PRIME IDEALS IN RINGS OF CONTINUOUS FUNCTIONS'

BY

CarrL W. Kouwrs

Let ¢ = C(X) denote the ring of all continuous real-valued functions
on a completely regular Hausdorff space X. The maximal ideals of C(X)
were characterized by Gelfand and Kolmogoroff [3]. The existence of prime
ideals of C'(X) other than the maximal ideals was considered by Gillman and
Henriksen [5]. In general, nonmaximal prime ideals do occur. Specifically,
whenever the maximal ideal M? (p eBX) is distinet from the ideal
N = {f e C(X):f = 0 onan X-neighborhood of p}, there exists a nonmaximal
prime ideal containing N”. Tixcept for a few results in [5], [6], and [9],
there seems to be nothing in the literature on the prime ideals of C(X). This
paper initiates an investigation of the prime ideal structure of C(X).

Most of the results obtained are stated for homomorphic images of C(X).
Thus, any structural properties that are not reflected in the images will not
become apparent from this discussion. The quotient rings of C'(X) considered
are usually those obtained from the prime ideals themselves.

In §1, we present some preliminary concepts and results. The main results
are contained in §2. Let P be an arbitrary prime ideal of C. The
key theorem in the whole study is that C/P is a totally ordered ring. The
order in these totally ordered rings is used throughout to obtain information
about prime ideals. For example, a corollary to the above theorem is that
the prime ideals of C' that contain P form a chain under set inclusion. A
useful tool is the result that each integral domain C/P has an order property
related to those of the u-sets of Hausdorff.

Much of the investigation centers about two related types of prime ideals
of C/P, which we call upper ideals and lower ideals. An upper ideal turns
out to be the McCoy radical of a principal ideal (a); and the associated lower
ideal, the (unique) ideal that is maximal with respect to disjointness from
the powers of a. Between any pair of upper ideals there is another (in the
sense of set inclusion), and correspondingly for lower ideals. Each upper
ideal is countably generated, but no lower ideal is. A consequence of the
last statement is that there exist uncountably many upper (and lower) ideals
in C'/P (provided P is not maximal). On the other hand, not every prime
ideal of C'/P need be an upper or a lower ideal.
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Let I be a 3-ideal of C (that is, I is maximal with respect to its family
of zero-sets), and suppose that I contains some N*. The concluding theorem
of §2 states that the following are equivalent: (1) I is prime. (2) The prime
ideals of C containing I form a chain. (3) Every B-ideal of C containing I
is a prime ideal. (4) C/I is a totally ordered ring. (5) Zero-sets are com-
parable on zero-sets of I.

In §3, the concept of totally ordered valuation ring is introduced. A
totally ordered ring that is a valuation ring is called a totally ordered valua-
tion ring if the valuation is monotone decreasing on the set of positive ele-
ments. These rings arise naturally in the study of quotient rings of C(X).
In fact, we show that for any 3-ideal I containing some N”, the ring C/I
is a totally ordered valuation ring if and only if it is a valuation ring, and if
and only if either of the following statements holds: (1) The ideals of C con-
taining I form a chain. (2) Every finitely generated ideal of C/I is a princi-
pal ideal. Associated with any value group are certain archimedean quotient
groups. In the case of the value group of a totally ordered valuation ring
of the form C/P, where P is a prime 3-ideal of C, each such quotient group
is associated with some upper ideal of C/P. A characterization of the ele-
ments in this upper ideal but not in the lower ideal paired with it enables us
to show that the corresponding quotient group is the additive group of all
real numbers.

The last section continues the study of the BF-points introduced in [9]. A
point p e BX is a BF-point if and only if the ideal N” is prime. The main
theorem of this section gives sufficient conditions that C/N?® be a totally
ordered valuation ring. (A necessary condition is that N* be prime.)

1. Preliminary remarks

We shall use the results of [5], [6], [7], and [9] freely, and assume familiarity
with background material given in these papers whenever this is convenient.

It is assumed throughout that the space X is a completely regular Hausdorff
space. The letter R is reserved for the field of real numbers. C(X) denotes
the ring of all continuous real-valued functions on X ; and C*(X), the subring
of all bounded functions in C(X). Since the underlying space X is fixed in
many discussions, we shall often abbreviate C(X) and C*(X) to C and C*
respectively. As usual, X denotes the Stone-Cech compactification of X
and vX, the largest subspace of 8X over which every function in C(X) (whether
bounded or not) has a continuous extension. Furthermore, if fe C(X) is
regarded as a function from X to the one-point compactification of R, desig-
nated by R u {«}, then f may be extended to a continuous function f from
BX to Ru {x}.

For every f e C(X), the set Z(f) = {z e X:f(x) = 0} is called the zero-set
of f. For any subset I of C(X), we let Z(I) = {Z(f):f eI}. We recall that
an ideal I of C is called a B-ideal if Z(f) ¢ Z(I) implies that f e I; in other
words, if I contains every function whose zero-set belongs to the family of
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zero-sets Z(I). Kvery B-ideal of C is an intersection of prime ideals
9, Lemma 2.2].

An ideal of C(X) of particular interest in the study of prime ideals is the
ideal N7, introduced in [5]. This is defined, for p ¢ X, to be the set of all
f € C(X) such that Z(f) contains the intersection of X with a neighborhood of
p in BX. The corresponding ideal N” n C*(X) of C*(X) will be denoted by
N*?. The only maximal ideal containing N?* is M”. If P is a prime ideal
of C contained in M”, then P contains N” [5, Lemmma 3.2]. Consequently,
M? is the only maximal ideal containing P [5, Theorem 3.3].

A partially ordered group® G is a commutative group on which is defined
a partial ordering relation = that is invariant under translation, that is,
for all a, b, ¢ € G, we have

0 (i) a = a; (i) ifa=bandb = a,thena = b;
(iii) ife = bandb = ¢, then a = ¢.
(2) Ifa = b,thena +¢ =0 + ¢

It is evident that (2) is equivalent both to

a =z bifand only ifa — b = 0,
and to
Ifa=bandec = d,thena +c¢c =0+ d.

A partially ordered ring® A is a commutative ring whose additive group is
a partially ordered group, and such that, for all @, b € 4,

Ifa = 0and b = 0, then ab = 0.

The set of all nonzero elements a such that ¢ = 0 will be called the positive
cone of A.

A subset S of A is called order-convex, or simply convex, if s = u = ¢ and
s, teSimply u eS. If Sisa subgroup of A, this is equivalent to

a=bz=0andaeSimplybesS.

Let I be an ideal of A. TFor a ¢ A, the image of @ in the quotient ring A4 /1
(under the natural homomorphism) will be denoted by a;. It is well known
(see, for example, [1, p. 23, Exercise 4]) that the ideal I is convex if and only
if A/I is a partially ordered ring under the following definition: a; = 0 if
and only if there exists x e A with x = 0 and z; = a;. Whenever we speak
of a partially ordered quotient ring of a partially ordered ring A, the order
on A/I will be understood to be this induced order.

If A is a partially ordered ring, and the relation = is a total ordering rela-
tion, that is, a partial ordering relation satisfying

3) For any a, b € A, eithera = borb = q,

2 For further material on partially ordered groups and rings, see [1] and [4].
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then A is a totally ordered ring. Kvidently, (3) is equivalent to
For any a € A, eithera = 0 or 0 = a.

Let A be a totally ordered ring with identity (so that A contains a subring
that may be identified with the integers). We say that a positive element
a of A is infinitely large if @ = n for every positive integer n, and that a is
nfinitely small if 1 = na for every positive integer n.

The symbol | a | denotes an element b satisfying b = ¢ and b = —a, and
such that whenever z = aandx = —a, thenz = b. By (1) (ii), | @ | is unique
whenever it exists. It is clear that in a totally ordered ring A, the element
| a| exists for all a e 4; in fact, |a| = aifa =2 0,and |a| = —aif 0 = q;
thus |a| = 0. And if a partially ordered ring A is a lattice under =, then
| a| exists, and |a | = O for all @ ¢ A (see [1, p. 15, Proposition 9]).

We now give a sufficient condition for A /I to be a totally ordered ring, where
Iis an ideal of A. In this case, the induced order can be defined in a manner
different from, but equivalent to, that discussed above.

Lemma 1.1, Let A be a partially ordered ring such that | a | existsand |a | = 0
for every a € A; and let I be a convex ideal of A such that @ = | a | (mod I) or
a = —|al| (mod I) for every a e A. Then

(1) The quotient ring A/I 1is totally ordered.

(2) ar = 04 and only if a = |a| (mod I).

Proof. (1) is evident, and so is the sufficiency in (2). Suppose that a; = 0
anda = —|a| (mod I). Then —(a;) = 0,s0ael,and |a]|el.

Let A be a totally ordered ring. It is clear that any convex subset of 4
is an interval; and any convex ideal I of A is symmetric about 0, that is,
I is a union of intervals of the form {zx eAd:|a| = z = —|a|}. Thus, any
collection of convex ideals of A forms a chain (under set inclusion).

Much of the preceding discussion is also valid for groups, with “subgroup”
in place of “ideal”. The next remark, however, applies only to rings.

Let A be a partially ordered ring such that | a | exists, |a | = 0, and
|a|® = & for every a e A. Then any convex ideal I of A that contains a
prime ideal of A satisfies the condition of 1.1. In particular, these require-
ments are fulfilled in C(X) and C*(X) for arbitrary completely regular
Hausdorff spaces X.

A subset U of the space X is called an X-neighborhood of p ¢ X if U has
the form X n ©Q, where @ is a neighborhood of p in 8X. Thus when p ¢ X,
the set of X-neighborhoods of p coincides with the set of neighborhoods of
p in X.

Let f ¢ C(X), and let Y be a subset of X. If a statement about f(z) is true
for each z ¢ Y, we shall say the statement is true for f on Y.

For any maximal ideal M7 of C(X), f e M? implies f(p) = 0. But the con-
verse is false in general, as can be seen from the Gelfand-Kolmogoroff Theorem
(see, e. g., [7, Theorem 1]).
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If ¢ is a function on a set S, and T is a subset of S, then the restriction of
o to T will be denoted by o | T.

Finally, we describe the space E, first given in [6, §8.5], which will be used
several times to construct examples. (The letter £ will always denote this
space.) Let N = {e;, e, ---} be the denumerable discrete space, and
eeBN ~ N. Set E = N u {e}. Thus every e, is an isolated point, while
deleted neighborhoods of ¢ are the members of some free ultrafilter on &
(i. e., maximal filter on N with total intersection void). The point e is called
the B-point of K.

2. General results on prime ideals

Let X be an arbitrary completely regular Hausdorff space. If M* is any
maximal ideal of C*(X), the quotient ring C*(X)/M* is isomorphic to the real
field R. This well-known result was proved by Stone [12, Theorem 76].
Hewitt considered the case of a maximal ideal M in the ring C(X); he showed
that C(X)/M is a totally ordered field containing a subfield isomorphic to R
[8, Theorem 41]. In each case the order is induced by the order on C* or C
as in §1. It is possible for the field to coincide with R, as in the case of fixed
ideals, or to contain R properly, as in the case of at least some free ideals
when C # C*. Precisely, C/M?" is the real field if and only if p evX. For
p ¢ vX, thefield is non-archimedean, and is called “hyper-real”.

