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1. Introduction

It has been shown by Eilenberg-Zilber [3] that the total singular complex
of a topological space contains a minimal subcomplex (i.e., roughly speaking,
a smallest subcomplex of the same homotopy type). By the same method
it can be shown [8] that every c.s.s, complex which satisfies the extension con-
dition has a minimal subcomplex (which also satisfies the extension condi-
tion). The importance of the notion of minimal subcomplex lies in the fact
that two c.s.s, complexes which satisfy the extension condition have the same
homotopy type if and only if they have isomorphic minimal subcomplexes.

It was shown in [4] that among c.s.s, groups the free c.s.s, groups play a
role similar to that of the c.s.s, complexes which satisfy the extension condi-
tion among c.s.s, complexes. This suggests the problem of finding a notion
of minimal free c.s.s, group such that two free c.s.s, groups have the same
loop homotopy type (in the sense of [4]) if and only if they have isomorphic
minimal subgroups. The present paper contains a solution of this problem
for those free c.s.s, groups which have finitely generated homotopy groups
and are trivial in dimension 0. In fact.it will be shown that every such free
c.s.s, group is the free product of a contractible free c.s.s, group and a
minimal one.

Free use will be made of the definitions and notation of [4], with one ex-
ception" Because the loop homotopy relation is the natural homotopy relation
for c.s.s, groups (see [5]), the word homotopy will be used throughout instead
of loop homotopy.

All groups will be written multiplicatively.

2. Statement of results

DEFINITION (2.1). Let F be a free c.s.s, group ([4], Definition (5.1)). A
subset c F will be called a basis of F if

(a) n n Fn freely generates F for all n >- 0,
(b) is stable under degeneracies, i.e., :n implies en+l for

0<i<n.

DEFINITION (2.2). Let F be a free c.s.s, group, and let G, H c F be sub-
groups. Then F is called the free product of G and H if there exists a basis
T of F such that ( n G) u ( n H) , ( n G) n ( n H) , nd n G nd
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n H are bases of G and H. The subgroups G and H then are called free
factors of F (Notation" F G, H).

DEFINITION (2.3). A free e.s.s, group F is called of finite type if
(a) F0 is trivial,
(b) rn(F) is finitely generated for all n > 0.

DEFINITION (2.4.) A free c.s.s, group of finite type is called minimal if it
has no contractible free factors (except the trivial one).

Several equivalent definitions of minimality will be given in an appendix.
We now state the main result.

THEOREM (2.5). Let F be a free c.s.s, group of finite type. Then F has a

free factorization F C, M such that C is contractible and M is minimal.
Let j :M-- F be the inclusion map and p :F-- M the projection. Then
jM and p are homotopy equivalences.

THEOREM (2.6). Let F and F’ be free c.s.s, groups of finite type, and let
f:F---, F’ be a homotopy equivalence. Let F C. M and F’ C’,M’
where C and C’ are contractible and M and M’ are minimal. Then there exists
an isomorphism m:M M’ such that m p, f j

COROLLARY (2.7). Let F be a free c.s.s, group offinite type. Let F C M
and F C’ M’ where C and C’ are contractible and M and M’ are minimal.
Then there exists an isomorphism m:M M’ such that m pM, j.

It follows from the construction of a minimal free c.s.s, group (see 6)
that the rank of Mn (which is finite) is a homotopy invariant of F. Hence
Theorem (2.6) is an immediate consequence of

THEOREM (2.8). Let F and G be free c.s.s, groups of finite type. Let rank
F, rank Gn < for each n, and let h: F G be a homotopy equivalence.
Then there exists an isomorphism h’:F , G such that h’ h.

Remark (2.9). Let F be a free c.s.s, group of finite type the basis of which
contains only a finite number of nondegenerate elements. Then it follows
from the proof of Theorem (2.5) that a free factorization F C. M such
that C is contractible and M is minimal may be constructed in a finite number
of steps.

Remark (2.10). The following example shows that Theorem (2.8) does
not hold if the ranks of Fn and Gn are allowed to be infinite. Let F and G
be such that a basis is formed by elements i," and xi," (1 -< i-< 4,
j 1, 2, ...) and their degeneracies, where ,. F and x," G, and let the
face homomorphisms be defined by

2," e 1,’, x2,. e xl,", j 1, 2,

3,i e2, X3,2" e X2,23"-1 j 1, 2,, 3,’, x," 4 x3,2-1, j 1, 2,

dpi, ei_ Xi,i ei-1 otherwise.
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Clearly F and G are contractible, and hence there exists a homotopy equiv-
alence h’F-- G. However it is obvious that F and G are not isomorphic.

