo-
morphism in this construction. In this case, let C denote the subbimodule
of B spanned by the elements [u I--. u] with at least one term u 1.
From the coboundary formulas one verifies at once that C is a subcomplex
of B. The complex B is equivalent to the quotient BN B/C in virtue of
the following "normalization" theorem.

THEOREM 2. The subcomplex C of B(Q, 7) has homology groups zero.

Proof. This theorem is a mild generalization of the corresponding normali-
zation theorem of [7, Theorem 11.2]. To prove it, take Cm to be the sub-
module of B spanned by all elements [ul ..-lug] with at least one term
u= l for an index i 1, 2,... ,m. Then0cCc.-- cCmcC+c
is a chain of subcomplexes with C as union, and C, 1/C, is a A-bimodule
spanned by the elements [ul.-. ulllvl"" v] It suffices to define
a contracting homotopy in each quotient C,+I/C, by the formula

D,[ul... u,ll]vl Ivy] (-1)[ull’’’ u111 live]
where d[Ul lug]. One then verifies readily that OD, fl- D, 0 I,
as required to complete the proof.
The homology of a ring A is now defined as the homology of the graded

differential A-bimodule R(A) B(Q(A), 7); in case A is a 1-ring we may use
equivalently the normalized construction BN. Correspondingly, Che co-
homology of A may be defined with any A-bimodule K as coefficients and is

(5.3) H(A, K) H(Hom ((Q(A), ), K)),
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where HomA (B, K) designates the graded differential group which in di-
mension n consists of all the A-bimodule homomorphisms of the n-dimensional
part of B into K. Since B is defined by means of the universal embedding
functor T of 4, we may consequently use (4.1) to express these bimodule
homomorphisms.

In the sequel we need Rq(A) through dimension q 4 inclusive. Each such
Rq has the form T(Fq), where T is the embedding functor and Fq is a certain
free abelian group. Upon consulting the definition of B, we may list the free
generators of these groups Fq as follows

F0 generator 1

F1 [(x)] [x]

F. [u],

F [v],

Ft [w],

[u x],

Iv Ix],

[x uly]

Ix [v], [u u’],

x0inA

u eQ1

Here x, y, z, are nonzero elements of A; u and u’ are free generators of the
group Q1, so that u for example has the form u (s, t) with s, not both
zero in A; v is a generator of Q, and w is a generator of Q3 (i.e., a 3-cube).
To simplify the notation, we have written [x, y] in place of the more correct
[(x) (y)].
For each type of cell above, the boundary formulas may be written out

explicitly, using the boundary formulas given in the definitions of Q and/.
These explicit formulas will be summarized below; for example in the next
section we will use the following boundary formulas for R3:

+ (x, z) -t- (y, t) (x - y, z + t),

O[x, y t] [OQ(x, y) t] + [xt, yt] [x, y] (R) t,

O[t x, y] [t lOQ(x, y)] + (R) Ix, y] [tx, ty],

O[x y z] x (R) [ylz] [xy z] + [x lyz] [xly] (R) z.

6. Extensions and H

A two-dimensional cochain g of the ring A with coefficients in a bimodule
K is a function on the two-dimensional generators of R(A) with values in K.
There are two types of such generators, ql (z, t) and Ix y]; hence the
cochain g can be regarded as a pair of functions g(z, t) K and g(x]y) K,
defined for all arguments z, t, x, y in A and satisfying the 0-normalization
conditions g(O, t) 0 g(z, 0) and g(O Y) 0 g(x 0). The coboundary
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of this cochain is the function g gO defined on the four types of three-
dimensional generators of R(A) as listed above. Thus for example

 e[x z, z + + e(x z) + +  e(z, e(xz,

The function g is a cocycle if ig 0; that is, g satisfies the four identities
gO 0 given by the four types of boundary formulas (e.g., one is the identity
obtained by setting the right-hand side of the equation displayed above
equal to 0).
Given a cocycle g, construct the ring E of all pairs (lc, x) for ]c e K, x e A,

and define the sum and the product of such pairs by the equations

(, x) - (1, y) ( - + g(x, y), x - y),

(k, x) (1, y) (ky - xl g(x y), xy).

(Here the function g appears in the second formula with a negative sign in
place of the more natural positive sign in order to make the choice of signs
here agree with signs already chosen for the bar construction.) The 0-nor-
malization condition on g implies that (0, 0) is the zero element for the ad-
dition in E. The fact that g must vanish on the boundary of each u e Q
gives, upon consultation of the boundary (3) for such a u, the fact that
addition in Eg satisfies

(x + y) -t- (z -]- t) (x - z) + (y -t- t).

We call this law the commutassociative law because, in the presence of a
zero for addition, it is equivalent to the commutative and associative laws
together. Finally, gO[ulx 0 gives the right distributive law;
the left distributive law; and gO[x Y z], the associative law for multiplication
in E. In other words, E is a ring; the two types of two-dimensional gener-
ators of R(A) correspond to the two operations (addition and multiplication)
in a ring, while the four types of three-dimensional generators correspond
exactly to the four identities which these operations must satisfy in a ring.
In the 1-cases the 1-normalization condition on the cochain g means that
g(1 Y) 0 g(x 1), which implies that (0, 1) is an identity for the ring E.
By using the homomorphisms k -- (], 0) of K into Eg and (/c, x) x of
E into A we see that the ring E is an extension of the zero ring K by the
given ring A. We have thus constructed to each 2-cocycle g of R(A) an
extension E. From the boundary formulas for the two-dimensional gener-
ators of R(A) one readily verifies that cohomologous cocycles give equivalent
extensions. The usual arguments also show that every equivalence class of
extensions is represented in this way by one and only one two-dimensional
cohomology class of R(A). We thus have the following theorem, already
proved for the 1-case in [15].

THEOREM 3. Let A be a ring, K a zero ring and 0:A -- M: a homomorphism
with image OA consisting of permutable bimultiplications of K. Give K its
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induced structure as a A-bimodule. There is then a natural one-one correspond-
ence between the two-dimensional cohomology group H(A; K) and the set of
equivalence classes of those ring extensions of K by A which induce O. The same
result holds in the l-case; hence in particular any extension of a zero ring by a
l-ring which induces a l-homomorphism 0 is a l-extension.

