AVERAGING OPERATORS ON $C_{\infty}(X)$

BY

J. L. Kelley¹

G. Birkhoff [1] investigated a linear operator T which is supposed to be defined on a Banach algebra A, and satisfies, for all f and g in A, the identity: T(fT(g)) = T(f)T(g). It turns out that a very interesting class of operators satisfy this weakened form of the condition that T associate with multiplica-Birkhoff showed that if A is the algebra of real valued continuous tion. functions on a compact Hausdorff space Y, and if in addition to the above identity T is positive and idempotent, then (1) Y may be decomposed into slices, and on each slice T(f) is an average of the values of f on this slice, and (2) if Y is a topological group, and, in addition to the above requirements, T commutes with right translation, then T is convolution on the left by Haar (Definitions and more precise statements of these measure of a subgroup. theorems occur in the text.) This last result suggests a connection with a result of Kawada and Itô [4], who showed that a positive, finite, idempotent (under convolution) measure on a compact topological group is necessarily Haar measure on some subgroup. The purpose of this note is to exhibit this connection and to extend the results mentioned above.

Let X be a locally compact Hausdorff space, let $C_{\infty}(X)$ be the algebra of continuous real valued functions on X which vanish at ∞ , and let an operator T on $C_{\infty}(X)$ be called *averaging* if condition (1) of the preceding paragraph The results of this note are: (1) T is averaging if and only if T(fT(g)) =holds. (2) If T is positive and idempotent, then T is averaging if and T(f)T(g).only if the range of T is a subalgebra of $C_{\infty}(X)$. (3) If X is a topological group, then T commutes with right translation if and only if T is convolution on the left by a finite signed measure m. (4) Given the hypothesis of (3) and the fact that T is averaging, then m is \pm Haar measure on a compact subgroup (5) On a locally compact topological group X, a finite (nonnegative) of X. measure which is idempotent under convolution is necessarily Haar measure on a compact subgroup (proved for X compact by Kawada and Itô [4]). Finally, we note in Section 4 that Halmos' form of a theorem of Dieudonné [3] is a consequence of the earlier results. The theorem in question, which states that a certain Radon-Nikodym differentiation is averaging, arises from the general probabilistic question as to when a conditional expectation has "nice" The work of Moy [5], characterizing conditional expectation as a properties. linear operator, contains this theorem and many other results in this direction, and the theorem in question has been vastly extended by Maharam [7].

As a matter of convenience, not necessity, the discussion is limited to alge-

Received March 25, 1957.

¹ Presented to the American Mathematical Society April 24, 1953.

bras of real functions. ((2) above would require the additional hypothesis that the subalgebra be self-adjoint.)

The techniques used are those of elementary measure theory, and the first section is devoted to a few lemmas on this subject. These are given in detail simply because there seems to be no reference for the results.

1. Preliminaries

Let X be a locally compact Hausdorff space, and let Y be its one-point compactification, obtained from X by adjoining a single point, ∞ , and agreeing that the complement in Y of each compact subset of X is a neighborhood of ∞ . The space $C_{\infty}(Y)$ of all continuous real valued functions on Y which vanish at the point ∞ is normed, as usual, by $||f|| = \sup \{|f(y)| : y \in Y\}$. $C_{\infty}(X)$ is defined to be the space obtained by restricting the domain of each member of $C_{\infty}(Y)$ to X; clearly $C_{\infty}(X)$ is isometric to $C_{\infty}(Y)$.

The relation between Baire measures on X and those on Y is of importance. (The terminology here, as in the other measure theoretic considerations, is that of Halmos [2].) Since the Baire σ -ring of X is contained in that of Y, each measure on Y corresponds (by restricting its domain of definition) to a measure on X. On the other hand:

1.1. LEMMA. For each finite Baire measure m on X there is a unique Baire measure n on Y such that n is an extension of m and the outer n-measure of $\{\infty\}$ is zero (i.e. for some Baire set $E, \infty \in E$ and n(E) = 0).