3. Organization of the proofs of Theorems (2.5) and (2.8)
I. With a free c.s.s, group F one may associate a free c.s.s, abelian group A

and an epimorphism p:F --. A, where A F/IF, F], i.e., "F made abelian,"
and p:F -- A is the projection. The proofs of Theorems (2.5) and (2.8) then
may be divided in the following two steps:

(a) Obtaining results for free c.s.s, abelian groups analogous to Theorems
(2.5) and (2.8). This will be done in 4.

(b) Lifting the results obtained for free c.s.s, abelian groups into free
c.s.s, groups. For Theorem (2.5) this will be done in 6, and for Theorem
(2.8) in 7.

II. In lifting the results for free c.s.s, abelian groups into free c.s.s, groups
an important role will be played by Lemmas (3.1), (3.3), and (3.5) below.

In the proofs of Theorems (2.5) and (2.8), use will be made of the following
c.s.s, group version of a theorem of J. H. C. Whitehead ([10], Theorem 3). A
proof may be found in [5].

LEMMA (3.1). Let F and G be connected free c.s.s, groups, and let h: F --. G
be a c.s.s, homomorphism. Let A F/[F, F] and B G/[G, G], and let
c: A -- B be the map induced by h. Then h is a homotopy equivalence if and
only if c is so.

DEFINITION (3.2). Let F be a free c.s.s, group. A subgroup G c F
will be called proper if there exists a basis ff of F such that ff n G is a basis of G.

In the proof of Theorem (2.8) the following homotopy extension covering
lemma will be needed, which is a special case of [6], Corollary (6.2).
LEMMA (3.3). Let F be a free c.s.s, group, and let G c F be a proper sub-

group. Let K and L be c.s.s, groups, and let p:K-- L be an epimorphism.
Let f0:F --> K be a c.s.s, homomorphism, let gi:go - gl where go fol G (the
restriction of fo to G), and let hl p fo hl be such that p g h (I (R) G).
Then there exists a homotopy f+/- :f0 f such that fl (I (R) G) g and
pof= h.
DEFINITION (3.4). For a c.s.s, group F let F denote the n-skeleton, i.e.,

the subgroup generated by Fn. Clearly, if F is free, then F" is a proper
subgroup of F.

The following lemma will be proved in 8.
LEMMA (3.5). Let F be a c.s.s, group such that Fo is trivial, and let

o" e IFn, Fn]n. Then there exist an element p IF, Fn]n+i and an element
[F- .--1e Fn-]n such that p+ and p en for 0 <= i < n 1.

III. A simplification in the proofs may be obtained by using only a spe-
cial kind of bases, namely those for which every nondegenerate element has
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at most one nontrivial face. They will be called CW-bases and are described
in 5.

It is sometimes necessary to go from one basis to another. A method
frequently used is the following:

Let F be a free c.s.s, group, and let be a basis of F. For every e

nd r e F let { + . r} denote the set obtained from by omitting
z nd its degeneracies and adding z. r and its degeneracies. Then it is readily
verified that

LEMMA (3.6). If r is nondegenerate and r is in the subgroup of F, generated
by , r then { - .r} is a basis of F.

4. The abelian case

A c.s.s, abelin group A is called free, if the groups A

DEFINITION (4.2). Let A be a free c.s.s, abelian group. A subset a c A
is called a basis of A if

(a) A is the free abelian group freely generated by ( ( n A,
(b) ( is stable under degeneracies (see Definition (2.1)).

PROPOSITION (4.3). Every free c.s.s, abelian group has a basis.

Proof. This follows easily from the facts that
(i) every subgroup of a free abelian group is free abelin,
(ii) for every pair of integers (i, n) with 0 -< i -< n, the map i:A --, A+I

maps A. isomorphically onto direct summnd of A+I.
DEFINITION (4.4). Let A be free c.s.s, abelian group and let B, C c A

be subgroups. Then A is called the direct sum of B nd C if there exists
basis a of A such that (anB) u(anC) a, (anB) n(anC) ,and
Ct a B and ( n C are bases of B nd C. The subgroups B nd C are then
called direct summands of A (Notation: A B C).

DEFINITION (4.5). A free c.s.s, abelin group is called of finite type if
(A) is finitely generated for ll n.

DEFINITION (4.6). A free c.s.s, abelin group of finite type is called
minimal if it contains no contractible direct summand.

We now my state the belian analogues of Theorems (2.5) and (2.8).