As in the case of group extensions, this result implies that the manifold
of equivalence classes of ring extensions realizing a given 0 has a canonical
abelian group structure. In 8 below we will give a direct description of this
composition of extensions.
The last assertion about identity elements holds more generally even if the

kernel of the extension is not a zero ring.

THEOREM 3a. If 0---* A E - A -- 0 is an exact sequence of rings such
.that A is a 1-ring and the homomorphism O" A -- PA induced by 0 is a 1-homo-
morphism, then E has an identity element (and hence fl is a 1-homomorphism).

We give a direct proof. Since 0 is a 1-homomorphism, we can choose for
the identity 1 of A a representative in E such that/t 1 and bimultipli-
cation in A by is the identity. This means that

ta a, at a,

for allainA, and that q- dfor somedinA. Thena ta, hence
ta ta (t q- d)a ta -ff da, and therefore da 0 for all a. Similarly
ad 0 for all a. Thus d lies in the bicenter of A, and

(t d) dr- td q- O t- 2d q- d t- d.

Thus if we set s d, we have s 1, s, and sa a as. Now
consider any e in E. Since s is the identity, there are elements b and c in
A with

se e / b, es e + c.

Then (es)s (e q- c)s e q- 2c; on the other hand by the associative law
(es)s es es e q- c. Thereforec 0. By similar argumentb 0.
Thus se e es for all e; in other words, s is the desired identity element.

7. The obstruction

For given maps A and A let 0"h -- PA be a homomorphism whose image
consists of permutable outer bimultiplications. We propose to assign to 0
a three-dimensional cohomology class of Ha(A, K) as "obstruction". To
this end, choose to each x e A a bimultiplication cx e 0x, with 0 0 and,
in the 1-case, with 1 I, the identity bimultiplication. Since 0 is a homo-
morphism, both Cx q- cy Cx+y and are then inner bimultipli-
cations, so we may choose elements h(x, y) and h(xly) in A such that

(7.1) a - h(x, y) - +,(7.2) az -h(x y) - .
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In particular, since a0 0, we may choose h so that

(7.3) h(O, y) h(x, 0) h(0 y) h(x 0) O,

while in the 1-case we may require in addition that

h( U) 0 h( x)

for all x, y in A.
We now assert that, for all x, y, t, z, in A the right-hand sides of the follow-

ing four equations represent elements in KA (here 0Q denotes the boundary
operation in Q(A))

(7.4) f(v) -h(OQ v), v Q

(7.5) f(x, y t) --h(OQ(X, y)]t) + h(xt, yt) h(x, y)(

(7.6) f(t x, y) h(t O(x, y)) - at h(x, y) h(tx, ty),

(7.7) f(x y z) axh(y z) h(xy z) + h(x yz h(x y)a,

indeed, upon application of to the right-hand sides and the use of the defi-
nition of h, one obtains exactly the four basic identities valid for the bimulti-
plications ax in MA (namely, the commutassociativity of addition, the right
and left distributive laws, and the associativity of multiplication). Since
these right-hand sides thus lie in KA, we may define a function f of the four
types of generators of Ra(A) as indicated by the left-hand sides of these equa-
tions. This function is then a three-dimensional cochain of R(A) with co-
efficients in KA indeed the four formulas in its definition above are chosen
so as to exactly parallel the boundary formulas for the four types of generators
of Ra. In other words, this definition of f has the form f tih. We call
the cochain f an obstruction of 0:A -- P. It follows easily that f is 0-
normalized and, in the 1-case, 1-normalized.

THEOREM 4. Each obstruction f of O is a cocycle, and any two obstructions
of the same homomorphism 0 are cohomologous. If f is an obstruction of 0
then any cocycle cohomologous to f is also an obstruction of .

Proof. The definition of f has the form f tih, except for the fact that the
2-cochain h has its values in the additive group of A, which is not quite a
bimodule under the bimultiplications ax. Hence the proof that if 0 is
essentially the same as the proof that itih 0, except for those terms which
involve composite bimultiplications ax+y or ay. For example, to prove that
f[x, y]z It] fO[x, y]zlt 0, one has two such terms, a+h(z]t) and
h(x, y)azt. Upon using (7.1) and (7.2), these terms give

The two "extra" terms (those not involving ) cancel, and the rest of the
terms cancel with others exactly as in the explicit proof that O0[x, y z t] O.
The other seven cases of boundaries of four-dimensional generators of R(A)
are treated similarly.
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We next show that any two obstructions f are cohomologous. The defi-
nition of f depends upon two choices, that of the and that of h. We assert
that any change in the choice of the can be followed by a suitable new
choice of h such as to leave the original obstruction f unchanged. Indeed,
any different choice of bimultiplications will have a and yielding the
same outer bimultiplication 0x, and hence r b(x) -t- , where b(x) is
an inner bimultiplication, so that b can be chosen as a function on A to A
with b(0) 0 (and, in the 1-case, with b(1) 1). From (7.1) and (7.2)
we may then compute that

-k y t[b(x) + b(y) b(x -k y) + h(x, y)] -k +,

r r t[-b(x)b(y) rb(y) b(x)r - b(xy) - h(x[ y)] q- ry

hence we may and do choose the new functions h’ as

h’(x, y) b(x) q- b(y) b(x -k y) + h(x, y),

h’(x y) -b(x)b(y) rx b(y) b(x)ay q- b(xy) + h(x y).

These equations state that h’ b -k h, except for the extra term b(x)b(y)
in the second equation and the proviso that A is not quite a A-bimodule
under a and a. Thanks to this extra term one readily calculates that
h’ b + h h, much as in the proof above that f 0.
We next assert that, for fixed choices of the , any change in the choice of

h will change the obstructionf by adding a coboundaryfrom Hom (R(h), K),
and moreover that f may be changed by the addition of any such coboundary.
This will complete the proof of the theorem. For suppose that h’ is another
function satisfying (7.1) and (7.2). Then h h’, hence h’ h lies in
the kernel KA of , so that h h g, for g with values in KA. In detail

h’(x, y) h(x, y) - g(x, y), hP(x y) h(x Y) -k g(x

where g is a (normalized) 2-cochain of A. Conversely, if g is any such cochain,
then h -k g is an allowable choice of h. From the definition of f one now
calculates that f’ (h + g) h -b g f -k tg, so that f is indeed changed
by a coboundary g, which may be arbitrary.

In virtue of this theorem, the unique cohomology class of any obstruction

f of 0 may be called the obstruction of 0.