Proof. First, E is a Baire subset of Y if and only if either E or Y - E is a Baire subset of X. To see that this is the case, consider the family S of all subsets E of Y such that either E or Y - E is a Baire set in X. Without difficulty, it can be seen that S is a σ -ring, and to show that S is the Baire σ -ring of Y it is only necessary to verify (in routine fashion) that the complement of a compact G_{δ} set containing ∞ is a Baire set in X. It follows that the intersection of a Baire set in Y with a Baire set in X is a Baire set in X. Given m, a finite Baire measure on X, there is a set E such that $m(E \cap F) = m(F)$ for all Baire sets F in X. For each Baire set G in Y set $n(G) = m(E \cap G)$. Then n is an extension of m, $\infty \in Y - E$, and n(Y - E) = 0. If p is another extension of m such that the outer p measure of $\{\infty\}$ is zero, then both p and n assign measure zero to some Baire set G which contains ∞ , and p and n agree on subsets of Y - G. It follows that the extension is unique.

A Baire measure on Y such that the outer measure of ∞ is zero will be said to vanish at ∞ , and a signed measure which is the difference of two such measures will also be said to vanish at ∞ . The set of all signed measures which vanish at ∞ is denoted $M_{\infty}(Y)$, and is normed by ||m|| = variation of $m = \sup \{ |\int f dm| : f \in C_{\infty}(Y) \}$. (It is not hard to see, because each Baire measure is regular, that $\sup \{ |\int f dm| : f \in C_{\infty}(Y) \} = \sup \{ |\int f dm| : f an$ $arbitrary continuous function on Y \}$, whenever $m \in M_{\infty}(Y)$.) Clearly the space of all signed measures on X is in one to one norm preserving correspondence with $M_{\infty}(Y)$, and we use either measures on X, or measures vanishing at ∞ on the compactification Y of X, as convenience dictates.

1.2. LEMMA. For each bounded linear functional F on $C_{\infty}(Y)$ there is a unique signed measure m in $M_{\infty}(Y)$ such that $F(f) = \int f \, dm$ for all f in $C_{\infty}(Y)$. Moreover, $\|F\| = \|m\|$.

Proof. Using the Hahn-Banach theorem, extend F to a linear functional F' on the space of all continuous functions on X such that ||F|| = ||F'||. By the Riesz-Kakutani theorem there is a unique signed Baire measure m on X such that $\int f dm = F'(f)$ for all continuous f on X, and ||F'|| = ||m||. It must be shown that m vanishes at ∞ . For e > 0, there is f in $C_{\infty}(Y)$, of norm at most one, such that $\int f dm \ge ||m|| - e$. Because $f \in C_{\infty}(Y)$, there is a continuous function g on Y such that $||g|| \le 1, f + g \le 1$, and $\int g dm + e$ is greater than or equal to the outer measure of $\{\infty\}$.

$$\int f \, dm + \int g \, dm \leq \parallel m \parallel$$

and the outer measure of $\{\infty\}$ is less than or equal to $||m|| - \int f dm + e < 2e$. Hence $m \in M_{\infty}(Y)$. The uniqueness of m follows from regularity of Baire measures.

The w^* topology for $M_{\infty}(Y)$ is the topology of elementwise convergence of the corresponding functionals on $C_{\infty}(Y)$. This is related to w^* convergence in the adjoint of the space of all continuous functions on Y as follows: The signed measures m_a converge to m relative to the latter topology if and only if m_a converges to m relative to the w^* topology for $M_{\infty}(Y)$ and $\int 1 dm_a = m_a(Y)$ converges to m(Y). (This is easily proved since the direct sum of the set of constant functions and $C_{\infty}(Y)$ is the space of all continuous functions on Y.)