THEOREM (4.7). Let A be a free c.s.s, abelian group of finite type. Then A
has a direct summation A D - N such that D is contractible and N is mini-
mal. Let j "N---. A be the inclusion map and p "A N the projection.
Thenj and p are homotopy equivalences.

THEOREM (4.8). Let A and B be free c.s.s, abelian groups of finite type such
that rantc A rank B < for each n, and let c:A---.B be a homotopy
equivalence. Then there exists an isomorphism c’:A B such that c’-c.

DEFINITION (4.1).
re free for ll n.
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In view of the equivalence of the concepts of c.s.s, abelian group and chain
complex (see [1]), it follows that Theorems (4.7) and (4.8) are equivalent to
certain theorems on chain complexes, which may be readily proved using the
well known properties of finitely generated abelian groups (see for instance
[2]). To Theorem (4.7), for instance, corresponds the theorem that every
free abelian chain complex which has finitely generated homology and is
trivial in dimension < 0 is the direct sum of an acyclic chain complex and a
chain complex which is minimal in the obvious sense. The details are left
to the reader.

5. CW-bases
DEFINITION (5.1). Let F be a free c.s.s, group. A basis

CW-basis if for every integer n _>- 0 and every nondegenerate element
we have av= en-1 for 0 _-< i < n. The element ae F_I will be called
the attaching element of

PROPOSITION (5.2). Every free c.s.s, group has a CW-basis.

In order to prove Proposition (5.2) we need the following lemma which is
due to J. C. Moore ([7]).

LEMMA (5.3). Let F be any c.s.s, group, and let (to, (,-1 G,_ be such
that ej-1 o’j e for 0 <- i < j < n. Let

7"0

Ti

Then r-i i (ri for 0 <-_ i < n.

Proof of Proposition (5.2). The element r_l of Lemma (3.3) is obtained
from the elements a0, a_l by application of the following operations
only" 7, multiplication, and taking inverses. Denote the element so
obtained by m(a0, a-l).
Let F be a free c.s.s, group, and let ff be a basis of F. Let ff F denote

the subset consisting of all elements
nondegenerate element of if, together with all their degeneracies. Then
iterated application of Lemma (3.6) yields that ff is a basis of F.
An immediate consequence of Lemma (3.6) is

LEMMA (5.4). Let F be a free c.s.s, group, and let ff be a CW-basis of F.
If z e

and r en-i for 0 <- i < n, then ff a - a. T} is a CW-basis of F.

COROLLARY (5.5). If z e ff is nondegenerate and v e [F-, F-], is such
that re e_l for 0 <-_ i < n, then {ff a - a.r} is a CW-basis of F.

Remark (5.6). Free c.s.s, groups with a CW-basis may be considered as a
kind of algebraization of the CW-complexes of J. H. C. Whitehead (see [10]).
In fact it may be shown using the properties of the constructions G and
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(see [4]) that for every connected CW-complex K one may construct a free
c.s.s, group F with a CW-basis ff (or that for every free c.s.s, group F with a
CW-basis ff one may construct a CW-complex K) which are related as follows:

(i) Fn-lhasthehomotopy type of the loops onKnfor 1 -< n-< ;in
particular, 0, :r(Kn) i_(Fn-) for all i and n.

(ii) The nondegenerate elements of fin are in one-to-one correspondence
with the (n + 1)-cells of K in such a manner that the element a e n(Kn)
containing the attaching map of an (n- 1)-cell of K is such that
O$a e n_i(Fn-l) contains the attaching element of the corresponding non-
degenerate element of fin.

6. Proof of Theorem (2.5)
Let A F/[F, F], and let p’F--,A be the projection. As

n(F) ’,+(WF) and (A) Hn+(WF) ([5], 6), it follows from [9]
that A is also of finite type. By Theorem (4.7), A D - N where D is
contractible and N is minimal, and hence there exists a basis ( of A such
that aaD and9 aaNarebasesofDandN. Clearly (compare
the proof of Proposition (5.2)) ( may be chosen such that for every nonde-
generate element a e an we have ae en-1 for 0 -<_ i n. It also follows
readily from the contractibility of D that in addition a may be chosen such
that the nondegenerate elements of may be divided into two types, having
the following properties"

(i) Let a e n be of type I. Then there is a unique e )+ of type II
such that n-t-1 O/.