The main result of this section is a generalization of these results to arbitrary
prime ideals in C* and C. Of course, to deduce Stone’s Theorem from our
statement requires additional facts about R; but the proof is easy.

TuroreM 2.1.  Every prime ideal P of C' (C*) is convex, and C/P (C*/P) is
a totally ordered integral domain containing a subset isomorphic to R. Let p be
the unique point of BX such that P 2 N” (N*?). Then the image of M (M*")
1s the unique maximal ideal in C/P (C*/P); and C/P has infinitely large ele-
ments if and only if p ¢vX (C*/P has no infinitely large elements).

Proof. Suppose that 0 = f = gand g ¢ P. Define h as follows: h(z) = 0
for x e Z(g), Mz) = (f(x))*/g(x) for x e X ~ Z(g). It is evident that A is
continuous on X ~ Z(g). The continuity of h at each point of Z(g) follows
from the continuity of f and the relation 0 < h < f. Hence h ¢ C(X) (and if
feC*(X), then heC*(X)). Clearly f* = hg. It follows that f*eP, and
since P is prime, that f ¢ P. Hence P is convex. By the remarks in §1,
C/P (C*/P) is a totally ordered ring.

The ordering may be defined explicitly as follows: The image of feC in
C/P ispositiveif f = | f| (mod P) but f # 0 (mod P). Thus, it is clear that
the constant functions map into a subset of C/P that is isomorphic to R, and
that the mapping preserves the order on this set. Since M7 is the only maxi-
mal ideal of C containing P, it is evident that C/P has a unique maximal ideal,
namely, the image of M”. Corresponding remarks apply to C*.

If p e vX, then for each f e C, there is an r € R such that f(p) = . Thus,
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setting ¢ = f — r, we have §(p) = 0; so for any positive integer n, there is an
X-neighborhood U of p on which |g| < 1/n. Hence

(I/n—=1gD)—=1[1/n—lglleN"SP.

It follows that the image of f differs in absolute value from the image of the
constant function r by at most an infinitely small element. For C*, this proof
is valid for all p e 8X. Conversely, if p ¢vX, there is an h e C, h = 0, such
that i(p) = «. Hence h is unbounded on every X-neighborhood of p; so,
in a similar way, we see that the image of & is an infinitely large element.

It is easy to verify that if P is not maximal, then the unique maximal ideal
of C/P (C*/P) consists of certain infinitely small elements, their negatives,
and zero.

COROLLARY 2.2. Let p e 8X be arbitrary. Then C/N?” is isomorphic to a
subdirect sum of totally ordered integral domains.

Proof. By [6, Theorem 1.4], N” is an intersection of prime ideals {P,} eq .
Hence C/N? is isomorphic to a subdirect sum of the rings

{(C/N")/(P4/N")} vea

(see, e. g., [10, corollary to Theorem 30]), which, by the second isomorphism
theorem, is the same as {C/P,},.¢. And by Theorem 2.1, each C/P, is a
totally ordered integral domain.

The following lemma is simple but useful.

LemmA 2.3.  Let P be a prime ideal of C, and let f, g € C be such that fr < gp .

Then there exist f', g’ e C such that fr = fr,gp =gp,f < gon X, andf < ¢
on X.

Proof. By hypothesis, g — f — |g — f|eP. Henceg — |g — flisa
suitable choice for f, and f + | ¢ — f | is a suitable choice for ¢'.

TuroreM 2.4. FEvery prime ideal of C/P (C*/P) is an interval, symmetric
about zero. The prime ideals of C/P (C*/P) form a chain. Hence, the prime
ideals of C (C*) containing P form a chain.

Proof. Let @ be any prime ideal of C/P, and let » denote the natural
homomorphism of €' onto C/P. Then, as is well known, »'(Q) is a prime
ideal of C. By 2.1, v '(Q) is convex. This implies that @ is convex, as fol-
lows immediately from Lemma 2.3. The conclusions about prime ideals of
C/P are now a consequence of remarks in §1. The final statement follows
from the fact that set inclusion is preserved under the correspondence between
prime ideals containing a given ideal of a ring, and prime ideals in the quotient
ring modulo this ideal.

The proof for C*/P is identical.

The result used to obtain the final statement of 2.4 can be applied in many
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situations. In the sequel, we shall usually not point out explicitly when this
method yields a conclusion about ideals of C (or C*).

We note that an arbitrary ideal in a ring C(X) need not be convex. For
example, in the ring C(R), let 7 be the identity function, defined by #(z) = z
for all z e R. Then (] |) is not a convex ideal; for if f ¢ C(R) is defined by
f@) = |zsin 1/a| for z ¢ 0, f(0) = 0, then we have 0 < f < ||, but, evi-
dently, f ¢ (|3 ]).

Let P be a prime ideal of C(X); I, a convex ideal containing P; and », the
natural homomorphism of C/P onto C/I. From §1, C/I is totally ordered;
and since f — | f| ¢ P implies f — | f| e I, the mapping » is order-preserving.
It follows immediately that if @ e C/P and v»(a) > 0, then @ > 0. The ideal
I need not be prime, so that C/I need not be an integral domain simply be-
cause it is totally ordered. An example will be given in §4.

The next theorem clarifies to some extent the relationship between the
integral domains which are homomorphic images of C' and those which are
homomorphic images of C*. Not all of the latter have the form discussed in
the theorem, however: if p ¢ vX, then M*? contains units of C (cf. [7, Theorem
3]), and hence cannot be obtained by intersecting C* with a prime ideal of C.

TuEOREM 2.5. Let P be a prime ideal of C containing N, so that P n C* is
a prime ideal of C* containing N**. Denote the truncation of C/P obtained by
removing all infinitely large elements and their negatives by (C/P),. Then there
1s a natural tsomorphism of (C/P), onto C*/P n C*, and this isomorphism s
order-preserving. Furthermore, C'/P is isomorphic to C*/P n C* ¢f and only f
p evX.

Proof. Define » to be the natural homomorphism of C onto C/P. Then
v | C*, the restriction of » to C*, is a homomorphism of C* into C/P; since the
elements of C/P ~ (C/P); come only from unbounded functions, » | C* is
actually into (C/P),. Given ae(C/P),, select any g ev '(a), and set
f = sup {inf {g, §(p) + 1}, §(p) — 1}. Then feC* and f — geN”, s0
v(f) = a. Hence v | C*is onto (C/P),. Now the kernel of » | C* is evidently
P n C*. Hence C*/P n C* is isomorphic to (C/P),, and, as is easily seen, the
isomorphism obtained from » | C* is order-preserving.

If p e vX, it follows from 2.1 that C/P coincides with (C/P),, whence C/P
is isomorphic to C*/P n C* (under the natural mapping defined above). Con-
versely, suppose that there exists an isomorphism of C/P onto C*/P n C*,
By 2.1, each of the rings C/P and C*/P n C* has a unique maximal ideal,
namely, the image of M” and M*® respectively. Since any isomorphism
takes maximal ideals onto maximal ideals, these two ideals must be iso-
morphic. Hence the quotient rings determined by them, (C/P)/(M”/P) and
(C*/P n C*)/(M**/P n C*), are isomorphic. By the second isomorphism
theorem, C/M?* and C*/M*" are isomorphic. Since the second ring is iso-
morphic to R, so is the first. Hence p e vX.

We shall now investigate the properties of the integral domains C/P as
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totally ordered sets. We first recall a definition given by Hausdorff for ab-
stract ordered sets.

A totally ordered set L is called an n;-set provided that:

(i) if A, B are subsets of L of power less than N;, and such that A < B,
then there is a y e L with A < y < B, and

(i) no subset of L of power less than N is cofinal or coinitial with L.

Our results are similar to [2, Theorem 3.4], in both statement and proof.
That theorem asserts that any hyper-real field (see remarks preceding 2.1) is
an n;-set.

TueEOREM 2.6. Let P be a prime ideal of C' containing N”. For each pair of
countably infinite subsets D, D' of C/P with D < D', of order type v, ¥, re-
spectively, there is an element & ¢ C/P such that D < 8§ < D’. The ring C/P
has a countable cofinal and coinitial subset if and only if p e vX.

Proof. The proof is modeled after the proof of [2, Theorem 3.4], but with
significant modifications. For f e C, we let f denote the image of f in C/P.

Let {f.}, {g.} (n = 1,2, ---) be two sequences of elements of C'/P such
that

(1) fn < fn+1 < Fntt < Gm (m; n = 1) 2; tT )

We wish to find an h e C(X) such that f, < & < g (m,n = 1,2, --- ).
First we note that we may assume, without loss of generality, that

2) fo £ fopn and gmyr = gm on X, forallm,n =1,2,---.

For if we have defined f1, --- , fr so thatfi £ --- =< f» on X, then we obtain
fns1 from 2.3 satisfying fn < fnss on X, and 74 = fuyy . Similarly, if we
have defined g1 , - - , gn s0 that g, < --- < g1 on X, then we obtain g,
satisfying gms1 < groon X and g, = Gt -

We now show that we may also assume that

3) fo = g. on X foralln =1,2, ---.
Putf{ = f1,and g7 = sup {f7 ,g1}. If wehavedefinedfy, ---,fn, g1, -,
gnsothat ff < --- < fn < gn < --- = g7 on X, then we put

f::-l—l = inf {Sllp {f:: 7f:l+1}7 gZ}r 9’1:+1 = Sup {inf {gz ) g,n+1};f::+1}-

Now for any functions s, ¢ e C such that § < , the function w = sup {s, ¢} sat-
isfles @ =1. For,t —s— |t—s|eP,s02u=2u=0+35+[t—s| =2t
A corresponding statement holds for inf {s, ¢}. It follows readily from these
remarks that 7 = f7 and g7 = ¢/ foralln = 1,2, --- . Moreover, we have
fo < fri1 S gnpn S gnon X,

Resuming our original notation, we assume that (1), (2), and (3) hold.

The case in which p ¢ vX. Since p ¢ vX, there exists a function ¢ in C such
that ¢(p) = « and¢ = 1on X. Then each of the setsd, = {x e X:¢(x) = n}
is a zero-set inZ(N”) (n = 1,2, --- ). Wenow definea function A as follows:

k(@) = (n + 1 — ¢(@)ful®) + (#(x) — n)funi(w)
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whenever n < ¢(x) S n+1(n =1,2,---). KEvidently, h e C. Clearly,
falx) £ h(x) = fuou(x) whenever n = ¢(x) = n + 1. Since the sequence
of functions {f.} is monotone increasing ((2)), we have f, = h on ®,, so
Zh — fo— | h — fu|) 2 P e Z(N); it follows that A — f,, — |h— fu]eP,
s0 fn < h. Trom (1), we obtain f, < A foralln = 1,2,

Next, it follows from (2) and (3) that for each ﬁxed m, fm+k = gm on X for
allk = 0, 1, --- . It is easily seen from this that » = ¢, on &, . Thus
h = Gm, so again from (1), we obtain & < gn form = 1,2, ---. This proves
the first statement of the theorem for p ¢ vX, and half of the second statement.

We cannot conclude, as in [2], that C/P is an n-set.’ For if P = M?,
there are nonunits other than zero in C/P; and the proof in [2] uses the fact
that C/M? is a field.

The case in which p evX. By Theorem 2.1, there are no infinitely large
elements in C/P. Thus, the subset consisting of the images of the integer-
valued constant functions is a countable cofinal and coinitial subset of C/P.