The carrier of a signed Baire measure m is defined to be the set of all points y such that each neighborhood of y contains a set E with $m(E) \neq 0$. (If m is a measure, this is equivalent to requiring that the measure of each Baire neighborhood of x is not zero.) Clearly the carrier of a measure is a closed set; in general it is not a Baire set. The carrier of a signed measure on X and the carrier of the corresponding measure on the compactification Y are related in a simple fashion: the latter is the closure of the first. The following results will be stated for signed measures on Y, but clearly the corresponding propositions about signed measures on X are correct.

1.3. LEMMA. If $f \in C_{\infty}(Y)$, $m \in M_{\infty}(Y)$, and f = 0 on the carrier of m, then $\int f dm = 0$. Consequently, if f = g on the carrier of m, then $\int f dm = \int g dm$. If m is a measure and $f \ge 0$, then $\int f dm > 0$ if and only if f(x) > 0 for some x in the carrier of m.

This is an elementary consequence of the definition of integral—one only needs the fact that if f vanishes on the carrier of m then f vanishes on a Baire set containing the carrier of m.

1.4. LEMMA. If $g \in C_{\infty}(Y)$, $m \in M_{\infty}(Y)$, and $\int fg \, dm = 0$ for all f in $C_{\infty}(Y)$, then g is zero on the carrier of m.

Proof. If g is not zero on the carrier of m, there is a neighborhood U of a point x of the carrier of m on which g is nonzero and of constant sign—say g(x) > 0. We may assume that $g(x)/2 \leq g(u) \leq 3g(x)/2$ for all u in U. There is then a Baire set E contained in U such that $m(E) \neq 0$ and the measure of each Baire subset of E is zero or of the same sign as m(E). Since m is regular, there is a compact Baire subset K of E of nonzero measure, and a Baire neighborhood V of K such that for each subset F of V - K, m(F) < m(K)/6. Then a simple calculation shows that if f is nonegative, 1 on K and 0 outside V, then $\int fg \, dm \neq 0$.

1.5. LEMMA. If m is a nonnegative member of $M_{\infty}(Y)$, f is continuous and $\int f dm = || m || \sup \{f(x) : x \text{ in the carrier of } m\}$, then f is constant on the carrier of m.

This is, again, an elementary consequence of the definitions of integral and of carrier.

Let F be a continuous map of the compact Hausdorff space Y into another compact Hausdorff space Z. Then for each signed Baire measure m on Ythere is a unique signed measure, which we denote $F^*(m)$, such that

$$F^*(m)(E) = m(F^{-1}[E])$$

for each Baire set E in Z; equivalently, for f on Z, $\int f \, dm = \int f \circ F \, dF^*(m)$ where $f \circ F$ is the composition of the two functions. The map F^* is said to be *induced by* F.

If F is a continuous map of a locally compact Hausdorff space X into another such space Z, and if F is continuous at ∞ in the sense that the inverse under F of a compact set is compact, then F may be extended to a continuous map of the one-point compactification of X into the compactification of Z. The following discussion applies directly to this situation. (Actually, by using regular Borel measures instead of Baire, the condition of continuity at ∞ may be dispensed with.)

If Y is a closed subset of a compact Hausdorff space Z, the identity map induces a map of the Baire measures on Y into those on Z. The image, n, under this induced map of a signed measure m is called the *normal extension* of m. The carrier of n is surely a subset of Z.

1.6. LEMMA. If Z is a closed subset of Y, n is a signed measure on Y, and if the carrier of n is contained in Z, then n is the normal extension of a unique signed Baire measure m on Z. If f is continuous on Z and g is an arbitrary continuous extension of f on Y, then $\int f dn = \int g dm$.