THEOREM 5. A homomorphism O"A ---. P (in the case of a 1-ring A, a
1-homomorphism) can be realized by a ring extension (respectively, by a 1-exten-
sion) if and only if the obstruction of 0 is zero.

Proof. Suppose first that t:E -- A is an extension of A by A which realizes
0. To each x in A choose u in E with flux x, and in particular choose
u0 0 and (in the 1-case) ul 1. Then in the definition of the obstruction
of 0 we may choose tu and hence h(x, y) u -k u u(+ h(x Y)
u u u. From (7.4)-(7.7) one then computes at once that the re-
sulting obstruction cocycle f is identically zero.
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Conversely, suppose that 0 has an obstruction f which is a coboundary.
By Theorem 4 we can then choose h so as to give a new obstruction which is
identically zero. We then apply the following existence theorem.

THEOREM 6. For given rings A and A let the function assign to each x
in A a bimultiplication of A such that any two bimultiplications and
are permutable and such that (o 0 and (if A is a 1-ring) 1 I. Let h(x, y) e A
and h(x y) e A be two functions related to by (7.1) and (7.2) and satisfying
the normalization conditions (7.3) and (7.3a). Then if h satisfies the four
equations obtained from (7.4)-(7.7) by setting f there equal to O, there exists
an extension fl:E A of A by A and elements u in E such that

Ux X #Ux O’x

u + u h(x, y) - u+, u u -h(x y) + u.
This theorem is due to Everett [10]; we hve rearranged it only by separating

the ten conditions which he lists into (i) the conditions that the a be per-
mutable bimultiplications; (ii) the conditions (7.1) and (7.2) that x -- abe homomorphism of A to outer bimuliplications; (iii) normalization con-
ditions; (iv) the conditions (7.4)-(7.7) stating the four identities necessary
in a ring. (In Everett’s statement, (7.4) is replaced by separate conditions
for the associative and commutative lws for addition.)
The proof of this theorem is direct. One constructs E as the ring of all

pirs (x, a) for x e A, a e A with addition and multiplication defined by the
equations

(x, a) -t-- (y, b) (x + y, h(x, y) + a --t- b)

(x, a)(y, b) (xy, -h(x y + ( b -t-- ao- + ab).

In the proof that this set E is in fact ring, the four equations (7.4)-(7.7)
enter exactly to prove that E stisfies the four corresponding identities.
In the 1-case, the normalization condition (7.3) serves to prove that (1, 0)
is the identity of E.

8. The manifold of extensions

THEOREM 7. If there exists a ring extension of A by A realizing 0:A -- P,then the set of equivalence classes of such extensions is in one-one correspondence
with the cohomology group H(A, K) where the bicenter K of A is regarded
as a A-bimodule under the operations induced by O.

Proof. This result follows readily by Everett’s methods, by observing
that any two solutions h0 and h of the equations (7.1)-(7.7), with f 0 in
(7.4) to (7.7), must differ by a 2-cocycle g. Hence the correspondence
"ho + g" "cohomology classes of g" yields the desired one-one correspond-
ence. We prefer to give a more conceptual proof of this theorem, so as
to illustrate how notions such as the "Baer product" of group extensions will
work for extensions of rings.
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The graph F of 0:A -- PA is that subring of the direct sum A -- MA which
consists of all pairs (x, ), for x e A, and e M, such that z e 0z. Under
the ring homomorphisms tA -- F -- t given by ta -- (0, #a) and (x, a) -- x,
this graph 1 is a ring extension of tA by A. In the l-case, F is a l-ring and
the map F - A is a l-homomorphism.

Any extension A E A of A by A which realizes 0 induces an ex-
tension of K by the graph l of 0. Indeed, we define :E - I’ by setting

ke (fie, e) for each e e E; then K -- E- F is the desired extension,
and the diagram

O -- A h --- 0

0--*

is commutative. In particular, if Ka 0, k is an isomorphism, so that in
this case any solution of the extension problem is equivalent to the graph r.
To any two extensions E and E’ of A by A which realize the same 0, we

now construct an extension 0 -- Kx F A -- 0 of the zero ring K
by 3_ which will realize the given A-bimodule structure of K. To this end,
let :E -- I’ and "E’ - r be the homomorphisms constructed as just above,
and let T be that subring of the direct sum E -t- E’ which consists of all pairs
(e, e’), for e e E and e’e E’, such that Ce ’e’. Let To be the two-sided
ideal in T which consists of all pairs (aa, a’a) for a cA, where a:A -- Eand a’ :A -- E’ are the given monomorphisms under which E and E’ extend
A. Then F T/To is a ring, and is an extension of K by A relative to the
homomorphisms K -- F given by/c - (ale, O) nt-- To and F -- A given by
(e, e’) -- fie fie’. One verfies that this extension F does in fact realize the
given A-bimodule structure of K. We write T*(E, E’) F for the ex-
tension so constructed, and regard T* as a function applying to equivalence
classes of extensions.

Now conversely let K- F X_ A and A E A be given extensions
which realize respectively the bimodule structure ofK and the homomorphism
0. We construct a second extension E* as follows. Let S be that subring
of the direct sum F -t- E which consists of all pairs (f, e) for f e F and e e E
and such that Xf fie. Let So be the two-sided ideal in S which consists
of all pairs (Kk, a/c)hnotice the sign--for lce KA. Then E* S/So is a
ring, and is an extension of A by A relative to the homomorphisms A -- E*given by a -- (0, aa) and E* --. A given by (f, e) -- Xf fie. Furthermore
E* does in fact realize the given 0. We write S*(F, E) E* for the extension
so constructed, and regard S* as a function applying to equivalence classes
of extensions.
Now let E0 be any one extension of A by A which realizes the given 0.
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Then one readily proves two equivalences of extensions

T*[S*(F, Eo), E0] F, S*[T*(E, Eo), E0] E

for E and F as above. Indeed, in the first equivalence any element in the
extension on the left may be written as a coset of a coset, in the
form [(f, el) + S0, e2] To, for suitable el, e2 in E0. Then f, el and e. may
be so chosen that e e2 with this choice, the map which carries the cited
coset of a coset to f provides the desired equivalence. The second equivalence
is treated similarly.