We show first that it suffices to consider the case where the f, are infinitely
small elements and the §, are positive elements. Let r = sup,f.(p) and
s = inf, §.(p); then »r < s. If r < s, we have f, < (r + 8)/2 < §, for all
n=1,2,---. We dismiss this trivial case, and assume that r = s. Now
if there is a positive integer N such that g, < 7 (resp. f, > 7) foralln > N,
but §, = 7 (resp. f, < 7) for some n < N, we may discard {g,, -, gn}
(resp. {fi, -+, fv}). So we may suppose that either f, < 7 and §, < 7 for
all n, or f, > 7and g, > 7 for all n. But the first situation may be reduced
to the second by consideration of the negatives of all the elements involved.
TFinally, it is clearly no restriction to suppose that r» = 0.

We may assume that the f, and ¢, satisfy 0 = f, < 1and 0 £ ¢, on X,
and we may also require the f, and g, to satisfy conditions (2) and (3) above.

If there is a positive integer N such that §.(p) = 0 for all » > N, but
G.(p) > 0 for some n = N, we discard {g1, --- , gv}. Otherwise, there must
be a subsequence {¢,, , gn, , - - -} such that §.,(p) # §.;(p) fors # 7; we then
discard all those ¢, not belonging to this subsequence. KEvidently,
{Gn, (D), Guy(P), -+ -} 18 a strictly decreasing sequence of real numbers whose
limit is zero. Resuming the original notation, we have two distinct cases:
(I) §.(p) = 0 for all n, that is, §, is infinitely small for all n. (II) §.(p) > O
for all n, but lim,_,« §.(p) = 0, that is, no §, is infinitely small, but there is no
positive constant funetion ¢ such that g, = i for all n.

Case I. Since §.(p) = 0 for all n, we may suppose that g £ 1 on X. We
set ¢ = ¢.. For each n, ®, = {x e X:p(x) < 1/n} is a zero-set in Z(N").
Define h as follows:

hz) = {n(n + De(@) — nlgu(x) + {1 + n — n(n + D$(2)} gnia(2)

3 In 4.2, we shall give an example of a space X and a BF-point p ¢ BX ~ vX, such that
the positive cone of C(X)/N» has a countable coinitial subset. Thus, C(X)/N” can-
not be an g;-set.
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whenever 1/(n + 1) = ¢(x) = 1/n,and h(x) = 0 whenever¢(z) = 0. Then
gni1(z) = h(z) = ga(z) whenever1/(n + 1) = ¢(w) = 1/n. Letm bea fixed
positive integer. For any z e¢®,, , either ¢(z) = h(x) = gu(x), or there
is a positive integer & = m such that 1/(k + 1) ¢o(x) = 1/k, whence
h(z) = gi(x) = gu(x). Thush = gnond, . Inparticular,h £ grond, = X.
It is easily verified that A is continuous at each z¢Z(¢p). Now let
xeZ(p) = Z(gy). TFor a given ¢ > 0, there is a neighborhood U of x such
that g1(y) < &, whence 0 = h(y) < ¢, forall y e U. Therefore h e C(X).

As shown above, for any positive integer m, we have h = ¢,, on®,,. Thus
h < gnforallm = 1,2, ---. Now let n be a fixed positive integer, and let
x be any point of X. If ¢(x) = 0, then 1/(k + 1) = ¢(x) = 1/k for some
positive integer k, so f.(z) = gru(x) = h(z). If ¢(x) = 0, then h(x)
fu(x) = 0. Thus, for each fixed n, f, < hon X; sofn < hforalln = 1, 2,
From (1), we obtain f, < h < g, foralln = 1, 2,

Case II. For each n, Jup1 = ¢, . Since g‘n.H(p) < ga(p), we have
Oni1 = gn(p) on some zero-set in Z(N ). Hence fn41 = Gn(p);s09,,, = §u(p).
Thus, ¢y41 can be replaced by inf {ghs1, §u(p)} (see remarks after (3)), so we
may assume that gris = gu(p) on X, for all n. We define ¢ e C(X) by
d(x) = D ma 27" fu(x). Clearly Z(¢) = Ny Z(fs). For any z e Z(¢), one
can easily see, by examining the definition of fy1(2) and g 41(2), that fu(z) = 0
and gn(z) = gn(x), sothat gri1(z) < Gu(p), for all n. Thus, we assume this
condition is satisfied by the functions henceforth designated by ¢1, g2, * - .
Since f,(p) = 0 for all n, it follows that $(p) = 0;s0®, = {x e X:¢(x) < 1/n}
is a zero-set in Z(N?). The definition of % is formally the same as in Case I.
We point out, however, that the function ¢ is now different from the function
so designated in Case I, so that the function 4 is also different, although it still
satisfies g,11(x) < h(x) = ga.(x) whenever 1/(n+ 1) < ¢(x) = 1/n. Letm
be a fixed positive integer. Tor any z € ®,, , either ¢(x) = 0, so that h(z) =
0 = gn(x), or thereisa positiveinteger k = m suchthat1/(k + 1) = ¢(x) = 1/k,
whence h(z) = gi(x) = gm(zx). Thus, h = g, on &, . It is easily verified
that h is continuous at each = ¢ Z(¢). Now let e Z(¢p). Let ¢ > 0 be given,
and let & be such that §i(p) < &/2. Then, since gr11(z) = Gi(p), there is a
neighborhood W; of x such that gr1(y) < 2dx(p) < eforall y e W;. And,
since x e Z(¢), there is a neighborhood W, of x contained in &®;,;. Thus,
0=hy) = grnuly) < cforally e Win W,. Therefore h e C(X).

It has just been shown that for any positive integer m, we have h < ¢, on
®,. Thus h < §n forallm = 1,2, ---. Now let n be a fixed positive
integer, and let « be any point of X. If¢(z) = 0,then1/(k + 1) < ¢(x) < 1/k
for some positive integer k, so fo(x) = gru(x) = h(z). If ¢(x) = 0, then
h(z) = fo(z) = 0. Thus, f, < hon X;s0f, = hforalln =1,2,---. As
before, we conclude that f, < & < g, foralln = 1, 2, . Th1s completes
the proof of the theorem.

Remarks 2.7. An integral domain C/P with nontrivial prime ideals, con-
sidered as an ordered set, cannot be continuous, that is, Dedekind-complete.
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In fact, if K denotes the positive cone of C/P and @ is any nontrivial prime
ideal of C/P, then K n Q and K ~ @ define a gap in K (hence in C/P), as
will now be shown.

Tirst, if a e K n Q, then ¢"* ¢ K n Q; and a < &', since ¢'> < 1. Hence
K n @ has no last element. Now consider any b ¢ K ~ @ such that b < 1.
(In searching for a first element of K ~ @, one would soon arrive here.) Then
b ¢Q, and b < 1 implies b* < b. Hence K ~ @ has no first element.

It will be seen in 2.19 that C/P contains nontrivial prime ideals whenever P
is not a maximal ideal of C.

The observation that the square root of any positive element of @ is in @
can also be used to show that @ must be infinitely generated. For, suppose
that @ = (a1, ---, @,). We may assume that 0 < a1 < a2 < ++- < @,.
Now a)? eQ, so for some by, ---, b, eC/P, we have a)* = disibias.
Hencea)” < D it | bi]ai = (Oimi | bil)an, 501 < (3in]| b |)ar” €@, con-
tradicting the convexity of @ (2.1).

Finally, we note that if a, b e C/P satisfy 0 < a < V’, then @ is a multiple
of b. The pioof is similar to the proof that any prime ideal of C is convex:
If f, g eC map into a, b, respectively, we may assume that they satisfy
0=sf= ¢° on X, by Lemma 2.3. Then the function A defined by h(z) = 0
for x e Z(g), h(z) = f(x)/g(x) for x ¢ Z(g), is continuous, since f(x)/g(z) =
g(@)(f(x)/(g9(x))*) for z ¢ Z(g).

Before proceeding, we state some relevant facts about any commutative
ring A whose prime ideals form a chain. These remarks are familiar in the
theory of general valuation rings, assumed to be integral domains (cf. [11, pp.
43-44]).

Let {P,} be the set of all prime ideals, including the zero ideal, of the ring A.
The set {P,} is totally ordered by =. The usual terms for totally ordered
sets, such as predecessor, successor and immediate predecessor, will be used
for ({P,}, =2). A prime ideal P is called a lsmet prime ideal if it has predeces-
sors, but no immediate predecessor.

An ideal I of the ring A is a limit prime ideal if and only if it is the inter-
section of the prime ideals containing it properly. For, let P; be the inter-
section of all the prime ideals containing I properly. Then P; is a prime ideal,
since the prime ideals of A form a chain (see, e. g., [4, Theorem 3.9]). Clearly
P, = Iif I is a limit prime ideal, and P; contains I properly otherwise. In
case I is a nonlimit prime ideal, P; is its immediate predecessor.

It follows that the ring A has at least one limit prime ideal if there exists
an infinite subsequence Py, Py, -+, P;, -+, in {P,} such that P,y is a
successor of P;,2=1,2, --- .

We now prove that nonlimit prime ideals always exist. The concept of
the McCoy radical of an ideal (see [10, §21]) will be utilized.

LemmA 2.8. Let a be any nonzero element of the ring A. Then the McCoy
radical S of (a) s the smallest prime ideal containing (a), and has an tmmediate
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successor . The ideal P is characterized as the unique prime ideal which is
maximal with respect to disjointness from the multiplicative system

{a7a27 ’an’ }

Proof. 8 coincides with the intersection of all the prime ideals containing
(a) (see [10, Theorem 24]). Hence it is a prime ideal; and it is evidently the
smallest prime ideal containing (a).

It is well known that there is a prime ideal P which is maximal with respect
to disjointness from the multiplicative system {a, a’, --- , a”, --- } (see [10,
Lemma 2, p. 105]). Since the prime ideals of A form a chain, P is unique;
thus P is the largest ideal (under set inclusion) disjoint from this system.
Obviously P is a successor of S. Now any predecessor @ of P, being a prime
ideal, must contain a power of a, and hence a itself. ThusQ 2 (a),s0Q 2 S,
that is, S is a successor of Q.

It follows that if P; and P, are any distinet prime ideals of the ring A with
P12 P, , then there exist prime ideals Pi , Py such that P2 P =2 Pg P,
and where P; is the immediate successor of Pi. For, we may choose any
a e Py ~ Py, and let P be the McCoy radical of (a).

We shall now see what special properties are possessed by the prime ideals
in an integral domain C/P. Henceforth, P will always be assumed to be a
nonmaximal prime ideal of C' containing N7, so that C'/P is a totally ordered
integral domain whose unique maximal ideal M”/P is nonzero. In this case,
the prime ideals of C/P are totally ordered under 2

Let f be any nonnegative function in C, and let n be a positive integer. The
function ¢ defined by g(z) = (f(z))""is in C'; it will be denoted by f/*. Given
a positive element a e /P, we define a'/” ¢ C/P to be the image of f/*, where
f € C is any nonnegative preimage of . This definition does not depend upon
the choice of f: If h = 0 is the preimage of b e C/P, and ¢"" # ", then we
have, say, a"" > b > 0, whence a = (a"")" > (bl/")" = b; that is, contra-
positively, f = h (mod P) implies f/" = A" (mod P).