Proof. First, each Baire set in Z is the intersection with Z of a Baire set in Y, because: each compact G_{δ} in Z is the set of zeros of a continuous func-

217

tion on Z, this function has a continuous extension to Y, the set of zeros of the extended function is a compact G_{δ} in Y, and a routine argument then extends the proposition to arbitrary Baire sets in Z. Since the carrier C of n is contained in Z, if E and F are Baire sets in Y such that $E \cap C = F \cap C$, then n(E) = n(F). For a Baire set G in Z we then define m(G) to be n(F) where F is an arbitrary Baire set F in Y such that $F \cap C = G$. It is clear that m is a signed measure, that n is its normal extension, and that the equality on integrals is a special case of the corresponding formula for the image of a signed measure under an induced map.

2. Averaging operators

Throughout this section, Y and Z are compact Hausdorff spaces, each with a distinguished point, ∞ . The following lemma is a mild variant of one of Birkhoff's. Recall that the w^* topology for the adjoint $M_{\infty}(Y)$ of $C_{\infty}(Y)$ is the topology of pointwise convergence on $C_{\infty}(Y)$.

2.1. LEMMA. Let T be a bounded linear operator on $C_{\infty}(Y)$ to $C_{\infty}(Z)$, and for each $z \in Z$ let n_z be the signed measure such that $T(f)(z) = \int f(s) dn_z s$ for each $f \in C_{\infty}(Y)$. Then the function n on Z to $M_{\infty}(Y)$ is continuous relative to the w^* topology, $n_{\infty} = 0$, and $||T|| = \sup \{||n_z|| : z \in Z\}$.

On the other hand, if n is continuous on Z to $M_{\infty}(Y)$ and $n_{\infty} = 0$, the operator T defined by $T(f)(Z) = \int f dn_z$, for $f \in C_{\infty}(Y)$, is a bounded linear operator carrying $C_{\infty}(Y)$ into $C_{\infty}(Z)$.

Proof. If T is a given linear operator, the fact that for each f in $C_{\infty}(Y)$ the function T(f) is continuous on Z shows that n is continuous relative to the w^* topology. Clearly $n_{\infty} = 0$, and $||T|| = \sup\{||T(f)| : ||f|| \leq 1\} = \sup\{||T(f)(z)| : z \in Z \text{ and } ||f|| \leq 1\} = \sup\{||n_z|| : z \in Z\}$. On the other hand, if n is given, continuous on Z to $M_{\infty}(Y)$, the range of n is w^* compact and hence bounded, and there is no difficulty in showing that the corresponding T is a bounded linear operator.

An operator T on $C_{\infty}(Y)$ to $C_{\infty}(Y)$ is to be called *averaging* if Y can be broken up into "slices" such that for each function f the function T(f) assumes on each slice an average of the values of f on this slice. This notion is made precise as follows: For each y in Y let $D_y = \{x: T(f)(x) = T(f)(y) \text{ for all } f \text{ in} C_{\infty}(Y)\}$, and let n_y be the signed measure such that $T(f)(y) = \int f dn_y$. Then T is averaging if and only if the carrier of n_y is a subset of D_y for each y in Y.

2.2. THEOREM. A bounded linear operator T on $C_{\infty}(Y)$ to $C_{\infty}(Y)$ is averaging if and only if T(fT(g)) = T(f)T(g) for all f and g in $C_{\infty}(Y)$.

Proof. Suppose that T(fT(g)) = T(f)T(g) and that $T(f)(x) = \int f(t) dn_x t$. Then for f and g in $C_{\infty}(Y)$ and y in Y it is true that

$$T(fT(g))(y) = \int [f(s)\int g(r) \, dn_s \, r] \, dn_y \, s = \int f(s) \, dn_y \, s \int g(t) \, dn_y \, t,$$

and hence $\int f(s) [\int g(t) d(n_s - n_y)t] dn_y s = 0$. By Lemma 1.4 it follows that $\int g(t) d(n_s - n_y)t$ vanishes for s belonging to the carrier of n_y . Consequently, since this is the case for all functions $g, n_s = n_y$ if s ϵ carrier n_y , hence T(f)(y) = T(f)(s) for such s, and it is proved that T is averaging. Conversely, if T is averaging, then $n_s - n_y = 0$ when s ϵ carrier n_y , and

$$\int f(s) \left[\int g(t) \ d(n_s - n_y) t \right] dn_y \, s = 0,$$

because the function within square brackets vanishes on the carrier of n_y . Consequently T(fT(g)) = T(f)T(g).