In virtue of these equivalences, the maps

F -- E S*(F, Eo), E --> F T*(E, Eo)

provide a one-one correspondence between the equivalence classes of ex-
tensions F and those of extensions E. Since the classes of extensions F
correspond again to the elements H(A, K), by Theorem 3, this result gives
the desired Theorem 7. Note however that the correspondence thus ex-
hibited is not "natural", since it depends on the choice of a particular ex-
tension E0. In other words, just as in the case of extensions of groups, the
manifold of all extensions of A by A realizing 0 does not have the natural
structure of a group H2(h, K.4), but has the natural structure of a "coset"
to this group. This phenomenon has recently been investigated thoroughly,
for the case of group extensions, by Cobbe and Taylor [4].

These constructions also contain a "Baer product" of extensions in the
special case of extensions of a zero ring (A KA). The extensions of the
type denoted above by E are then identical with the extensions of the type
denoted by F. In this case the obstruction of 0 is always zero, and in fact
there is a canonical choice of an extension E0 namely, we may choose E0
as the semidirect product of K and A, defined as that extension Eg constructed
as in 6 from the cocycle g 0. The set of equivalence classes of extensions
of A by A realizing is then a group under the binary operations S*(EI, E)
indeed, this operation corresponds to the addition of cohomology classes in
the isomorphism (Theorem 3) of equivalence classes to H. The identity
element of this group is the class of the semidirect product E0. The inverse

of an extension A E A is the ring E whose elements are in one-one
correspondence e - e with those of E, with the two operations
(e + e2) (e + e), (ee) -e e. Note thatE is in fact still a
ring, and that the correspondences/ - (a/c) and e - fie make E an
extension of the zero ring A by A.
The operation S* thus provides the "Baer product" of ring extensions;

on the additive group of the ring it reduces exactly to the Baer product of
group extensions (cf. [1]).
The simple case where the bicenter K is zero also deserves special state-

ment, as follows.
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COnOLLAY. Let A and A be rings, where A has the property that ax 0 xa
for all x in A implies a O. Then there is one-one correspondence between
the equivalence classes of extensions 0 -- A -- E A -- 0 and the homomorphisms
0 o] A into the ring of outer bimultiplications of A. Given E, the corresponding 0
is the homomorphism induced by the map which carries each e e E into the cor-
responding bimultiplication of A. Given O, the corresponding E is the graph
of O.

9. An auxiliary ring
The next constructions to be made will apply to the ring Q(h) and equally

well to many other rings U(A); the essential feature is the observation that
in low dimensions Q(A) is a free resolution of the additive group of A. First
recall that Q0(A) is the free abelian group generated by all the symbols (x)
for x 0 in A, that one sets (0) 0, and that Q0 becomes a ring under the
product defined by (x)(y) (xy) for x, y e h. Furthermore (x) x defines
a ring homomorphism :Q0(A) -- A which in the 1-case is a 1-homomorphism.
We next state the requirements to be placed on the rings U(A) which may

be used to replace Q(A):

(i) U(A) is a graded differential ring.

(ii) U0 Q0(A), as a ring.

(iii) In each dimension n, U, is a free abelian group.

(iv) The sequence U 0_ U1 0_ U0 A -- 0 is exact.

Note in particular that (ii) means that n, defined originally in Q0 U0,
also gives a homomorphism n: U(A) -- A of graded differential rings which is
zero on U for n > 0. These conditions (i)-(iv) are all satisfied in the case
U Q; for example the exactness in (iv) results from the statements of
Theorem 1 about the homology of Q(A) in dimensions 0 and 1.
From Q0(A) U0 alone we now construct a certain auxiliary ring L L(A)

as the tensor ring over Q0 ;that is, we set

L Qo -t- Qo (R) Qo -t- + Qo (R) (R) Qo -k "",

where all the tensor products are taken over the ring of integers. Then
L is a ring under the product denoted by (R). Since this product is not the
originally given product in Q0, we write q -- (q} for the embedding of Q0 in
L. Then q -- (q} is an additive but not a multiplicative homomorphism, and
we can write the product in L as an ordinary multiplication (q}(r) (q) (R) (r}.

This ring L is a universal ring to the additive group of Q0 in the sense that
whenever an (additive) group homomorphism f:Qo --* A into the additive
group of a ring A is given, there exists a unique ring homomorphism ft’L ---. A
with f’(q} fq. In particular, a ring homomorphism S:L(A) -- Q0(A) is de-
fined by setting S(q} q. The composite nS is then also a ring homomorph-
ism S’L(A)-- A.
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In the 1-cse, the ring L defined bove must be tken modulo the ideal
spanned by ll the elements (q}(1} (q} nd (q} (1}(q} for 1 the identity
of A. Then (1 becomes the identity of L, and S and S re 1-homomorph-

In either cse we wish to determine the kernels

C ker [nS’L A], D ker [S’L Q0].

Both C nd D re ideals in L, with L C D D. Furthermore, since
U Q0 A is exact, C/D OU. Clearly D contains the ele-
ments P(q q) defined s follows"

P(q, r) (qr) (q)(r), q, r Qo,

P(q q) P(q q) P(q_ q), m 1, 2,...,

P(q, q:+) P(q, q) (q+), m 1, 2,...,

for all q in Q0. The larger ideal C contains in addition for each u U the
element (u) which we denote as

These elements satisfy the relations S(Ow) 0 for each element w e U.
LEMMA l. A8 an additive group, D is generated by the elements P(q, q)

for q e Qo and n 2, 3, while C is generated by these elements and the ele-
ments S(u) for u U. The only relations between these generators P and S are
the relation S(Ow) O, the linearity of S(u) in u, and the multilinearity of P.
In the 1-case there are additional relations

(9.1a) P(q ..., q_ 1, q+ ..., q:) O, 1 i 2m,

(9.1b) P(q q_ 1, q+ ..., q+) O, 1 i 2m,

(9.1c) P(q ,... q 1) P(q q).