DrrintTiON 2.9. Let P be a nonmaximal prime ideal of C. For each
positive a e M*/P, we call

Q" = {beC/P:|b| < a'" for some positive integer n!
the upper ideal associated with a, and
Q. = {beC/P:|b| < a"for all positive integers n}

the lower ideal associated with a. It is routine to verify that the sets Q" and
Q. are actually ideals. Evidently Q, & Q°, and a ¢ Q" ~ Q, .

TurEorREM 2.10. Let P be a nonmaximal prime ideal of C.

(1) For any posttive a e M”/P, the upper ideal Q" is a prime ideal. In fact,
Q" s the McCoy radical of the ideal (a).

(2) For any positive a ¢ M”/P, the lower ideal Q, is a prime ideal. In fact,
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Q. s the unique ideal that 18 maxvmal with respect to disjointness from the multi-
plicative system {a, a’, --+ , a", --- }.

(3) A prime ideal I of C/P has an immediate predecessor J if and only if,
for some positive a e M"/P, we have I = Q, and J = Q“.

(4) ForanybeQ" ~ Qq,b > 0, we have Q" = Q' and Q, = Q, .

(5) Let Q be the prime ideal of C such that Q/P = Q,. Then the subset
of positive elements of the totally ordered integral domain C/Q has a countable
coinitial subset, namely, the image of {a, @', --- , a*, -+ } under the natural
homomorphism ¢:C/P — C/Q.

Conversely, if Q vs a prime ideal of C containing P such that the positive cone
of the totally ordered integral domain C/Q has a couniable cotnitial subset, con-
sisting of powers of an element o, then for any a € v_'(a), where v is the natural
homomorphism of C/P onto C/Q, we have Q/P = @, .

(6) Every monmazximal prime ideal @ of C/P is an intersection of lower
ideals; and every nonzero prime ideal is a union of upper ideals.

(7) Let a, b e M”/P be positive elements such that Q" = Q,. Then there
exists ¢ e C/P such that Q° &S Q. & Q° & Qs , and all the inclusions are proper
(in particular, Q" = Q,). Consequently, the set of lower (respectively upper)
ideals is a dense totally ordered set (i.e., if Qq s properly contained in Q. , then
there exists Q. such that Qu & Q. & Q., with the inclusions proper); and the
set of lower ideals is drsjoint from the set of upper ideals.

Proof. (1) Suppose b e Q"; then |b| < o''" for some positive integer n,
so b’ = d’". Hence b® = ca’'™ for suitable ¢ ¢ C/P (see 2.7). Thus
b*" = c"a e (a), so b is in the radical of (a). Conversely, let b be in the
radical of(a), that is, b” = ca for some positive integer n and some ¢ ¢ C/P
(we may assume that ¢ > 0). Since b" € (a), and a belongs to the convex
ideal M”/P the same is true of bc; so we havebe < 1. Thusb"™ = (be)a £ q,
sob < ™™, Hence b e Q"

(2) Let @ be the ideal of C/P that is maximal with respect to disjointness
from {a, a®, ---,d", --- }. Ttis clear from the definition of Q, that @, & Q.
Now if b € Q, then, since Q is convex, | b | < a* for every positive integer k;
that is, b e@,. Hence Q, = Q.

(8) The sufficiency follows directly from (1), (2), and Lemma 2.8. For
the necessity, let a e / ~ I. Then, since J is the smallest prime ideal con-
taining (a), it is the McCoy radical of (a), that is, by (1), it is @*. And since
I is the largest prime ideal disjoint from {a, a®, --- , @, --- }, it is @, , by (2).

(4) This follows like the necessity of (3).

(5) Bytheremarksfollowing2.4, ¢ preserves order, soitsuffices to show that
the ¢(a*) are distinct. Now let n, k be any positive integers with n > k.
Since 1 — " * is not infinitely small, we have 1 — " ¢Q,. Thus, from
the fact that a® ¢ Q, it follows that ¢* — a" = a*(1 — ") ¢ Q. , that is,
a* # a" (mod Q,).

To prove the converse, let a e v '(a); then a" ev (@) (n = 2, 3, --- ).
It is evident that @Q/P is disjoint from the multiplicative system
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{a, d’, ---, d", -~ }. To prove maximality, let b ¢ Q/P, b > 0, be given,
and cons1der the ideal »((Q/P, b)) in C/Q. For some positive integer n, we
have " < »(b). Then o™ < (v(b)) so o" is a multiple of »(b) (2.7). Hence
™" ev((Q/P, ), and a*" ¢ (Q/P, b).

(6) Tor each a ¢ @ with @ > 0 and a nonunit, the multiplicative system
{a, a’, -, d*, -~} is disjoint from Q. By (2), Q & Q.. Since a ¢Q,,
it follows that @ = N, o Q.. The proof of the second statement is the dual
of the proof of the first.

(7) Since{a,a ---,a", .- Yand {b, b’ -+, 0", -+ } aretwocountably
infinite subsets of ' / P of order type v, w* respectively, with the first preceding
the second, there is an element ¢ between them, by Theorem 2.6. Now, if
for some positive integers n, k, the relation ¢ < @"" held, we should have
¢ < '™, which is impossible. Therefore ¢* > a"" for all n and k; similarly,
¢ <b"forallmandk. ItisthenclearthatQ°S Q.S Q° S Q,. Reapplying
the argument to the pairs Q°, Q. and @°, @, , we conclude that all of the in-
clusions are proper.

Now if Q; < Q., we have, by (3), @° & Q.. THence there exists ¢ such
that Q. S Q@ S Q. S Q° S Q., and all of the inclusions are proper. In
particular, Q. lies strictly between Qg and @,. The statement about upper
ideals follows similarly, and the final statement is obvious from the first
conclusion.

CoroLLARY 2.11. No upper ideal has an immediate predecessor, and no
lower ideal has an tmmediate successor. In particular, the set of prime ideals
of C/P 1is meither well-ordered nor inversely well-ordered.

Proof. This follows from (7) and (3).

It is natural to enquire whether every prime ideal of C/P is either an upper
ideal or a lower ideal. In view of the requirement that the element a in terms
of which Q* and @, are defined be a positive nonunit, it is evident that (0)
cannot be an upper ideal and M”/P cannot be a lower ideal, by default. We
note however that (0) is like an upper ideal, and M”/P is like a lower ideal
when p e vX: consider the sequences 0" and 1/n (n = 1,2, ---). In the
next theorem we show that any ideal of C/P that comes from a 3-ideal of C
is neither an upper ideal nor a lower ideal. Thus, the nontrivial possibility
that M”/P be an upper ideal is ruled out, and the nontrivial possibility tath
(0) be a lower ideal is ruled out when P is a 3-ideal of C. As will be seen
in §4, sometimes (0) and M”/P are the only ideals that come from 3-ideals
of C. But the answer to our question is still “no” in this case.

Turorem 2.12. If I is a B-ideal of C containing P, then I/P is neither
an upper nor a lower ideal.

Proof. We show first that I/P is not an upper ideal. In view of the
remarks preceding the theorem, we may assume that I # P. Let a be any
positive element of I/P, and let f ¢ C' be a preimage of a such that 0 < f = 1
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on X. Then fel ~ P. Define ¢ as follows: g(x) = 0 for x ¢ Z(f), g(&) =
—1/log f(x) for © ¢ Z(f). Then g = 0, and Z(g) = Z(f). It is easily shown
that g ¢ C(X). Since fel, and I is a 3-ideal, we have g e I. Let b denote
the image of ¢ in C/P.

Now if n is any fixed positive integer, then lim,_o+(—1/log )/{"" = + .
Hence there exists s € R such that 0 < ¢ < s implies —1/log ¢ = /", Let
Z = {zeX:f(x) < s}. Note that Z ¢ Z(N?). Since —1/log f = " on
Zn (X ~Z(f),wehaveg = f'"onZ. Ttfollowsthatg — f'" — |g—f'"| e
N? & P. Therefore b > a"". Since this is true for each positive integer n,
we have b ¢Q*. But bel/P;s0o I/P = Q°.

We now show that I/P is not a lower ideal. This time we may assume
that I ¢ M”. Let a be a positive element of M?/P ~ I/P, and let f be a
preimage of a such that 0 = f < 1 on X. Define g as follows: g(z) = 0 for
ceZ(f), glx) = ¢ @ for x ¢ Z(f). Then g = 0, and Z(f) = Z(g). It is
easily shown that g e C(X). Since f¢I, and I is a 3-ideal, we have ¢ ¢ I.
Let b denote the image of ¢ in C/P. Using the fact that lim,+e 7*/t" = 0
for all positive integers n, we obtain b € Q, by reasoning similar to that in the
first part of the proof. Since b ¢I/P, we have I/P = Q,.

CoroLLARY 2.13. Let I % MP” be a 3-ideal of C containing P. Then there
are infinitely many lower ideals and infinitely many upper ideals containing I1/P.

Proof. By Theorem 2.12, I/P is not a lower ideal. Now Theorem 2.20
below implies that I/P is a prime ideal; so by Theorem 2.10, (6), I/P is an
intersection of lower ideals. There cannot be only a finite number of ideals
in this intersection, for then the intersection would coincide with the last
one of them. The statement about upper ideals now follows from the fact
that every lower ideal is contained in the upper ideal associated with it.

In fact, no limit prime ideal is a lower ideal, for, by Theorem 2.10, (3), a
lower ideal has an immediate predecessor.

On the other hand, the intersection of an w-sequence of lower (upper)
ideals need not be the image of a 3-ideal. I'or example, in the space E,
the only 3-ideals containing N¢ are N° and M* (see remarks following 4.1).
Now it is easy to find two distinet lower ideals in C(E)/N°, e. g., the lower
ideals associated with the images of the functions in C(#) determined by the
sequences {1/n} and {1/2"}. By applying Theorem 2.10, (7), one can con-
struct an w-sequence of lower ideals lying between these two ideals. The
intersection is clearly different from (0).

The next corollary is similar to Corollary 2.11.

CoroLLARY 2.14. If I is a B-ideal of C containing P, then I/P has no im-
mediate successor or predecessor.

Proof. This follows from Theorems 2.12 and 2.10, (3), except for the
fact that M?/P has no immediate predecessor and (0) has no immediate



520 CARL W. KOHLS

successor. But this is trivial, since M”/P is the first element and (0) is the
last element of the set of prime ideals.

Since a prime ideal @ of C/P is an interval symmetric about zero, and
b < & implies that b is a multiple of a (2.7), it is clear that any cofinal subset
of Q generates Q. Thus {a, a'*, ---, a/", --- ] is a countable set of gen-
erators for Q°. Moreover, combining this remark with Theorem 2.10, (4),
we see that for any positive b e Q" ~ Q, , the set {b, b'* --- , b"" . }isa
countable set of generators for Q“. This is contrasted with the situation for
lower ideals in the following theorem.

TueoreMm 2.15. Let I be an ideal of C containing P such that I/P is a lower
ideal Q, . Then neither I nor Q, is a countably generated ideal.