(ii) Let e n+l be of type II. Then vn+ e n and is of type I.
Now suppose we have already shown that there exists a CW-basis ff of

F such that

(a) p=a;
(b) if C c F is the subgroup generated by p-l n if, then p-l n 5 is a

basis of C;
(c) if M c F is the subgroup generated by p-19 n if, then p-19 n ff

is a basis of M.
Then clearly F C M.
The contractibility of C is proved as follows. Let P denote a c.s.s, group

which contains exactly one element in every dimension. The contracti-
bility of D then implies that the unique map D -, P is a homotopy equiva-
lence. As D C/[C, C] and P , P/[P, P], it follows from Lemma (3.1)
that the unique map C --, P is also a homotopy equivalence, and hence C
is contractible.
The minimality of M may be shown as follows. Suppose M C’ M’

where C’ is contractible. Then N
_

C’/[C’, C’] + M’/[M’, M’] where (by
an argument similar to the one above) C/[C’, C’] is contractible. This
contradicts the minimality of N, and hence M is minimal.
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That the mapsj and p are homotopy equivalences follows (using Lemma
(3.1)) from the fact that the maps j and p are so.

It thus remains to show that there exists a CW-basis ff of F satisfying con-
ditions (a), (b), and (c).

Condition (a). Let 5 ( contain at least all nondegenerate elements;
suppose that a CW-basis if0 of F has already been defined such that pff.
Let a e {a- }. Then there exist nondegenerate elements a,..., a,,
r, r eff withpa (0 =< i =< s) und pr (0 =< i =< t) and such
that

where q and r are suitable integers. Let S A be generated by the set
$ {pa, pa,}, and let B A be the subgroup generated by . Let

and let Q A be generated by { + a},. Then Q is a direct summand of
S + B, and it is readily seen that there exists a set $’ a ,a, a, S
which also generates S. The basis $’ then may be obtained from $ in a
finite number of steps

where each $ generates S, and 8+ is related to $ by

where e 1 and and are distinct elements of $. Let

$,, {’- , +
Then similarly $" may be obtained from $ in a finite number of steps

where each $+ is related to $ by

$+1= {$_ +
where e 1, a, i- --.-_ and e is nondegenerate. By
Lemma (5.4) we now may form a sequence

of CW-bases of F by defining

+1 { + ’x’},

where p-B n ff and x p- ff. Then it is readily verified that
{ + -} p.
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The existence of a CW-basis of F satisfying (a) now follows by (possibly
transfinite) induction on the elements of {an (} and by induction on n.

Condition (b). Suppose there has already been constructed a CW-basis

’ of F satisfying condition (a) and the following conditions"
(i) Let e be of type I, let dim < n, and let f p-1 n Then

dim
fE en--1.

(ii) Let /e be of type II, let dim <= n, let r p-lnff,, and let
f p-l(Edim fl) fl if!. Then TEdim t

f.

Let ale Dn be of type I, and 1 e n+l of type II and such that 1 s+1 al.

Let fl p-1 fitO1 f] and rl p-11 a if’. Then p(rl E n-t-l" fV1) e, i.e.,
T1 E

n-t-1 --1
o’1 e IFn, Fn]n. Hence by Lemma (3.5) there exist

and a e [F-1, Fn-]n such that pE e for 0 _-< i < n + 1 and pEn+l
rl f-i By Corollary (5.5) the sets if" :! fl --p--1and ’" {if" rl W r. are CW-bases of F, and it is now readily veri-
fied that by repeating this procedure for the other elements of n of type I
one may obtain a CW-basis of F which satisfies condition (a) and conditions
(i) and (ii) above with n + 1 instead of n.

It now follows by induction on n that there exists a CW-basis of F satisfy-
ing conditions (a) and (b).

Condition (c). For every integer n => 0 let 9 N (. Suppose there
has already been constructed a CW-basis if’ of F satisfying conditions (a)
and (b) and the following condition"

(iii) Let Mn-1 F be the subgroup generated by the set p-19n-1 n ff.
Then p-ln-1 , is a basis of Mn-1.

where aie 9_I and theLet e 9 be nondegenerate. Then
p re integers. Let a and p-l fl i’. Then there exists
a f elFn-1 Fn-l]n--1 such that TE (H fi "f. Because D is contractible,
the inclusion map Nn-1 D Nn-1 is a homotopy equivalence. As
Nn-1 Mn-1 n--1 Mn-1]/[M it follows from Lemma (3.1) that the inclu-
sion map M-1 ---. C Mn-1 is also a homotopy equivalence. Hence there

iFn-1exists a p Fn-1]n such that

-1 n-1 Mn-1 e_l for 0 <- i < n.pE f e [M

p--1By Corollary (5.5) if" {if’ r r. is again a CW-basis of F. Fur-
thermore (r. p-1)E M It is now readily verified that by repeating this
procedure for the other nondegenerate elements of one obtains a CW-basis
of F satisfying conditions (a) and (b) and condition (iii) with n instead of
n-- 1o

It now follows by induction on n that there exists a CW-basis of F satisfy-
ing conditions (a), (b), and (c).