In the proof, it is convenient to use the natural grading of the ring L, ob-
tained by assigning to ech generator (q) of L the degree 1 (exception" in the
1-case, (1) has the degree 0). Then L is a graded ring, and P(q, q,)

(q) (q) + terms of lower degree. Thus P(q, q) has degree n if
no q is zero (or, in the 1-case, if in addition no q 1).
Suppose now that c e C is a sum of homogeneous terms of degrees at most

n in L; we will show by induction on n that c is a linear combination of the ele-
ments stated. If n 1, c has the form (q) for q e Q0 and vSc vq 0; hence
by the exactness condition (iv), q Ou for some u e U and c (Ou) S(u).
If n > 1, c is a linear combination of terms (q) (q) plus terms of lower
degree. By subtracting the corresponding combination of P(q, ...,
we then reduce c to terms of degree less than n and hence complete the in-
duction. These arguments apply equally well to the generators of D and to
the 1-case.
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Suppose now that R denotes some linear relation between the generators
S(u) and P(ql, q,). By assigning to each letter S(u) the degree 1 and
to each letter P(ql,..., q,,), whatever the arguments q, the degree n, we
obtain some (maximum) degree n for the whole relation R. We now can
show by induction on the degree n that this relation R is a consequence of the
stated relations. If n 1,R hastheform ,i eiS(u) for e +/-1 andui U1.
Since R is a valid relation in C, we have

o 52, <ou ) <o
Hence e u is a 1-cycle, and thus by exactness a 1-boundary, so there is
some element v e U with Ov _, e u. Thus R is a consequence of the
linearity of S and the relation S(Ov) O.
Now consider a relation R of maximum degree n with n > 1; it has the form

0 , P(q,..., q,) + terms of lower degree. Replace each P by its
definition; we get 0 (q) (R) (R) (qi) + terms of lower degree.
The highest degree term lies in the tensor product Q0 (R) (R) Q0 with n
factors, which can be zero only by virtue of the multilinearity which also
applies to the P. Hence the given relation is a consequence of multilinearity.

In the 1-case, the additive group Q0 has the form of a direct sum Z(1) + Q’0,
where Q’0 is the free abelian group generated by all (x) for x 0, 1. Thus in
the relation each argument q can be written as a sum, ml + q for
m Z, q’ e Q’0 by multilinearity and the relations (9.1) all the terms ml can
be removed; the rest of the argument, on the q’, proceeds as before since in
this case L Q’o + Q’o (R) Q’o + ....

This completes the proof of the lemma.
We now describe the multiplicative structure of the rings C and D, starting

with the inner bimultiplications by (q) in L. Since C and D are ideals in L,
this yields a bimultiplication pq which is given on the generators of C and D
by the following explicit formulas

(9.2)
Pqo P(ql "", q,)

(--1)P(q0,
i=0

"., q,q,+x, ".., qn) -t- (-1)P(qo, "’, qn),

(9.3a) P(q q2,)pr P(ql q2, r),

P(q qe,+l)Pr
(9.3b)

--P(q q,+ r) -{- P(qx q, q,+ r),

pq S(u) -P(q, Ou) -t- S(qu),

(9.5) S(u)pq -P(Ou, q) + S(uq).

Furthermore one shows easily that, for q, r e Q0,

(9.6) Pq+r Pq Pr, Pqr Pq Pr #t’(q,r)

and in the 1-case one has p I.
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The products of any two generators of C are given explicitly by the formulas

(9.7b)

P(ql q.m)P(rl r,) P(ql q2m rl r,O,

P(q, ..., q2,, ro)P(rl, ..., r,)
n--I

(--1)iP(q, "", q,, ro, ..., riri+l, ..., r)
i=O - (--1)’P(ql, -", q2m, ro, ..., r,),

(9.8) S(u)S(u’) pouS(U’), u, u’ e U1,

(9.9) S(u)P(ql q,O poP(ql

(9.10) P(q q,)S(u) P(ql

10. The main existence theorem
THEOREM 8. Let K be a bimodule over the ring A and f a three-dimensional

cocycle of R(A) with coecients in K. Then there exists a ring A with bicenter
K together with a homomorphism O: A --> Pa whose image consists of mutually
permutable outer bimultiplications and which induces on the bicenter K the given
bimodule structure, all such that f is an obstruction of O, if and only if, for all
xeA

This condition is manifestly necessary, for by the definition (7.4) of the
obstruction one has f(v) 0 on every 2-cycle v of 0, in particular on the basic
2-cycle y(x) (see (3.1)) of Q(A). In fact, the assignment f -+ f(’l(x)) yields
a homomorphism

:Ha(A, K) -+ Hom (h/2h, K);

hence we may state the necessary condition in the more invariant form that
of the cohomology class of f is zero.
Conversely, to define a ring A which will realize a given f we simply "invert"

the equations (7.1)-(7.7) which defined the obstruction f and use these equa-
tions instead to define a ring A generated by the bimodule K and by symbols
h(x, y) and h(x y) which satisfy the conditions (7.1)-(7.7) relative to suitable
bimultiplications ax Compare these conditions with the relations of 9 on the
generators S and P, writing now S(x, y) instead of S(u) for u (x, y) Q
Specifically, replace h(x, y) by S(x, y), h(x[y) by P(x, y) and p by a. Now
if f were zero, the condition (7.5) on h is exactly the definition (9.5) of p on
the right, while (7.6) is similarly (9.4), and (7.7) combines (9.2) for n 2
and (9.3a) for m 1. We will therefore define the ring A by modifying the
defining equations found in 9 for the ring C by adjoining suitable terms in
the given cocycle f. The eight conditions stating that f is a cocycle will then
all enter in the demonstration that what we get is indeed a ring.

It will simplify the formulas if we replace the cubical construction Q(A) by
any U as in 9, so that the construction is applied to a cocycle f of B(U, )
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and not to one of the more special complex R(A) B(Q(A), 7). We assume
that U satisfies the conditions (i) (iv) of 9, together with

(iv’) The sequence U3 _0 U. -- U1 is exact.

To be sure, this last condition doesn’t hold for Q, but it would hold if Qa were
enlarged by new generators with boundary ,(x). We don’t care at all how
or whether products are defined for these new generators, for these products
don’t enter--the three-dimensional cohomology of B(U, 7) involves the mul-
tiplication in U only up through products which lie in U.. The merit of
adding condition (iv’) is that the necessary condition f(’y(x)) 0 of our
theorem now becomes part of the statement that f is a cocycle of B(U, 7).

Explicitly, let now A, K, and f be given, and take U to satisfy (i), (ii),
(iii), (iv), and (iv’). Introduce the abelian group

A (K+ UI+D)/M,

for D as in 9 and M the subgroup consisting of all f(v) Or, for v e U2.
Define a homomorphism :A -- C, where C is the additive group of the ideal
described in 9, by setting

b(] - u + d) S(u) + d, l e K, u e U1, d e D.