Proof. Suppose I = (fi, f2, ---). Then Q, = (b1, b2, ---), where
b; is the image of f; in C/P. Since @, is a prime ideal, it must be
infinitely generated (see 2.7); so it is no restriction to assume that
bis1 > b; > 0 for all &. By Theorem 2.6, there exists ¢ e C/P such that
b; < ¢ < a' for all . Evidently, ¢ e Q,. For some positive integer n and
d;eC/P,wehavec = Y i d;b;. Hencec =< D iy |di|bi £ (O 1u|di])ba.
But b, < ¢;s0 1 £ D i.]d;|, which implies that Y i |d;| is a unit w.
So we have w'¢c < b,. Now the hypothesis on the b; implies that for any
positive unit » of C/P, the inequality b, < vb,y; holds. For, the contrary
implies that b’ = 0’0541 > v°b, , and hence b, > v*, so that b, is a unit, which
is absurd.

It follows that b, < 4 'D.y1 < u ¢, a contradiction. Thus, Q, cannot
be a countably generated ideal, and I cannot be either.

When p e vX, the same proof, with a replaced by %, shows that neither
M? nor M?/P is a countably generated ideal. Thus, when p is not a P-point
with respect to X, M” is not countably generated. It turns out that the
conclusion is also valid when p is a P-point with respect to X, except when
pisisolated. In fact, we are able to prove this without assuming that p e vX.

The result is obtained as a corollary to the following theorem about the
ideal N”.

TrrEoREM 2.16.  If N7 isa countably generated ideal, then {p} 1sa Gs-set of BX .

Proof. In this proof, the interior of a set will be denoted by “int”.

Let N* = (fi,fe, - ,fu, -+ ). We may assume that the f; are bounded,
since, for each f;, there exists an fi e C*(X) that belongs to the same ideals
of C(X) (see [6, Lemma 1.5]). For any x ¢ 83X distinct from p, there exists
g € C*(X) such that g e N7, ¢’(x) = 1. Now for some positive integer n and
functions h; e C(X), we have g = > i hif;. Suppose z e N7 int(Z(f%)).
Let V denote {y ¢ 8X:¢°(y) > %}, which is a neighborhood of z in 8X. Since
X is dense in BX, the set N7, int(Z(f?)) n V n X, being the intersection with
X of a nonempty open set of X, is nonempty. But this contradicts the
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hypothesis ¢ = > 7 hy f;. Hence x ¢N iy int(Z(fH)) 2 N7 int(Z(f5)).
It follows that {p} is a Gs-set of BX.

CoroLrary 2.17. If peBX ~ X, then N is not a countably generated
ideal.

Proof. By 2.16, if the conclusion did not hold, then {p} would be a closed
Gis-set of BX, contained in BX ~ X. But this is impossible, since the cardinal
number of every nonempty subset of X ~ X that is a closed G;-set of X
is at least 2° (see [8, Theorem 49]).

CoroLLARY 2.18. If p is a P-point with respect to X, and M?” is a countably
generated ideal, then p e X, and M” is a principal ideal.

Proof. Since M” = N7, 2.17 implies that p ¢ X. It follows from Theorem
2.16 that {p} is a Gs-set of X; so by [5, Corollary 4.3], p is isolated. As in
[5, Theorem 5.9], M” is a principal ideal; specifically, M” is generated by the
characteristic function of X ~ {p}.

In [6, Theorem 6.3(a)], it is shown that when X is a P-space, every finitely
generated ideal of C(X) is a principal ideal. It follows from 2.18 that every
countably generated maximal ideal of C(X) is a principal ideal when X is a
P-space. It is not true that arbitrary countably generated ideals must be
principal ideals, however. For instance, if X is the countable discrete space
(hence a P-space), then the set of functions of C(X) that vanish outside finite
sets is a countably generated ideal of C(X) which is not a principal ideal.

We now utilize the concept of upper ideal to conclude that if there are
at least two prime ideals of C'/P, then there are uncountably many.

TaeorREM 2.19. Let P be a nonmaximal prime ideal of C. Then there is
an w;-sequence of upper ideals in C/P.

Proof. We show first that C/P contains a nonzero lower ideal. Since P
is not maximal, the zero ideal of C/P is an intersection of lower ideals, by
2.10, (6). It follows that there exists at least one nonzero upper ideal of
C/P, say Q. Now, by 2.12, Q" is not maximal, so it is also an intersection
of lower ideals. Hence there exists a nonzero lower ideal Q, =2 Q.

By 2.10, (6), Q. is a union of upper ideals. Since each upper ideal is count-
ably generated, if this collection had a countable coinitial subset, then @,
would be countably generated, contradicting Theorem 2.15. It follows that
the collection of upper ideals contains an w;-sequence.

We conclude this section with a theorem on 3-ideals connecting several
of the ideas discussed earlier. Among the results it contains is the rather
remarkable one that if C/I (I a 3-ideal) is a totally ordered ring, then it is
necessarily an integral domain. The hypothesis that I contains some N7”
is not actually a restriction; it is implied by each of the statements in the
theorem (since this is the case for the first statement, and the proof of the
equivalence of the statements makes no use of the hypothesis).
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TueoreM 2.20. Let I be a 3-ideal of C containing some N®. The following
statements are equivalent:

(1) I 7saprimeideal.

(2) The prime vdeals of C containing I form a chain.

(3)  Every B-ideal of C containing I zs a prime ideal.

(4) C/I s a totally ordered integral domain.

(5) C/I is a totally ordered ring.

(6) Zero-sets are comparable on zero-sets of 1.

(1) For Zy, Zy e Z(C), if Z1u Zy e Z(I), then Z1 e Z(I) or Zy e Z(I).

Proof. (1) implies (2). This is a special case of 2.4.

(2) implies (3). Every 3-ideal of C is an intersection of prime ideals con-
taining it [9, Lemma 2.2]. Hence, a 3-ideal containing 7 is an intersection
of a chain of prime ideals; therefore it is a prime ideal (see, e. g.,
[4, Theorem 3.9]).

(3) tmplies (4). Since [ is a B-ideal, this is a special case of 2.1.

(4) vmplies (5), trivially.

(5) tmplies (6). Let f, g e C, and let a, b denote the images of f, g respec-
tively, in C/I. Since Z(f) = Z(|f]) and Z(g) = Z(] ¢ |), we may suppose
that @, b = 0. If @ = b, then for some Z ¢ Z(I), we have f =2 ¢ = 0 on Z,
so (Z(f) n Z) & (Z(g) n Z); and similarly if « = b.

(6) vmplies (7). Let Zy, Zy e Z(C) satisfy Z1 u Z, e Z(I). We may assume
that (Z1n Z) 2 (Z:n Z) for some Z ¢ Z(I). Then

Z1_2_Z10Z= (Z1UZ2)I"IZ€Z(I),

whence Z; e Z(I).
(7) implies (1). Let f, g e Csatisfy fge I. Since Z(f) u Z(g) = Z(fg) ¢ Z(I),
cither Z(f) e Z(I) or Z(g) e Z(I). Therefore either fel or gel.

3. Totally ordered valuation rings

Let A be a commutative ring with identity. The ring A is said to be a
valuation ring if for any pair of elements a, b € A, either a is a multiple of b
or b is a multiple of a.*

Trivially, every field is a valuation ring. If a valuation ring A is an integral
domain, it can be embedded in its field of quotients F. The set of nonzero
elements F* of F is a multiplicative group, and the set U of units of 4 is a
subgroup. The quotient group F*/U is called the value group for the valua-
tion ring A, and will be denoted by I'.  Obviously it is abelian; it is generally
written as an additive group. The group T can be given a partial order as
follows: v = & if a representative of vy is a multiple by an element of A of a
representative of 8. Antisymmetry ((1) (ii) of §1) follows from the fact that

4 Proofs and more complete statements of many of the results summarized below
may be found in [11, pp. 5-17 and p. 44].
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F has no zero-divisors; and the hypothesis that 4 is a valuation ring implies
directly that the order is total. It is evident that this order is invariant
under translation, so that T' is a totally ordered group.

From a slightly different viewpoint, we have defined a homomorphism V
from the multiplicative group F* onto the additive group T', with kernel U.
Since each nonzero element of A is a multiple by an element of A of any ele-
ment of U, and each element of U is a multiple by an element of A of any
element of F ~ A, the set V(4 ~ {0}) is precisely the subsemigroup I'*
of nonnegative elements of I'.  But the zero element of A is a multiple by an
element of A of every element of A4; so it is natural to extend V to zero by
stipulating that V(0) = o, where « denotes an element exceeding all of
I'* (and hence all of T'), and satisfying the formal lawsy + © = o + 5y =
© 4+ o = « fory eI'. We shall henceforth let V" designate the restriction
of this mapping to 4, and let '™ denote the extended semigroup.

Since V is a homomorphism, it satisfies V(ab) = V(a) + V(b) foralla, b ¢ 4.
(The above convention on < is set up so that this-will be true even if a or b is
0.) It also satisfies theinequality V(a + b) = min{V(a), V(b)} foralla, b ¢ A.
For, assume (without loss of generality) that there exists ¢ e A such that
a = ¢b. Then V(a) = V(b); and ¢ + b = (¢ + 1)t implies that
V(a + b) = V(b). The function V is called the valuation associated with
the valuation ring 4.

Let G be a totally ordered group. Recall that the convex subgroups of G
form a chain (§1). The order type of the set of all proper convex subgroups
(including {0}), ordered by set inclusion, is called the rank of G. If H is a
convex subgroup of @, then the induced order on the quotient group G/H
makes it a totally ordered group. If r, r; are the ranks of G and H, respec-
tively, then the rank r, of G/H satisfies r = r; + r.. A group has rank one
if and only if it is archimedean. Kach group of rank one is isomorphic, under
an order-preserving isomorphism, to a subgroup of the additive group of all
real numbers.

Now let T be the value group for a valuation ring A with valuation V. A
subset of positive elements @ of T is called an upper class of T if « e and
B > o imply 8 eQ. The ideals of A are in one-to-one correspondence with
the upper classes of T'. In fact, if I is an ideal of A, then V(I) is an upper
class of T'; and if @ is an upper class of T', then V() is an ideal of A. The
principal ideals correspond to the upper classes possessing a least element.
TFurthermore, the prime ideals of A are in one-to-one correspondence with
the convex subgroups of I'. Specifically, if @ is a prime ideal of 4, then the
set V(A ~ Q) u (— V(A ~ Q)) is a convex subgroup of I'; and every convex
subgroup of T' has this form for some prime ideal of 4.

We remark that a valuation ring need not be totally ordered, as in the case
of the field of complex numbers; and a totally ordered ring (in fact, integral
domain) need not be a valuation ring, as in the case of the domain of integers.
However, we shall be concerned exclusively with valuation rings which are
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also totally ordered rings, with the valuation and order related in a simple
way. Since A and T are now both ordered, it is reasonable to consider
whether V can be a monotone function from the positive cone of 4 to I't. It
turns out that in the cases we shall discuss, V is a monotone decreasing function
on this set. Due to the symmetry of V (V(—a) = V(—1) + V(a) = V(a)
for all a € A), it will usually be convenient to think of the domain of V as
being only the positive cone of A. In terms of elements of A, this mono-
tonicity condition may be stated as follows:

(1) If a,beA satisfy 0 < a < b, then a is a multiple of b.

It is easily seen that (1) is equivalent to

(2) Every ideal of A is convex.

If A is a valuation ring which is also a totally ordered ring satisfying (1)
(and hence (2)), we shall call A a totally ordered valuation ring.