2.3. Remark. An averaging operator need be neither idempotent $(T^2 = T)$ nor positive $(T(f) \ge 0$ when $f \ge 0$). Clearly an averaging operator T is idempotent if and only if for each x, $\int 1 \cdot dn_x$ is zero or one, and is positive if and only if for each x, n_x is a nonnegative measure.

2.4. Remark. Each bounded operator T on a space $C_{\infty}(Y)$ to another function space $C_{\infty}(Z)$ may be realized as the restriction of an averaging operator to a subalgebra, in the following simple way. For each function f which is continuous on the cartesian product $Y \times Z$, let $T^{-}(f)(y, z) = \int f(t, z) dn_z t$, where $T(g)(z) = \int g dn_z$ for $g \in C_{\infty}(Y)$. Clearly T^{-} is averaging, for $T^{-}(f)(y, z)$ is an average of the values of f on $Y \times \{z\}$, and $T^{-}(f)$ is constant on this set. The algebra $C_{\infty}(Y)$ is isomorphic with the subalgebra of $C(Y \times Z)$ consisting of functions which are constant on $\{y\} \times Z$ for each yin Y, and 0 on $\{\infty\} \times Z$, and the algebra $C_{\infty}(Z)$ is isomorphic with the subalgebra consisting of functions constant on each set of the form $Y \times \{z\}$, and 0 on $Y \times \{\infty\}$. Moreover, under these two isomorphisms, T corresponds exactly to T^{-} .

The range of an averaging operator is automatically a subalgebra of $C_{\infty}(Y)$, since T(f)T(g) = T(fT(g)). The structure of a subalgebra A of $C_{\infty}(Y)$ is a well known consequence of the Stone-Weierstrass theorem [6]. The subalgebra A divides Y together with the point ∞ into a family D of equivalence classes, two points x and y belonging to the same class if f(x) = f(y) for all fin A, and A is dense in the algebra of all those continuous functions which are constant on each member of D and vanish on the class containing ∞ . If Ais the range of an operator T, then D is precisely the family of all sets D_y , where $D_y = \{x: T(f)(x) = T(f)(y) \text{ for all } f \text{ in } C_{\infty}(Y)\}$. If T is positive but not averaging, then there is y in Y such that the carrier of n_y is not a subset of D_y , and it is then possible to find f in A such that f(y) = 0 but $\int f dn_y \neq 0$, i.e. $T(f)(y) \neq 0$. But this cannot happen if T is idempotent, for f = T(g)for some g, and T(g)(y) = 0 while $T \circ T(g)(y) \neq 0$. Hence:

2.5. THEOREM. A positive idempotent operator on $C_{\infty}(Y)$ is averaging if and only if its range is a subalgebra.

3. Operators commuting with group translation

Throughout this section it will be assumed that X is a locally compact topological group. Then for each $x \in X$, right translation by x is defined to be

the operator R_x such that $R_x(f)(y) = f(yx^{-1})$. If *m* is a signed measure, then convolution on the left by *m* is defined by $m * f(x) = f(y^{-1}x) dmy$. If *n* is another signed measure, the convolution of *m* and *n*, m * n, is defined by $\int f dm * n = \iint f(xy) dmx dny$. These definitions are arranged so that m * (n * f) = (m * n) * f.

The following simple theorem states the relationship between convolution on the left and operators commuting with right translation.

3.1. THEOREM. A bounded linear operator T on $C_{\infty}(X)$ is convolution on the left by a signed measure if and only if T commutes with right translation by each group element.