LnMMA 2. The map yields an exact sequence of abelian groups

O-- K-- A C-- O.

Proof. That h as defined annihilates the subgroup S follows from the rela-
tion S(Ow) known to hold in C. To show that the natural map k -- lc + M
of K into A has kernel zero, we observe that an element f(v) - v of M can
lie in K only if 0v 0, hence by (iv) only if v 0w for some w e Ua, hence
f(v) + Ov f(Ow) + OOw g(w) O. That annihilatesKis clear.
Conversely, suppose that lc + u -+- d is in the kernel of . Then S(u) + d 0
in C. But Lemma 1 of 9 determines the additive structure of C, and im-
plies here that d 0 and that S(u) (Ou} O, hence Ou 0 and u Ov
for someveU2. Thuslc- u - d ] + Ov =-- ] + f(-v) (modM) isan
element in the image of K. This proves the lemma.

LEMMA 3. For each q e Uo Qo an endomorphism a -- rq a of the abelian
group A is defined by

rq (vq)k, K,

-qU f(q u) P(q, Ou) + qu, u U
rqP(r, s) f(q r s) + pqP(r, s), r, s Q

rq P(r, s, t) f(q r s),t + pq P(r, s, t), Qo

’q P(rl r) p P(r r), n > 3.
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These endomorphisms also satisfy

(10.1) rql+q rql + vq, (rqa) pqCa.

In the 1-case we also have ’1 I, the identity endomorphism.

Proof. Since all the expressions involved are multilinear in their arguments,
it will follow that vq is an endomorphism if rq M c M. Take then v in U..
Then

-q(f(v) + v) (vq)f(v) - f(q Ov) P(q OOv) + qOv

(,q)f(v) - f(q Ov) f(qv) (rood M)

fO[q v] =- O,

The remaining assertions of the lemma follow readily; in par-

:LEMMA 4.
is defined by

dTq dpq

These endomorphisms also satisfy

(0.2) + + , (a) (a),

and in the 1-case one has - I.

The proof is similar, and uses the identity fO[wlq] O.

LEMMA 5. For all q, r in Qo and a in A,

(10.3) (rq a)rr rq(avr).

Proof. For a e K, this follows because (ha) (a) in the bimodule K.
For a u e U, it reduces by the above definition to the identity fO[q u r]
0. For a d it reduces by the definitions of r to zero.

:LEMMA 6. A homomorphism A (R) A -- A, that is, a product in A, is de.fined
by

u d(10.4) (]c + u + d)(/d - u’ + d’) rou + rou + dro,- dd’

for k, k’ e K; u, u’ e U1 d, d’ e D; and dd’ the known product in the ring D.
For this product b :A -- C is a homomorphism.

Proof. Since the formula (10.4) is bilinear, it will yield a homomorphism
as desired if each product with one factor in M lies in M. This is readily

7(,q),

U-q -f(u q) P(ou, q) + uq,

For each q Uo an endomorphism a -- avq of the additive group A

leeK,

deD.

as desired.
ticular h(rq a) has the indicated form because of the parallel between the
definitions above and those found for pq in 9.
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verified"
d(r(v) + Ov) d(Ov) droo, O,

if(v) + ov)(u + d) (Ov)u + (Ov)d oou + ood O.

Finally, is a homomorphism as claimed because

(du’) (do,) do, dZ(u)

by (9.5) and (10.1), with a similar calculation for the other products.

LEMMA 7. For u e U1 and a e A, ua ro a and au aro.

In terms of the inner multiplication of A, the result can be written more
briefly as t 70. The first assertion about ua is simply a part of the defi-
nition (10.4) of the product. The second assertion about au may be treated
in three cases, according as a is in K, U1, or D. The third case is part of
the definition (10.4); the first case follows because kvo k(vOu) kO 0
ku. Finally, if a u is in U1,

7.0u TOu,4 TO

--f(Ou’[u) P(Ou’, Ou) -{- (Ou’)u + f(u’l Ou) -{- P(Ou’,

u’

f(Ou’lu) -k f(u’lOu) f(u’u) (mod M)

--: fo[u’ u] o.

LEMMA 8. For q, r e Qo and t the inner bimultiplication in A,

Tqr TqTr +
Proof. We first compute the expression E rqr a rq’r a P(q, r)a for

anyainA. Ifa eK, E is zero by definition. Ifa e U1, E turns out to be
zero by the identity fO[qlrla] O. Finally, if a e D, we consider several
cases corresponding to different generators of D. If a P(s, t) for elements
s,t e U0,thenE 0bytheidentityf0[qlrls[t] 0. Ifa P(s,t,p),
we may write a P(s, t)r, the expression E then reduces to that of the
previous case, if we use Lemma 4 and the readily established result that
P(q, r)[P(s, t)r,] [P(q, r)P(s, t)]r. Finally, if a P(s,..., s,) with
s e Q0 and n > 3, the bimultiplications are identical with the o, and the
expression is zero in virtue of (9.6).

It remains only to show that E’ arqr a-qr,. aP(q, r) is zero. For
a e U this follows by the identity fO[a q[ r] 0; in the other cases it is ira-
mediate.

LEMMA 9. For q Qo and a, b A we have

rq(ab) ( a)b, (arq)b a(-q b), (ab)-q-- a(br).
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Proof. After setting for a and b the various types of elements of Amfrom
K, U1 or Dhthese expressions may be expanded by the definitions; by suitable
use of the previous lemmas they all turn out to be identities, and this without
further use of identities valid on the cocycle f.
IEMMA 10. Multiplication in A is associative.

Proof. We must prove (ab)c a(bc) for all a, b, c in A. If all three argu-
ments lie in the ring D, this is known. If any one argument lies in K, both
sides are zero. We are then left with the cases in which at least one argument
is an element u e U1. In this case we have respectively

u(bc) ’o(bc)= (’o b)c (ub)c

by Lemma 7, Lemma 9, and Lemma 7 again,

a(uc) a(o, c)= (aro,)c (au)c,

a(bu) a(bro)= (ab)ro (ab)u,
as sserted.
We pause to observe that this sequence of Lemms 2-10 has fully used the

fact that f is a cocycle; i.e., that f wnishes on the boundary of each of the
8 types of 4-cells from R. Indeed, these 8 types ppered as follows, with
the nottionq, r, s, U0 Q0, u U1, v e U2, w U3:

[w], Lemma 2; [q Iv], Lemm 3; [v lq], Lemma 4;

[q u r], Lemma 5; [u’ u], Lemma 7; [q r u] Lemma S;

[u q r], Lemm 8; [q r Is It], Lemma 9.