Let A be an arbitrary commutative ring. Given any prime ideal P of 4,
we can form a ring 4 » containing 4 as a subring, and such that every element
in A ~ P is a unit (see {10, Theorem 23]). When A is a totally ordered ring,
the ring A » can be made a totally ordered ring, whose order is an extension
of the order on A." Indeed, if [a, s] € 4 » is the equivalence class with repre-
sentative (a, s), we define [a, s] to be positive if and only if as > 0.

In case A is a totally ordered valuation ring, every positive element
la, s e Ap ~ A exceeds A. TFor, [a, s] ¢ A implies that a ¢ (s), and since (s)
is convex, we must have a > bs for every b € A, if a and s are taken to be
positive. But then [a, s|] > [bs, s], that is, [a, s] exceeds b. Since 4 is a
valuation ring, if [a, s] ¢ A, then [s, a] € 4, so [a, s] is a unit of Ap. Thus,
Ap is also a valuation ring. Combining this with the previous statement,
we have that Ap is a totally ordered valuation ring. The same is true of
any homomorphic image of Ap.

Now suppose that Py, P, are prime ideals of a valuation ring B such that
P, is the immediate successor of P1. Let A; be the convex subgroup of T
associated with P; (7 = 1, 2). Then the valuation ring Bp,/P» has for its
value group the quotient group A,/A;." Turthermore, since there is no con-
vex subgroup of I' containing A; and contained in A,, the rank of A,/A
must be one, so Ay/A; is archimedean, and hence a subgroup of the additive
group of all real pumbers.

From now on, T' denotes the value group of C/P, when P is prime and
C/P is a totally ordered valuation ring. In order to avoid trivial special
cases, we assume that C'/P is not a field (i. e., that P is not maximal). It
was pointed out in 2.7 that the only proper finitely generated ideal of C/P
that is prime is (0). It might be conjectured that every nonprincipal ideal
(hence every infinitely generated ideal) of C/P is prime. We show easily
that this is false, by consideration of T.

5 For the case P = (0), cf. [1, p. 33, Proposition 2].
6 This follows from [11, Chapter I, Lemma 12 and Theorem 5].



PRIME IDEALS IN RINGS OF CONTINUOUS FUNCTIONS 525

Tarorem 3.1. Suppose that C/P s a totally ordered valuation ring, but
not a field.

(1) T 4s a dense totally ordered set, that is, if v, 8 e IV, v < &, then there
exists a € T such that vy < a < 8.

(2) Let Q be a nonmaximal prime ideal of C/P distinct from (0). Then
I't ~ V(Q) and V(Q) define a gap in T,

(38) Letyel,y > 0, be given. Then I = V'({6eT7:6 > ~}) is an in-
finately generated ideal of C/P which is not prime.

Proof. (1) Letwy, 6 e I'Y, with 0 < v < &, be given; let a, b ¢ C/P be any
preimages of v, & respectively. We may assume that 0 < b < a in C/P, and
hence that there exists h e C/P, h = 0, such that b = ha, where V(h) = 0. If
h=0,thenb = 0,and 8 = «;and wehavey = V(a) < 2V(a) = V(a’) < .
If b = 0, we consider ah'? e C/P. The inequality

V() = V(h) + Via) > 3 V(h) + V(a) = V(ah'®) > V(a)

says that v < V(ah'®) < &.

(2) As already remarked, @ is not a principal ideal; so the upper class
V(Q) has no first element. Now I'" ~ V(Q) is precisely the intersection
of T" with the convex subgroup associated with Q. Since @ is not maximal,
there is an element ¥y > 0 in I'" ~ V(Q). Hence 2y e I'" ~ V(Q), and
2y > ;80 I'" ~ V(Q) has no last element.

(3) Since V(1) is an upper class of T', [ is an ideal of C/P. By (1), V(I)
has no first element, so I is not a principal ideal; hence it is infinitely generated.
And if T were a prime ideal, then {§ e I':| 6 | < v} would be a subgroup of T
containing vy but not 2y, which is absurd.

We now consider the elements which belong to an upper ideal Q" but not to
the associated lower ideal @, , when P is a 3-ideal. In this case, we may
think of Q" and @, as defined in terms of elements “a”’, where 7 is an arbitrary
positive real number. Tor any such r, and any nonnegative f e C, the func-
tion g, defined by g(z) = (f(x))", is in C; it is reasonable to denote ¢ by f'.
Given a positive element a ¢ C/P, we define a” to be the image of f7, where
f € C is any nonnegative preimage of a. Now let & be any other nonnegative
function mapping into a. Then f and h coincide on a zero-set in Z(P), so
f" and &’ coincide on the same zero-set. Hence f” = h" (mod P), that is, the
image of A" is also a”. Thus the expression “a’”’ is well-defined. It is easy
to see that

Q" = {beC/P:|b]| £ o for some real r > 0},
and
Q. = {beC/P:|b]| < d for all real » > 0}.

Now it turns out that every element in Q* ~ Q, is “close” to a definite
“real power” of the element a, in the sense that the element which appears
as the multiplier will not be an element of small absolute value, but will be
outside the upper ideal Q*.
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Taeorewm 3.2. Suppose that C/P is a totally ordered valuation ring, but not
a field, and that P is a 3-ideal. Let a be a fixed positive nonunit element of
C/P. Then for each b e Q" ~ Q,, there exist a unique posttive real number
r and an element h e C/P ~ Q°, such that either b = ha’ or @ = hb. The ele-
ment h appearing in either equation is unique.

Proof. We assume for simplicity that & > 0. Define
t =sup{seR:s >0, b= da'},
u = inf{s e R:s > 0, b= a'}.

Then, since b ¢ Q" ~ Q,, we have 0 < u and ¢t < «; and since C/P is totally
ordered, it follows immediately that v = t.

Suppose that w < . Choose s;, s; € R such that 4 < s; < s» < ¢. Then
sy < t implies b = a"; and v < s impliesb = a™. But ¢ < 4’ (since
0 < a < 1), so this is a contradiction. Hence u = {. We define r to be this
number.

We shall show that b = ha" or @’ = hb, for some h e C/P ~ Q. There
are three cases:

(1) Supposed = a". Thenb = 1-a" (anda” = 1-b).

(2) Supposeb < a’. Then b = ha’ for someh e C/P. If h e Q°, we have
h = o' forsomes > 0. Thenb = ha' < o' = a’", contradicting the defini-
tion of . Thus h ¢ Q".

(3) Supposeb > a’. Then a = hb for some h e C/P. Again, if h eQ",
we have h < a’ for some s > 0;since b < 1, we havea” < h,s0os < r. This
implies that h = ka®, where k ¢ C/P; evidently, 0 < k < 1. Then a" = ka’b;
and since a % 0, we have a“° = o ° = kb = b, contradicting the definition
of u. Thus h ¢Q".

The uniqueness of r is clear from the definition; and the uniqueness of A
then follows from the fact that C/P is an integral domain.

We now apply 3.2 to obtain some information about archimedean quotient
groups of subgroups of I'. Although the result is not surprising, it is helpful
in describing the value group T.

Tueorem 3.3.  Suppose that C/P s a totally ordered valuation ring, but not
a field, and that P is a 3-ideal. Let a be any fixed positive nonunit element of
C/P, and let Ay, A; be the convex subgroups of T associated with the prime ideals
Q°, Q. respectively. Then the quolient group As/ A, is isomorphic to the additive
group of all real numbers.

Proof. Set C/P = A. We define a function V':4,./Q. — R as follows:
Given a positive b’ € Q"/Q. , let b € Q" be a positive preimage of b’. By 3.2,
there exists a unique positive real number r such that b = ha’ or " = hb,
with h e C/P ~ Q"; we set V'(') = r.

We shall now show that this definition is independent of the representative
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chosen. Let ¢ be any other (positive) representative of &', and suppose
¢ =ka'ora’ = ke, withs % rand k ¢ Q". There are four possible cases:

1) b =hd', c=kd, 2) b =ha, & = ke,
3) a =hb, c=kd, 4) o = hb, a = ke

In case (1), we may suppose that r > s. Since ha" " ¢ Q" and & ¢ Q", we
have ha' ™ — k¢ Q*;s0ha’* — k > a. Thenb — ¢ = a’(ha”* — k) > a'™,
contradicting b — ce@,.

In case (2), we write k(b — ¢) = a’(kha™™" — 1)if r > s, and k(b — ¢) =
a'(kh — o) if r < s. Then, in a manner similar to case (1), we obtain
k(b —¢) > a' ™ ifr > s, k(b — ¢) > a7 if r < s, contradicting k(b — ¢) € Q, .

Case (3) may be treated just like case (2).

In case (4), we may suppose that » > s. Then h(b — ¢) = a'(a”°) —
he = c(ka™ — h). Since ka" " eQ" and h ¢Q", we have ka" " — h¢Q"
whence ka”™* — h¢Q.. But ceQ.,soh(b — ¢) ¢Q., a contradiction.

We now extend V’ to all nonzero elements of A ,./Q. by setting V'(b") = 0
if b ¢Q"/Qa, and V'(¢') = V'(—=¢') if ¢/ < 0. The range of V' is evidently
the nonnegative reals.

Now Theorem 3.2 shows that every element of the prime ideal Q"/Q, of
the ring 4 ,4./Q. is the image of an element which is a multiple of some a” by
aunit of 4,,. Moreover, if 7 # s, then a” is not a unit multiple of a’. Thus,
it is clear that V"’ is actually the valuation associated with the valuation ring
A ga/Qa. But As/A; is the value group for the totally ordered valuation
ring A ga/Qa. Hence Ay/A; must be the additive group of all real numbers.

We now examine the situation in which C/I is a totally ordered valuation
ring, where 7 is a 8-ideal of C' containing some N” (not assumed at the outset
to be prime). From Theorem 2.20 we found that an order condition on C/I
implies an algebraic condition—that it be an integral domain. Here we have
an implication in the other direction. The algebraic condition that C/I
be a valuation ring implies that it is totally ordered.

Turorem 3.4. Let I be a B-ideal of C containing some N*. The following
statements are equivalent:

(1) C/I s a totally ordered valuation ring.

(2) The ideals of C containing I form a chain.

(3) C/I is a valuation ring.

(4) Every finitely generated ideal of C/I is a principal ideal.

Proof. (1) implies (2). Since every ideal of C/I is convex, (2) follows
from the remarks in §1.

(2) implies (3). It follows immediately from (2) that the principal ideals
of C/I form a chain, whence C/I is a valuation ring.

(3) tmplies (4). In any valuation ring, every finitely generated ideal is
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principal: the element with smallest image in the value group is a generator
of the whole ideal (see [11, Corollary 2, p. 10]).

(4) vmplies (1). We shall show first that C/I is a totally ordered ring.
Let f € C be arbitrary. Denote the images of f, | f| in C/I by ¢, ¢, respec-
tively. By hypothesis, there exists r e C/I such that (¢:, g2) = (r). Thus,
we may write f = gd, |f| = hd, d = sf + ¢|f| on Z, where d ¢ C is a pre-
image of r, where g, h, s, t € C, and where Z is a suitable zero-set in Z(I). We
now follow the proof of [6, Theorem 2.3, (e) implies (c)], except that certain
equations are understood to be valid only on some zero-set in Z(I). In this
way, we find k ¢ C and Z’ € Z(I) such that & = 1 wherever f is positive in
Z' and k = —1 wherever f is negative in Z’. Hence, there exists Z”¢ Z(I)
such that Z” & Z’, and either f = O or f < 0 on Z”.