This completes the proof of Theorem (2.5).
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7. Proof of Theorem (2.8)
Let A F/[F, F], let B G/[G, G], and let c:A ----> B be the map induced

by h. By Lemma (3.1) the map c is a homotopy equivalence, and hence by
Theorem (4.8) there exists an isomorphism c’:A . B such that c’---c.
Lemma (3.3) then yields a map h" :F G such that h" --- h and such that
c’ "h" made abelian." Hence identifying A with B under the isomorphism
c’ we get a commutative diagram

h"F G

A

where p and q denote the proiections.

Now suppose we have already obtained a map hn-l:F G such that
(i) hn-1 h"
(ii) hn-1 is an isomorphism in dimension < n,
(iii) commutativity holds in the diagram

F ,G

A

Let be a CW-basis of F, let a p, and let be a CW-basis of G such
that q a (see 6, condition (a)). Let z e be nondegenerate, and let
r e be such that p qr. Then (h-).r-I [G, G]. Hence, by
Lemm (3.5) there exist p, [G, Gn]n+l nd a , e [G-, G-] such that
pe+=.r.(h-)-and pe efor 0 i < n+ 1. Do this for ll
nondegenerte z e n, nd define homotopy g "I @ F G by

g( @ ) h-g,(o -.. @ ) h’-, e

g(
i--1 i+lg,( ... ... @) (h-), e, i<n,

n--1g,( @ ’) p.(h’-), .
By Lemm (3.3) this homotopymybe extended to homotopy hz "h- h
such that condition (iii) holds with n instead of n- 1 Clearly h’ h"
nd simple computation yields that h" is n isomorphism in dimension < n.
The theorem now follows by induction on n.
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8. Proof of Lemma (3.5)
Use will be made of the following lemmm

LEMMA (8.1)k. Let F be a c.s.s, group, let Fo be trivial, and let k <= n.
Let r e F, and let r e Fk. Then there exist an element p e [F’, Fn]n+l and an
element e IFn-l, Fn-]n such that p+ [r, rk -].- and pe" e,

forO <- i<n 1.

Proof of Lemma (3.5).
teger q and elements a,

As a e IFn, F],, it follows that there exist an in-
F, rl, e such that

Application of Lemma (8.1) yields elements p:. e [Fn, F]+ and. e [F"-, F-I] such that p.+ [., r] .: and p e for 0 =<
i<nT 1. Let

e [F",

A simple computation then yields that pc"+ -a. and pc e, for

Proof of Lemma (8.1). For k 0, the lemma is obvious.
Now let k > 0, and suppose that Lemma (8.1)_1 has already been proved.

Let

then clearly
(i) IF"-’, 0 i < n + i,
(ii) there exists an element e IF"-, F"-], such that

(iii) there exists n element e IF"-, F"-], such that

By the induction hypothesis there exist @o, @I e IFn-I, F"-]. nd
Pc, P e IF", F’],+ such th

pc n+ [C,y--, ry Y"--](--)"+
p "+ [, r-- -- ,--]"’’

.,
poe pc en for0 i < nW I.

Let, m((--), (-.)c’) (see Lemm (5.3)), nd let
--I --i

p po’" p" e IF’, F"],+,

@ uv"+ @ -.@o.- e [F"-, F"-
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Then a straightforward computation yields that pen+l [(r, T7
k

and pei= en for 0 -< i < n + 1.

Appendix
9. Equivalent definitions of minimality

It follows immediately from the proof of Theorem (2.5) that

PROPOSITION (9.1). Let F be a free c.s.s, group of finite type. Then the
following statements are equivalent:

(a) F contains no contractible free factor (except the trivial one).
(b) F contains no contractible proper subgroup (except the trivial one).
(c) F contains no free factor of the same homolopy type (except F itself).
(d) F contains no proper subgroup of the same homotopy type (except F

itself).
(e) If h: F -- G is an epimorphism, where G is free and h is a homotopy

equivalence, then h is an isomorphism.

For minimal complexes in the sense of Eilenberg-Zilber ([3]) it is possible
to give a "local" definition (see [8], Lemma 1.20). The corresponding state-
ment for free c.s.s, groups is contained in Proposition (9.2). The proof is
straightforward and is left to the reader.

PROPOSITION (9.2). Let F be a free c.s.s, group of finite type. Then F
is minimal if for each pair of elements a, r e F, such that

(i) a and r are compatible and homotopic,
(ii) there exists a basis ff of F containing a and r,

we have a v.
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