LEMMA 11. A is a ring, b is a homomorphism of rings, and

O-- K-- A

_
C-- O

is an exact sequence of ring homomorphisms in which K is mapped isomorphically
onto the bicenter of A.

Proof. Lemma 10 shows A ring, Lemma 6 shows a ring homomorphism,
and Lemma 3 gives the exactness. By the definition of the product, the
image of K clearly lies in the bicenter of A. On the other hand, A C is
a subring of L, and L has no divisors of zero;hence K is exactly the bicenter
of A.

LEMM 12. For x A the correspondence Ox v() induces a homomorphism
O’A -- P. The image of 0 consists of mutually permutable outer bimultipli-
cations, and in the 1-case is a 1-homomorphism.

Proof. Set (x) q. That rq is a bimultiplication of A is asserted by
Lemmas 3, 4, and 9. That any two Vq permute is the content of Lemma 5.
That is a homomorphism for addition is stated in (10.1) and (10.2), while
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the fact that 0 is a multiplicative homomorphism, modulo inner bimultipli-
cations of A, is Lemma 8. In the 1-case rl I, Q.E.D.

LEMMA 13. An obstruction to 0 is the given cocycle f.
In keeping with our definition of the obstruction, this is proved only in the

explicit case when U is Q. To apply the definition of the obstruction, choose
for each x in A the bimultiplication a r() in the class Ox. Then since
(x 3- y) q- O(x, y) (x) q- (y) by the boundary formula for Q1, and since
g ro by Lemma 7, we have

( -- #(,) -- +.Therefore we may choose h(x, y) (x, y) as in (7.1). Also, by Lemma 8

hence we may choose h(x[y) P(x, y) e D A, as in (7.2). From the
functions h thus chosen we now calculate the obstruction according to the
definitions (7.4)-(7.7). We obtain exactly the original cocycle f; indeed (7.4)
comes from the choice of M, (7.5) and (7.6) from the definitions of ur and
rq u, and (7.7) is a combination of the definitions of r P and Pr.
With this lemma the main existence theorem is established.

l l. Alternative forms for the cohomoloy of rins
We may now illustrate the general conditions considered in 9 and 10 on

the ring U by constructing a particular ring V V(A) which satisfies these
conditions. Set V0 Q0 (A). Since Q0 as an additive group is free, the
kernel V1 of :V0 A is also a free abelian group. Let the injection of this
kernel in V0 be written O:Vx V0 then

0 Vl v0 q0 0

is an exact sequence of abelian groups. Since the kernel of is also an ideal
in V0, we can define the product of v e Vx and q e V0 by

vq O-[(Ov)q], qv O-[q(Ov)], vv’ O.

With these products (together with those given in Q0), V V0 + V is a
graded differential ring which satisfies the conditions (i)-(iv) and (iv’) placed
on U in 9 and 10. Like Q(A), V(A) is a functor of A.

THEOREM 9. There is a homomorphism x :Q(A) V(A) of graded differential
rings which induces isomorphisms

(11.2) H((V(A), ); K) H((Q(A), y); K), n 0, 1, 2,

(11.3) Ha(B(V(A), ); K) ker {Ha(B(Q(A, ); K) Hom (A/2A, K)}.

Proof. To define x, take x 1 in dimension zero, xu O(Ou) for u e Q,
and x 0 in higher dimensions. Then x is a homomorphism of graded dif-
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ferential rings. By the exactness of (11.1), x induces also a homology iso-
morphism of Q to V in dimensions 0 and 1. If one adjoins to Q elements of
dimension 3 to kill the cycles ,(x) (i.e., elements with boundary /(x)), then
x induces a homology isomorphism in dimensions 0, 1, and 2. Now in
[7, Theorem 13.1] it was proved that a homology isomorphism x’G -- G’
between graded differential rings G and G’ which are free as additive groups
induces a homology isomorphism B(x)’B(G) -- B(G’). This theorem, in
which the proof depended essentially upon a filtration of B, applies mutandis
mutatis to the present slight generalization of the bar construction. Since the
application of the bar construction raises the dimensions of G by 1, we get a
homology involving isomorphism (Q(A)) --/(V(A)) valid in dimensions 0,
1, 2, 3 (the latter provided the extra elements are adjoined to Q(A)). The
asserted cohomology isomorphisms then follow. No trouble is caused by the
products of the new elements adjoined to Q(A), since in these dimensions only
products lying in Q2 and below matter.
We have used the cohomology theory for rings defined by the complex

B(Q(A), ), and indeed this appears to be the proper complex for the relative
homology for modules which was considered in [15]. The present theorem
suggests that for the purposes of obstruction theory one might operate more
generally, with the complex/(U(A), 7) where U(A) is any graded differential
ring satisfying the conditions (i)-(iv) of 9 and (iv’) of 10. It is in fact the
case that the whole theory of extensions and obstructions as presented in
6-8 can be carried out directly with U replacing Q, though some little clarity
is lost in this generalization. In particular, Lemma 13 as to the identification
of this obstruction does hold in this generality.
The exactness conditions (iv) and (ivr) on U might more naturally be re-

placed by the stronger requirement that the whole sequence

be exact. Each such U may be described briefly as a free resolution of the
additive group of A which has the structure of a graded differential ring and
for which v is a homomorphism of such rings. In this sense then, the ho-
mology of a ring may be described as that obtained by applying the bar con-
struction (or presumably any equivalent construction in the sense of Caftan
[2]) to a free resolution of the additive group, this resolution being given a
ring structure. However, the condition (ii) of 9 that U0 be the specific ring
Q0, freely generated as an additive group by the elements (x) for x 0, is a
sharp restriction. This restriction appears to be an essential one. On the
one hand, it enters essentially into the comparison made between Q and V
(or some other U) in Theorem 9, since the choice V0 Q0 was the starting
point for the construction of a ring homomorphism x. On the other hand,
if the obstruction theory is carried out for a general U, as mentioned
above, the assumption U0 Q0 appears to be essential to the proof of
the theorem that an extension realizing 0 exists provided only that the
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obstruction of 0 vanishes. Hence of all the resolutions which might be pos-
sible for U, only Q and the specific V exhibited in (11.1) above appear to be
clearly of interest. Neither provides an easy means for the calculation of the
cohomology groups of specific rings.
We mention in passing that still another ring U, satisfying (i)-(iv) but not