This shows that C/I is a totally ordered ring, with @ = 0 if and only if for
some preimage f e C, we have f = |f| (mod I). Hence, by 2.20, C/I is a
totally ordered integral domain. We must now show that if a, b € C/I satisfy
0 < a < b, then a is a multiple of b. By hypothesis, there exists ¢ ¢ C/I such
that ¢ > 0 and (a, b) = (¢). So, for suitable d, ¢, s, ¢t ¢ C/I, we have a = dc,
b = ec,c = sa + tb. On substituting, ¢ = (sd + te)c; and since ¢ # 0, we
obtain sd 4+ t¢ = 1, which implies (d, ¢) = (1). Since the set of nonunits of
C/I forms the unique maximal ideal, it follows that either d or e is a unit.
But ¢ > d > 0, and the maximal ideal is convex, so that e is a unit in any
case. Hence a = de™'b.

We remark that the proof of the equivalence of statements (1) and (4) is
actually very explicit about generators. If (1) holds, and 0 < a < b, then
(a, b) = (b). If (4) holds, whence, as shown, C/I is totally ordered, and
0 < a < b, then the ¢ whose existence is guaranteed by (4) may be chosen
to be b: the proof shows that (¢) = (b). However, we prefer to state (4) with-
out any mention of order.

4, BF-points

We now consider some special prime ideals. In [9], the concept of BF-point
was introduced. A point p € 8X is called a BF-point (with respect to X), if
for each f e C(X) such that f(p) = 0, there is an X-neighborhood of p on
which one of the relations f = 0, f = 0 holds. A point p is a BF-point if and
only if the ideal N” is prime [9, Theorem 5.2]. Thus, since N” is a 8-ideal
of C, the statement that p is a BF-point is equivalent to each of the seven
statements appearing in 2.20, with I = N”. These results subsume 5.3,
5.6(a), 5.8, 5.9, and 5.11 of [9]. We might also note that the hypothesis in
5.13 of [9] can be weakened to “p is a BF-point”.

Let p bea BF-point. Since N** = N” n C*, the final result of Theorem 2.5
may be specialized to the statement that C/N? is isomorphic to C*/N** if
and only if p e vX (with the order preserved when the isomorphism exists).
Thus all of the results obtained for C/N7” apply immediately to C*/N** when
p evX. However,in case p ¢ vX, we may view C*(X) as C(8X), and C*(X)/N*”"
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as the corresponding quotient ring of C(8X). Since pis also a BF-point of X
(as follows from the remarks following [9, Definition 5.1}), this case is covered
too. But it must be kept in mind that the rings C*(X)/N*” and C(X)/N?” are
different.

We recall that every point of 8X is a BF-point if and only if X is an F-space,
that is, if and only if every finitely generated ideal of C(X) is a principal ideal.
Thus, one might conjecture that p is a 8F-point if and only if every proper
finitely generated ideal of C' containing N® is a principal ideal. In general,
however, the second statement holds vacuously, that is, no proper ideal of C
containing N” can be finitely generated.

Indeed, weshall now show that there exists a proper finitely generated ideal
of C containing N7 if and only if {p} is a Gs-set in X. Suppose that {p} isnot
a Gyset in X, and that I = (fi, -+, f.) & M". If peX, we have
Z(fi 4+ -+ f5) # {p}; so there exists ¢ e X distinct from p such that
qeNi1 Z(f:;). If p ¢ X, then the same conclusion follows immediately from
the hypothesis that fi, -++, f, e M*. By complete regularity, there is a
g e N” such that g(q) = 1. Evidently, g ¢I. Hence I does not contain N,
Conversely, if {p} is a Gs-set in X, then it is a zero-set. Let fe C satisfy
Z(f) = {p}. If geN”, then Z(g) contains a neighborhood U of Z(f), so
ge(f). (Define heC by h(zx) = g(x)/f(z) for z ¢ U, h(z) = 0 for z e U.)
Thus N? & (f).

Since a nonisolated BF-point in X cannot have a countable base of neighbor-
hoods (the proof of this statement is the same as that of [6, Corollary 2.4]),
the class of BF-points p such that {p} is a Gs-set but not open is rather re-
stricted. It is not empty, however; the point e in the space £ (§1) is such a
point. Now there is a connection between BF-points and finitely generated
ideals—of the ring C/N®. The observation was made in the proof of Theorem
3.4 that statement (2) of 3.4 implies statement (2) of 2.20. It follows that p
is a BF-point if every finitely generated ideal of C/N? is a principal ideal.

It would be pleasant to be able to prove that the hypothesis that p be a
BF-point is also sufficient for every finitely generated ideal of C/N” to be a
principal ideal—equivalently, for C/N” to be a totally ordered valuation
ring—thus obtaining the equivalence of all the statements (for N¥) appearing
in Theorems 2.20 and 3.4. The validity of this implication remains in doubt.
We have, however, obtained some partial results on this question. It hasbeen
shown that if p is a BP’-point or if X is an F-space (i. e., if every ideal N? of
C(X) is prime), then C/N? is a valuation ring [9, Theorem 5.7]. The remarks
below show that the proof actually yields the result that C/N7 is a totally
ordered valuation ringin these cases; alternatively, we could appeal to Theorem
3.4. (Whenever X is locally compact and s-compact, the space X ~ X is an
F-space [6, Theorem 2.7]. This provides examples of totally ordered valu-
ation rings of the form C/N?.) We now present two sufficient conditions, one
of which is simply a natural weakening of the requirement that X be an
F-gspace.
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Suppose that C/N? is a totally ordered ring. It is easily seen that every
nonzero element of C/N? that is neither an infinitely small element nor its
negative must be a unit. Thus, if at least one of a pair of elements is not
infinitely small, then one of them is a multiple of the other. And since the
maximal ideal is convex, the monotonicity condition is satisfied. Clearly,
then, to show that C/N7 is a totally ordered valuation ring, it suffices to con-
sider the case of an arbitrary pair of distinct infinitely small elements.

TueoreEM 4.1. Let p € BX be a BF-point. Either of the following conditions
suffices to ensure that C/N7 be a totally ordered valuation ring:

(1) There exists an X-netghborhood U of p that is an F-space, that is, every
findtely generated ideal of C(U) is a principal ideal.

(2) Foranyf,geM® ~ N7, the sets Z(f) and Z(g) coincide in some X-neigh-
borhood of p.

Proof. (1) Given a pair of distinct infinitely small positive elements of
C/N?, let f, g be functions in C which map into these elements. It is easily
seen that we may assume that 0 < f < g = 1. Let V be an X-neighbor-
hood of p with V & U. Then we can manage to make Z(f) and Z(g) subsets
of V. Note that Z(f) 2 Z(g). We define ' e C*(X ~ Z(g)) by W (z) =
f(x)/g(x). Then the restriction of 2’ to U ~ Z(g) has a continuous extension
k to all of U, by [6, Theorem 2.6]. Define a function h by h(z) = h'(z) for
xe¢V, h(x) = k(z) for z e U. Since Z(g) & V, h is well-defined. And since
h|U, h| (X ~ V) are continuous, h e C(X). Obviously, f = hg, so f = hg
(mod N?). As remarked above, it follows from this that C/N7 is a totally
ordered valuation ring,.

(2) With the same assumptions and notation as in (1), it follows as in
the proof of [9, Theorem 5.7] that the function h e C*(X ~ Z(g)) defined by
h(x) = f(x)/g(x) can be extended in a continuous manner to the point p.
For simplicity we assume that the value of the extended function at p is zero.
We extend h to all of X by setting h(x) = 0 on Z(g).

Now the concepts of limit superior, limit inferior, and oscillation of a func-
tion at a point can be extended to functions on general topological spaces:
Let f be a real-valued function on X, p ¢ X, and U a base of neighborhoods of
p. Then lm sups.,f(z) may be defined as infyau (Supscv~(p f()),
lim inf,, f(z) as suppa(infseo.(p) f(z)), and the oscillation of f at p as
lim sups—, f(z) — lim inf,,, f(z).

Since the extension of A is continuous at p and has the value zero at this
point, there is a sequence U, of X-neighborhoods of p such that 0 = h(y) = 1/n
for all y e U,. In particular, the oscillation of » at each point of U, is no
greater than 1/n. Now a sequence k, can be chosen such that &, ¢ C(X),
0= ki =1, ku(p) = 0,and Z(k,) S U,. ThenNiy Up 2N 521 Z(k,) = Z(s)
for some s e C(X) such that 4(p) = 0. (Specifically, we may set s(z) =

=12 "k.(x).) By hypothesis, there exists an X-neighborhood U of p such
that (Z(s) n U) = (Z(g) n U). Then (N5-1U,) n U) 2 (Z(g) n U). At
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each point of Z(g) n U the oscillation of % is zero. And for each point of
U ~ Z(g), the oscillation of h is also zero. Hence h is continuous on U.

By complete regularity, there is a function % ¢ C*(X) such that & = 1 on
X ~U,and k(p) = —1. Then’*’ = max {k,0} = lon X ~ Uand %’ = 0
on some X-neighborhood of p. Hence f + k¥ = f (mod N”) and
g + k' = g (mod N”). Moreover, Z(f + k') S Z(f) n U and Z(g + k') E
Z(g) n U. Set I'(z) = (flx) + Kk'(2))/(g(x) + K (2)) for x ¢Z(g + k'),
W(x) = 0for x e Z(g + k’). Then the fact that h is continuous on U and &’
is continuous on X ~ Z(g + k') shows that A’ e¢C(X). Evidently,
f=f+k=ng+#%)=Hhrg(@modN®). Thus, C(X)/N?isa totally ordered
valuation ring.

It is difficult to obtain interesting examples of a BF-point (not a P-point
with respect to X) which does not satisfy condition (1) of Theorem 4.1. It
is always possible to obtain a somewhat artificial example by taking a P-point,
every neighborhood of which contains a non-gF-point, and ‘“gluing” it to a
BF-point which is not a P-point—precisely, by identifying the two points,
and taking neighborhoods of the new point as unions of neighborhoods of the
original points. A specific case of this type of example is the space
X = W(w, + 1) u E, with the points w; and e identified (denote this point by
p). Now it is evident that the presence of such non-BF-points can cause no
harm. In fact, C(X)/N? is isomorphic to C(E)/N°. A corresponding state-
ment can be made in the general case.

A more interesting example is provided by the space W(w; + 1) X E.
The point (w; , e) is a BF-point, every neighborhood of which contains a non-
BF-point. Here it is possible to construct continuous functions which, in
every neighborhood of (w;, €), are zero at some non-BF-points and distinct
from zero at others. However, a totally ordered valuation ring is still ob-
tained, since condition (2) of 4.1 holds. Alternatively, a simple argument
shows that the quotient ring in question is isomorphic to C(E)/N°.

The author has been unable to construct any example which is essentially
different from the two just described. It is possible that one of the two
sufficient conditions of the theorem must always hold.

Condition (2) of Theorem 4.1 is equivalent to the more elegant statement:

(3) The only B-ideals containing N* are N* and M”.