Proof. Since $m * R_x(f)(y) = \int R_x(f)(z^{-1}y) dmz = \int f(z^{-1}yx^{-1}) dmz = m * f(yx^{-1}) = R_x(m * f)(y)$, convolution on the left commutes with right translation. On the other hand, suppose that a bounded linear operator T commutes with right translation, that e is the identity element of X, and that m is the signed measure such that for all $f \in C_\infty(X)$,

$$T(f)(e) = \int f(x^{-1}) \ dmx.$$

Then for each $g \in C_{\infty}(X)$, $T(g)(y) = R_{y-1} \circ T(g)(e) = T \circ R_{y-1}(g)(e) = \int R_{y-1}(g)(x^{-1}) dmx = m * g(y).$

It is necessary to establish the connection between the measure m, which according to Theorem 3.1, completely describes an operator T which commutes with right translation, and the measures n_x , for x in X, which were used in the preceding section to describe T. Suppose then that T(f) = m * f, that for each $x \in X$, $T(f)(x) = \int f dn_x$, that x is the "point" measure defined by $\int f dx = \int f(t) dx t = f(x)$, and that m^- is the measure such that $\int f dm^- = \int f(y^{-1}) dmy$. Then for each $f \in C_{\infty}(X)$ and each $x \in X$,

$$\int f \, dn_x = \int f(y^{-1}x) \, dmy = \int f(yx) \, dm^- y = \int f(yz) \, dm^- y \, dx \, z = \int f \, dm^- * x \, .$$

Consequently, $n_x = m^- * x^{\cdot}$. Either from this formula, or directly from the definition of T, it is not hard to see that the right translate by the carrier of the measure n_x is (*carrier* m^-)x (that is, the right translate by x of the carrier of m^-). For convenience, in what follows, the carrier of m^- will be denoted by C^- .

The operator T, where T(f) = m * f, is averaging if the carrier of $n_x = m^- * x$ is a subset of $D_x = \{y: \text{for all } f, T(f)(x) = T(f)(y)\}$. Rewritten, $D_x = \{y: n_x = n_y\} = \{y: m^- * x = m^- * y\} = \{y: m^- * (xy^{-1}) = m^-\}$. Define H to be $\{z: m^- * z = m^-\}$; by a simple calculation,

$$H = \{z: for all f, T(f)(z) = T(f)(e)\}.$$

Then H is a subgroup of X, and by the last equality above, it is clear that H is a closed subgroup. Moreover, D_x is precisely the right coset of x modulo H.

It follows that T is averaging if and only if for each $x \in X$, $C^-x \subset Hx$, which is the case if and only if $C^- \subset H$. Finally, since

$$(m^{-} * x)(A^{-1}) = (x^{-1}) * m(A)$$

for each Baire set A, the subgroup H is precisely the set of all x such that $x^{\cdot} * m = m$, and since the carrier C of m is $(C^{-})^{-1}$, T is averaging if and only if $C \subset H$. Since, from above, $H = \{z: for all f, T(f)(z) = T(f)(e)\}$, an equivalent statement is: T is averaging if and only if for each $x \in C$, and each $f \in C_{\infty}(X), T(f)(x) = T(f)(e)$. Hence:

3.2. LEMMA. If T is convolution on the left by a Baire measure m, then T is averaging if and only if the carrier C of m is a subset of the group H of all x such that m is invariant under left translation by x (i.e. x * m = m). Equivalently, T is averaging if and only if for each $x \in C$, T(f)(x) = T(f)(e) for all $f \in C_{\infty}(x)$.