(iv’), can be obtained by replacing the cubical complex Q(A) by the complex
A(A) which is described in detail in [15] and which, like Q, is a complex for
the homology of the abelian group A. Briefly, A is obtained by applying the
iterated bar construction to the integral group ring Z(A) of A. If :Z(A) -- Ais the canonical augmentation of this group ring, then the exact definition is
A(A) /(Z(A, n)--with suitable adjustment of the dimensions so that
/ -/(/) --, preserves dimensions. The cohomology of A in dimensions
0, 1, 2, and 3 can then be obtained as that of the complex/(A(A), 7) when
in the bar construction one uses a product in A (A) defined in low dimensions
(up to products in A2) by the formulas

(x)(y)-- (xy), (x)(y, z) (xy, xz), (x, y)(z) (xz, yz),

(t)(x, y, z) (tx, ty, tz), (x, y, z)(t) (xt, yt, zt),

(t)[x y] Ix y](t) [xt]yt],

(x, y)(s, t) (xs, ys, xt -at- yt) (xs, yt, ys + yt)

+ (xt, ys, yt) (ys, xt, yt) [yslxt].

Here x, y, z, s, are any elements of the ring A. I have not found any natural
extension of this product to higher dimensions in A(A).
The aeyclie bar construction B(Q(A), ), described as in [15], may informally

be regarded as a sort of resolution of the graded differential ring Q(A). Now
B is a Q(A)-A-bimodule, and observe that n may be used to turn every
A-bimodule K into a Q(A)-A-bimodule. The construction of / from B is
then such that HomA (/; K) HomQ,A (B; K) it follows that the cohomology
groups H’(A, K) defined in (5.3) may be written as

H’(A, K) H(HomQ,A (B(Q(A), v), K))

with B replacing/. In other words, the eohomology theory of a ring arises
by putting a "multiplicative" resolution B on top of an additive resolution Q
of the ring A.

12. Two examples
To show that the obstruction to a ring extension problem is not always

trivially zero, we construct two examples.
First, take A to be the ring generated by 1 and t, with 0; thus the

elements of A are all a bt for a, b e Z (the ring of integers). Take K to
be the additive group Z of integers with the A-bimodule structure given by

(a + bt)lc ak, k(a -t- bt) ka.
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Define a three-dimensional cochain of/(Q(A), 7) by setting

f[a + b a_ -- b a -t- b t] b b b

f(ny other type of generator) 0.

This f is clearly multiliner in its rgument. One proves that f is cocycle
by showing that fO 0 for ech of the eight types of four-dimensional
generators of/. For four of these types fO is identically zero, for three
types fO 0 by virtue of the multilinerity of f, nd finally we compute

fO(a .-- b a -- b a -- bt a4 + b4t)

a b b 54 a b b b a b b b -- b a b b4 -- b b a b

bbab- bbba-- bbba- O.

If f were the coboundry of some 2-cochin g, we would hve in prticulr

f[t t] gO[tit t] tg(t t) g(t t) -- g(t ) g(t t)t O,
since 0. This contradiction shows that f gives nontrivil cohomology
class, nd clearly one in the kernel of the homomorphism . By the min
existence theorem there therefore is ring extension problem with obstruction
f0.

The second example will construct explicitly a sample ring of outer bimulti-
plications. Tke Z to be the ring of integers, p a prime, and set A pZ/p3Z.
The bicenter of A is then K p2Z/p3Z, and as an additive group A is a cyclic
group of order p2 with a generat)r which we write as p pZ. For
each pair a (a, c) with a Z/p2Z, c Z/pZ, we define left and right endo-
morphisms "A -- A by setting

z(i) ai, (ip)z (a cp)i, i Z.

We verify easily that each such is a bimultiplication of A. They are in
fact all the bimultiplications of A. For if r is any bimultiplication, ri5 ai5
for some a Z/pZ, so r (a, 0) p is a bimultipliction with p’i5 0.
If then iSp bfi for some integer b, we have 0 i5(pi5) (p) b52 bp,
and hence b --- 0 (mod p). Setting b cp we have p (0, c), as asserted.
Upon calculating sums and composites of these bimultiplications we con-

clude that the bimultiplication ring MA consists of all pairs (a, c) and
r (a’, c’) for a Z/pZ and c e Z//pZ with

o- + r (a + a’, c + c’), rr (aa’, ac’ + a’c).
In particular (1, 0) is the identity bimultiplication. Now the inner bimulti-
plication by i5 e A is (p, 0). Hence the ring PA of outer bimultiplications
may be represented as the ring of all pairs (a, c) of integers a and c each taken
modulo p, with sum and product

(a, c) -- (a’, c’) (a -- a’, c -- c’)

(a, c)(a’, c’) (aa’, ac’ + a’c).



344 SAUNDERS MAc LANE

Equivalently, P is a ring generated by I (1, 0) and , (0, 1); each
generator has additive order p, I is the identity, and 0.
We now take A P and assert that the identity homomorphism

0 I:A P -- P cannot be realized by an extension. It will then follow
that the obstruction cohomology class for t in H3(A, K) is nonzero. For
suppose that there did exist an extension

O--- A - E -- P--) O

with A and P as above. Since fl induces 0 I which is a 1-homomorphism,
it follows by Theorem 3a that E has an identity 1E and is a 1-homomorphism.
Since fl induces 0, we can choose in E an element r such that fir /and
such that the bimultiplication induced on A by r is the bimultiplication de-
noted by (0, 1). This statement means that

(12.1) rn O, nr -(n - n) -pn (p terms)
f or all elements n of A. Since pl 0 in P, there is a constant h in A such
that plE h in E. Since 1 is the identity, rh hr; on the other hand
rh O. However,

hr -ph

-ph

-p(pl),

(pp)l,

But -pi5 0 in A pZ/p3Z.
as asserted.

(by (12.1))

by the definition of product in A,
by definition of h

by distributive lw

as 1 is identity.

Thus 0 rh hr O, contradiction,
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