For, suppose (2) holds, and I is a 3-ideal containing N” properly. Let
feM? ~ N® and let g eI ~ N”. Then there is an X-neighborhood U of p
such that Z(f) n U = Z(¢*) n U. 1If k is any function in N? with Z(h) & U,
we have g 4+ h* ¢ I, and hence f ¢ I. Conversely, suppose (2) does not hold,
and f, g e M* ~ N7 are such that Z(f) n U = Z(g) n U for every X-neighbor-
hood U of p. Then [9, Lemma 5.12] yields distinct 3-ideals containing N
properly.

If p is a BP’-point (e. g., the point ¢ in the space E), then condition (2) (and
hence (3)) is evidently fulfilled. An example of a point satisfying (2) which
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is not a BP’-point is the point p in the space X = W(w, + 1) u E discussed
above.

We are now in a position to give a large class of examples of nonprime
ideals of C which yield totally ordered quotient rings; the existence of such
ideals was indicated in §2. By the discussion in §1, in order to produce an
example, it suffices to find a nonprime convex ideal which contains a prime
ideal. Let C/N” be a totally ordered valuation ring but not a field; for ex-
ample, let p be a point of an F-space which is not a P-point. Since every ideal
of C/N? is convex, the preimage of any nonprime ideal of C/N” will be a non-
prime convex ideal of C containing N”. The set of ideals of C/N” abounds
with nonprime ideals. For instance, by 2.7, no nontrivial finitely generated
ideal in this class is prime, which, by 3.4, is equivalent to the statement that
no nontrivial principal ideal in this class is prime.

We conclude with some results related to Theorem 2.6.

Ezample 4.2. 'We now give an example of a BF-point p such that the posi-
tive cone of C(X)/N” has a countable coinitial subset. In particular, then,
C(X)/N? is not an n:-set.

As in [9, Example 5.5], we attach to each isolated point of the space E
another copy of the space E. We now attach to each of the isolated points
in the adjoined spaces still another copy of the space E, and repeat this process
a countably infinite number of times. The spaces added at the (n — 1)t
stage will be denoted generically by E, .

The B-point of E, (the original copy of E) will be denoted by e. A neighbor-
hood of e is the union of a neighborhood of ¢ in E; with neighborhoods of the
B-points in the spaces E; which lie in this neighborhood, and so on, through all
the spaces E.,, for all n. The basic neighborhoods of any other point ¢’ are
defined in a similar manner (starting with the unique space E, of which ¢’ is
the B-point). The resulting space will be designated by E‘”. We remark
that for any positive integer 7, the union of all spaces E;, j = n, attached to
one of the spaces E,, is open in E'. Since the complement of any basic
neighborhood is a union of sets of this form, the basic neighborhoods are both
open and closed. This shows that E is zero-dimensional. (Every countable
metric space is zero-dimensional, as is easily seen; but E is not, metrizable,
since it is not first countable.)

We shall show first that e is a F-point. Let f be any function in C(E‘)
such that f(e) = 0.

If there is a neighborhood of e on which f = 0, we are finished. Otherwise,
let » be the smallest integer such that on the intersection of every neighbor-
hood of ¢ with the spaces E, , f is not identically zero. To present the general
argument, we assume that n > 2. It is easy to see how to simplify the proof
for application to the casesn = 1 and n = 2. In each of the spaces E, , there
exists a deleted neighborhood of its 8-point on whichf > 0, f < 0, or f = 0.
Now a fixed space E,; , together with the spaces £, which have been attached
to it, form a space E® which is homeomorphic to the space described in [9,
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Example 5.5]. Asin that example, we may select a neighborhood in the whole
space E® of the 8-point of the space E,_; , on whichf = 0 orf < 0.

Suppose this has been done for every space E,.—;. We then consider each
fixed space E,—s. Together with the spaces E,—; which have been attached
to it, it forms another copy of E®. Repetition of the above argument yields
a neighborhood in each such space E® of the g-point of the corresponding
space E,_; on which f = 0 or f < 0. Taking the union of all neighborhoods
chosen thus far, we obtain a set on which f = 0 or f < 0. This set is con-
tained in the union of the spaces E, , E,1, and E, .

Continuing in this manner, we obtain, in a finite number of steps, a set U
containing ¢ on which f = 0 or f < 0. This set is contained in the union of
the spaces E;, 7 = n, and can be extended to a neighborhood of e in E*’ by
adding appropriate sets A in the spaces E;, 7 > n. Now, by hypothesis, we
cannot have f = 0 on the intersection of U with the spaces E,. And from
the way in which U was constructed, it is clear that f has no zeros on the inter-
section of U with any one of these spaces, except perhaps at the B-point.
Hence the choice of subsets A in the spaces E;, 7 > n, used to extend U can
be made (in an evident manner) so that f is actually different from zero on
each of them. Thus, there is a neighborhood of ¢ on which f = 0 or f < 0.

We now define a monotone decreasing sequence of nonnegative functions
{g;} in C(E”) such that g;(¢) = 0. Let h e C(E) be the function defined by
h(e,) = 1/n, h(e) = 0. Then set g = 0 on the space E; and g1 = h on each
of the spaces E, ; and on each space E;, 1 > 2, put g1 = h + r, where r is
the constant function whose value coincides with the value already assigned
to g1 at the B-point of the space E. .

In order to define the remaining g,’s we first note that, for any n, the union
of all the spaces E;, 1 = n, attached to a single space E, , is a space homeo-
morphic to B, in a natural way. We now define g; to be identically zero
on all the spaces E;, ¢ < j, and like g; on each of the spaces obtained by
forming the union of all spaces E;, 1 = j that are attached to a single
space E; .

Then the set {§i, §=, --- } is a countable coinitial subset of the positive
cone of C(E')/N°. For, suppose 0 =k =g, =1,2 . Since
0 < k = g, on some neighborhood of the g-point in each of the spaces E;,
and g; = 0 on this space, we have that ¥ = 0 on the neighborhood. The
union of these neighborhoods is a neighborhood of ¢ in £’ on which k& = 0.
Hence & = 0.

This space also provides an example for the case p ¢vX. Let
Y = E“ ~ {e}. We show below that E’ is homeomorphic to a subset of
B8Y, under a mapping r keeping YV pointwise fixed, so that e corresponds to a
point z in BY ~ ¥. Since Y is a countable space, vY = Y;s0z eBY ~ vY.
The arguments about e may then be carried over, with ¥ in place of E“,
and Y-neighborhoods of z in place of neighborhoods of e.

Let 7 coincide on Y with the identity mapping. To complete the definition
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of 7, it remains only to specify the image of e. Evidently, every bounded
continuous function on the subspace E; ~ {e} of ¥ can be extended to a
bounded continuous function on all of Y. Thus, the closure of E; ~ {e} in
BY is homeomorphic to B8(E: ~ {e}).” But E; ~ {e} is homeomorphic to the
countable discrete space N; so BY contains a subset homeomorphic to SN.
Recall that E consists of N together with one point of BN ~ N. Define 7(e)
to be the corresponding point z in 3Y ~ Y contained in the copy of BN found
above. To show that r is the desired homeomorphism, we must only show
that the basic neighborhoods of z and ¢ map into open sets.

Let F, denote the union of all the spaces E;, ¢ = 2, attached to the nth
space E. (i. e., the space E, that was attached to the nt® point in E;). Then
Y = U5 F,, witheach F, open in V. If U is a neighborhood of z in Y,
then U n F, is open in F,, and U n (E; ~ {e}) corresponds to a deleted
neighborhood of ¢ in E; thus (U n (¥ u {2})) is a neighborhood of ¢ in E“.

On the other hand, if V is a basic neighborhood of ¢ in B, then =(V ~ {e})
is a union of basic neighborhoods of points of E; in the subspaces F,,. It was
pointed out earlier that every basic neighborhood in E' is closed. Since each
F, is homeomorphic to B, the set ¥ ~ 7(V ~ {e}) is a union of open sets;
so 7(V ~ {e}) is closed in Y. Hence the characteristic function x of
7(V ~ {e}) is continuous; and its extension to 8Y is 1 at z. Thus x (1) is a
neighborhood of z in BY whose intersection with Y is exactly 7(V ~ {e}).

Let p e BX ~ vX. It was mentioned before Theorem 2.6 that the hyper-
real field C/M?, which by definition is the same as C/M'?, is an n-set. (See
[9, §5] for the definition of the ideal M'?.) Evidently, every proper open sub-
interval of C/M'®? with a greatest lower bound and a least upper bound is
also an ni-set. We now consider the case where p is a BF-point in vX. Of
course, the whole set C'/M’'? will not be an m-set; but we find when the state-
ment about subintervals is valid.

TaeOREM 4.3. Let p e vX be a BF-point. Then every proper open sub-
interval of C/M'" with a greatest lower bound and a least upper bound is an
n-set if and only of M'* = MP".

Proof. The necessity of the condition is clear, since C/M? is the real field.
We turn to the sufficiency. From the definition of M7, it follows that p ¢ X.
First recall that M’" is a prime ideal, so that C/M’? is a totally ordered
integral domain. Let ¢ be the natural order-preserving homomorphism of
C/N?® onto C/M'*. Given two subsets A, A’ of C/M'” of type w, w* respec-
tively, with A < A’, we can select representatives D = ¢ '(4), D’ = ¢ "(4’)

7 For, the closure of E; ~ {e} in BY is a compact Hausdorff space in which E; ~ {e}
is dense; and, by the preceding sentence, every bounded continuous function on E, ~ {e}
can be extended to BY, and hence to this subspace. These are the characteristic proper-
ties of B(E;, ~ {e}).
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to obtain subsets of C'/N? having the same properties. Choosing § e C/N7” as
in 2.6, we have a < ¢(8) < o’ forallaeAd, a’ ¢ A’, whence 4 < ¢(8) < A’.

We now consider the case in which at least one of A, A’ is finite. By re-
ductions similar to those used in the proof of Theorem 2.6, it is easy to see
that we need only show that the positive cone of C/M'® has no countable
coinitial subset. For the rest of this proof, the image of f e C in C/M’'" is
denoted by .. Let {7,} be a decreasing sequence of positive elements. If
no g, vanishes at p, we take 4’ to be any infinitely small element, that is, the
image of any h e M® ~ M'?, with h = 0. If some g,(p) = 0 (so that we
may assume all g,(p) = 0), we follow Case I of the proof of 2.6. We must
now show, independently, that 2’ > 0’. We can adjust the g,’s, first, so that
Z(gn) = {p} for all n (cf. the proof of [9, Theorem 5.7]), and second, so that
they satisfy condition (2) in the proof of 2.6. Now for every y % p, we have
o(y) = g1(y) % 0. Hence, forsome positiveintegerk, 1/(k + 1) < ¢(y) = 1/k;
500 < gru1(y) < h(y). Hence Z(h) = {p}. In particular, i’ > 0'.

As remarked after [9, §5.4], if p € X is a BP’-point, then M'? = N*. Thus,
we obtain immediately :

CoroLLARY 4.4. If p e X is a BP'-point which is not a P-point, then every
proper open subinterval of C/N” with a greatest lower bound and a least upper
bound is an n-set.

We can show easily that the converse of 4.4 is false. If X is the space
W(w: + 1) u E (with e and w; identified) described after 4.1, then, as men-
tioned there, C(X)/N? is isomorphic to C(E)/N°. Now e is a P’-point in the
space E, whence every proper open subinterval of C(E)/N° with a greatest
lower bound and a least upper bound is an n-set. But p is not a BP’-point
in the space X.
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