It is almost obvious that if convolution by m is averaging, then m is, in some sense, the Haar measure of H. A few minor technical details remain. It may be that no Baire subset of H is a Baire set in X. However, (Lemma 1.6) there is a unique signed measure h on H such that for $f \in C_{\infty}(H)$, f dh = g dm, where g is any member of $C_{\infty}(X)$ which is an extension of f. The signed measure m is the normal extension of h. If g is an extension of f, then the translation of g by a member of H is an extension of the translation of f by the same element, and it follows that h is invariant under left translation by members of H. Finally, it must be shown that either h or -h is nonnegative, from which it will follow that h or -h is a left Haar measure for H, and since h is finite, H will be compact. Let J be the union of all Baire sets A in H such that each Baire subset of A has nonnegative h measure. Then J is invariant under left translation, and $HJ \subset J$. Hence either J = H, or J is void. In the first case h is nonnegative, and in the latter (see Halmos, loc. cit. p. 121) h is nonpositive. It is then proved:

3.3. THEOREM. If X is a locally compact group and T is a bounded linear operator on $C_{\infty}(X)$ such that T is averaging and commutes with right translation, then T is convolution on the left by (the normal extension of) \pm Haar measure on a compact subgroup of X.

Using the preceding result, the following generalization of a theorem of Kawada and Itô [4] will be demonstrated.

3.4. THEOREM. If X is a locally compact group and m is a nonnegative finite measure which is idempotent under convolution, then m is necessarily (the normal extension of) Haar measure on a compact subgroup of X.

Proof. Suppose that m is nonnegative, $m \neq 0$, and m * m = m. It will be shown that for each y belonging to the carrier C of m, and each $f \in C_{\infty}(X)$, m * f(y) = m * f(e), from which, using 3.2 and 3.3, the theorem will follow.

First, it must be shown that, if $m \neq 0$, then ||m|| = 1. Because ||m|| =

 $|| m * m || \leq || m ||^2$, $|| m || \geq 1$. On the other hand, if *D* is a compact Baire set and $f \in C_{\infty}(X)$, $0 \leq f(x) \leq 1$ for all $x \in X$ and f = 1 on $D^{-1}D^{-1}$, then $|| m || \geq \int f(y^{-1}) dmy = m * f(e) = m * m * f(e) = \iint f(y^{-1}z^{-1}) dmy dmz$, and since, for a fixed *z* in *D*, the integrand is one on *D*, the double integral is greater than or equal to $(m(D))^2$. Hence $|| m || \geq || m ||^2$, and || m || = 1.

Next, it will be shown that C is the closure of CC. Let f be a nonnegative member of $C_{\infty}(X)$ which is zero save on an open set U. Then $m * f(x) = \int f(y^{-1}x) dmy$ is positive if and only if $f(y^{-1}x) > 0$ for some y in C, which is true if and only if for some y in C, $y^{-1}x \in U$, or equivalently $x \in yU$. Hence m * f is zero precisely on the complement of the set CU. Consequently, m * m * f = m * f is zero except on CCU, and therefore CU = CCU. Taking the intersection of the sets CU for all neighborhoods U of e, we obtain, on the one hand, C, and on the other, the closure of CC, and the assertion is proved.

Finally, for an arbitrary nonnegative f in $C_{\infty}(X)$, let x be a fixed member of C^{-1} such that $m * f(x) = \sup\{m * f(x) : z \in C^{-1}\}$. Then

$$m * f(x) = \int m * f(z^{-1}x) dmz,$$

because *m* is idempotent. Now if $z \in C$, $z^{-1}x \in C^{-1}C^{-1}$, and by virtue of the preceding paragraph, $z^{-1}x \in C^{-1}$. Consequently, m * f(x) is equal to the integral of a function, which on the carrier *C* of the measure *m*, is everywhere less than or equal to m * f(x). By Lemma 1.5 it follows that for $z \in C$, $m * f(z^{-1}x) = m * f(x)$, and since $x^{-1} \in C$, m * f(x) = m * f(e). Hence m * fis constant on *C*, and since *x* is then an arbitrary point of *C*, for all $x \in C$, m * f(x) = m * f(e). If h = f - g, where *f* and *g* are nonnegative, then m * h(x) = m * f(x) - m * g(x) = m * f(e) - m * g(e) = m * h(e) and hence m * h(x) = m * h(e) for every *h* in $C_{\infty}(X)$, and the theorem is proved.

4. A remark on measure theory

A theorem of Dieudonné has been reformulated by Halmos [3] in such a way that it states, in our terminology, that a certain operator is averaging. This theorem will be shown to be a consequence of 2.4 and 2.5. The argument is given, not as a simplification of Halmos' (which is really about as simple as one could hope), but because it seems to throw a little additional light on the theorem.

The problem is the following. We are given a set X, a σ -algebra of subsets S, and a finite measure m on S. We are also given a set Y, a σ -algebra \Im of subsets, and an S- \Im measurable function P on X onto Y, and p is defined to be the measure on \Im induced by m (that is, $p(A) = m(P^{-1}[A])$). The question: under what conditions does there exist, for each y in Y, a measure n_y on S such that $\int f dm = \int [\int f(t) dn_y t] dpy$ for all f in $L_{\infty}(m)$? It is not true that such measures n_y always exist; the content of the Dieudonné-Halmos theorem is that they do exist, provided that X and Y are the "natural coordinate spaces" for the measures.

For convenience, let us assume that X = Y and $3 \subset S$, and that P is the

identity mapping. Then p is simply $m \mid 3$, the restriction of m to the domain 3. For each member f of $L_{\infty}(m)$ let $f \cdot m$, the indefinite integral, be the signed measure such that $f \cdot m(A) = \int_A f \, dm$. Clearly $f \cdot m \mid 3$ is absolutely continuous with respect to $m \mid 3$, and in fact the Radon-Nikodym derivative belongs to $L_{\infty}(m \mid 3)$. Moreover, the map carrying f into its derivative $d(f \cdot m \mid 3)/d(m \mid 3)$ is a positive idempotent mapping of $L_{\infty}(m)$ onto $L_{\infty}(m \mid 3)$. But $L_{\infty}(m)$ is isomorphic to the space of all continuous functions on a compact Hausdorff space Z, where Z is the class of all multiplicative linear functionals on $L_{\infty}(m)$ with the weak* topology (equivalently, Z is the Stone space of the Boolean measure algebra of m). Since $L_{\infty}(m \mid 3)$ is a subalgebra of $L_{\infty}(m)$, Theorem 2.5 shows that the Radon-Nikodym differentiation is averaging. The desired equality then follows from application of 2.4 to the equation

$$\int f \, dm = \int 1 \, d(f \cdot m) = \int 1 [d(f \cdot m \mid 5) / d(m \mid 5)] \, d(m \mid 5).$$

It is also possible to verify directly that the differentiation T satisfies the identity T(fT(g)) = T(f)T(g).

References

- G. BIRKHOFF, Moyennes de fonctions bornées, Algèbre et Théorie des Nombres, Colloques Internationaux du Centre National de la Recherche Scientifique, no. 24, pp. 143–153, Centre National de la Recherche Scientifique, Paris, 1950.
- 2. P. R. HALMOS, Measure theory, New York, 1950.
-, On a theorem of Dieudonné, Proc. Nat. Acad. Sci. U. S. A., vol. 35 (1949), pp. 38-42.
- Y. KAWADA AND K. ITÔ, On the probability distribution on a compact group. I, Proceedings of the Physico-Mathematical Society of Japan (3), vol. 22 (1940), pp. 977-998.
- 5. SHU-TEH CHEN MOY, Characterizations of conditional expectation as a transformation on function spaces, Pacific J. Math., vol. 4 (1954), pp. 47-63.
- 6. M. H. STONE, The generalized Weierstrass approximation theorem, Math. Mag., vol. 21 (1948), pp. 167–184, 237–254.
- D. MAHARAM, Decompositions of measure algebras and spaces, Trans. Amer. Math. Soc., vol. 69 (1950), pp. 142–160.

UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA