
AVERAGING OPERATORS ON

BY

J. L. KELLEY

G. Birkhoff [1] investigated a linear operator T which is supposed to be de-
fined on Bnch lgebr A, nd stisfies, for 11 f nd g in A, the identity:
T(fT(g)) T(f)T(g). It turns out that very interesting class of operators
stisfy this weakened form of the condition that T ssocite with multiplic-
tion. Birkhoff showed that if A is the algebr of rel vlued continuous
functions on compact Hausdorff space Y, and if in addition to the bove
identity T is positive nd idempotent, then (1) Y my be decomposed into
slices, nd on ech slice T(f) is n verage of the vlues of f on this slice,
nd (2) if Y is topological group, nd, in addition to the above requirements,
T commutes with right translation, then T is convolution on the left by Hair
measure of a subgroup. (Definitions nd more precise statements of these
theorems occur in the text.) This last result suggests a connection with
result of Kwd nd It5 [4], who showed that positive, finite, idempotent
(under convolution) mesure on compact topological group is necessarily
Hair mesure on some subgroup. The purpose of this note is to exhibit this
connection nd to extend the results mentioned bove.

Let X be a locally compact Hausdorff space, let C(X) be the algebra of
continuous real valued functions on X which vanish at , and let an operator
T on C(X) be called averaging if condition (1) of the preceding paragraph
holds. The results of this note are (1) T is averaging if and onlyif T(fT(g))
T(f)T(g). (2) If T is positive and idempotent, then T is averaging if and
only if the range of T is a subalgebra of C(X). (3) If X is a topological group,
then T commutes with right translation if and only if T is convolution on the
left by a finite signed measure m. (4) Given the hypothesis of (3) and the
fact that T is averaging, then m is :t: Haar measure on a compact subgroup
of X. (5) On a locally compact topological group X, a finite (nonnegative)
measure which is idempotent under convolution is necessarily Haar measure
on a compact subgroup (proved for X compact by Kawada and It5 [4]).
Finally, we note in Section 4 that ttalmos’ form of a theorem of Dieudonn [3]
is a consequence of the earlier results. The theorem in question, which states
that a certain Radon-Nikodym differentiation is averaging, arises from the
general probabilistic question as to when a conditional expectation has "nice"
properties. The work of Moy [5], characterizing conditional expectation as a
linear operator, contains this theorem and many other results in this direc-
tion, and the theorem in question has been vastly extended by Maharam [7].
As a matter of convenience, not necessity, the discussion is limited to alge-
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bras of real functions. ((2) above would require the additional hypothesis
that the subalgebra be self-adjoint.)
The techniques used are those of elementary measure theory, and the first

section is devoted to a few lemmas on this subject. These are given in detail
simply because there seems to be no reference for the results.

1. Preliminaries

Let X be a locally compact Hausdorff space, and let Y be its one-point com-
pactification obtained from X by adjoining a single point, , and agreeing
that the complement in Y of each compact subset of X is a neighborhood of .
The space C(Y) of all continuous real valued functions on Y which vanish at
the point is normed, as usual, by f sup {I f(Y) I:Ye Y}. C(X) is de-
fined to be the space obtained by restricting the domain of each member of
C(Y) to X; clearly C(X) is isometric to C(Y).
The relation between Baire measures on X and those on Y is of importance.

(The terminology here, as in the other measure theoretic considerations, is
that of Halmos [2].) Since the Baire a-ring of X is contained in that of Y,
each measure on Y corresponds (by restricting its domain of definition) to a
measure on X. On the other hand:

1.1. LEMMA. For each finite Baire measure m on X there is a unique Baire
measure n on Y such that n is an extension of m and the outer n-measure of

is zero (i.e. for some Baire set E, e E and n(E) 0).

Proof. First, E is a Baire subset of Y if and only if either E or Y E
is a Baire subset of X. To see that this is the case, consider the family S of
all subsets E of Y such that either E or Y E is a Baire set in X. Without
difficulty, it can be seen that S is a a-ring, and to show that S is the Baire
a-ring of Y it is only necessary to verify (in routine fashion) that the comple-
ment of a compact Ga set containing is a Baire set in X. It follows that
the intersection of a Baire set in Y with a Baire set in X is a Baire set in X.
Given m, a finite Baire measure on X, there is a set E such that m(E n F)
m(F) for all Baire sets F in X. For each Baire set G in Y set n(G) m(E n G).
Then n is an extension of m, e Y E, and n(Y E) O. If p is another
extension of m such that the outer p measure of is zero, then both p and
n assign measure zero to some Baire set G which contains , and p and n
agree on subsets of Y G. It follows that the extension is unique.
A Baire measure on Y such that the outer measure of is zero will be said

to vanish at , and a signed measure which is the difference of two such
measures will also be said to vanish at . The set of all signed measures
which vanish at is denoted M(Y), and is normed by m variation of
m sup {I f dm 1: f C(Y)}. (It is not hard to see, because each Baire
measure is regular, that sup {Iffdm[’feC(Y)} sup Iffdm] "fan
arbitrary continuous function on Y}, whenever m e M(Y).) Clearly the space
of all signed measures on X is in one to one norm preserving correspond-
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ence with Moo(Y), and we use either measures on X, or measures vanishing
at on the compactification Y of X, as convenience dictates.

1.2. LEMMA. For each bounded linear functional F on Coo(Y) there is a unique
signed measure m in Moo(Y) such that F(f) f dm for all f in Coo(Y). More-
over, F IIm

Proof. Using the Hahn-Banach theorem, extend F to a linear functional
F’ on the space of all continuous functions on X such that
By the Riesz-Kakutani theorem there is a unique signed Baire measure m on
X such that . f dm F’(f) for all continuous f on X, and
It must be shown that m vanishes at . For e > 0, there is f in Coo(Y), of
norm at most one, such that . f dm >- m e. Because f e Coo(Y), there
is a continuous function g on Y such that g --< 1, f -t- g -< 1, and g dm - e
is greater than or equal to the outer measure of }. Then

ffdm + fgdm <- IIml[

and the outer measure of is less than or equal to m f dm + e < 2e.
Hence m M(Y). The uniqueness of m follows from regularity of Baire
measures.
The w* topology for Moo(Y) is the topology of elementwise convergence of

the corresponding functionals on Coo(Y). This is related to w* convergence
in the adjoint of the space of all continuous functions on Y as follows" The
signed measures ma converge to m relative to the latter topology if and only if
ma converges to m relative to the w* topology for Moo(Y) and i dma ma(Y)
converges to re(Y). (This is easily proved since the direct sum of the set of
constant functions and Coo(Y) is the space of all continuous functions on Y.)
The carrier of a signed Baire measure m is defined to be the set of all points

y such that each neighborhood of y contains a set E with re(E) O. (If m is
a measure, this is equivalent to requiring that the measure of each Baire
neighborhood of x is not zero.) Clearly the carrier of a measure is a closed
set; in general it is not a Baire set. The carrier of a signed measure on X and
the carrier of the corresponding measure on the compactification Y are re-
lated in a simple fashion: the latter is the closure of the first. The following
results will be stated for signed measures on Y, but clearly the corresponding
propositions about signed measures on X are correct.

1.3. LEMMA. If f Ca(Y), m M(Y), and f 0 on the carrier of m, then
f dm O. Consequently, if f g on the carrier of m, then f dm g dm.

If m is a measure and f >-_ O, then f dm > 0 if and only if f(x) > 0 for some
x in the carrier of m.

This is an elementary consequence of the definition of integralqone only
needs the fact that if f vanishes on the carrier of m then f vanishes on a Baire
set containing the carrier of m.
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].4. LEMMA. If g e C(Y), m M(Y), and fg dm 0 for all f in C(Y),
lhen g is zero on the carrier of m.

Proof. If g is not zero on the carrier of m, there is a neighborhood U of
point x of the carrier of m on which g is nonzero and of constant sign--say
g(x) > 0. We may assume that g(x)/2 <= g(u) <- 3g(x)/2 for all u in U.
There is then a Baire set E contained in U such that m(E) 0 and the meas-
ure of each Baire subset of E is zero or of the same sign as m(E). Since m is
regular, there is a compact Baire subset K of E of nonzero measure, and
Baire neighborhood V of K such that for each subset F of V K, m(F)
m(K)/6. Then a simple calculation shows that if f is nonegative, 1 on K and 0
outside V, then fg dm O.

1.5. LEMMA. If m is a nonnegative member of M(Y), f is continuous and
f dm m sup {f(x): x in the carrier of m}, then f is constant on the car-

rier of m.

This is, again, a elementary consequence of the definitions of integral and
of carrier.

Let F be a continuous map of the compact Hausdorff space Y into another
compact Hausdorff space Z. Then for each signed Baire measure m on Y
there is a unique signed measure, which we denote F*(m), such that

F*(m)(E) m(F-l[E])

for each Baire set E in Z; equivalently, for f on Z, f dm f F dF*(m)
where f F is the composition of the two functions. The map F* is said to
be induced by F.

If F is a continuous map of a locally compact Hausdorff space X into
other such space Z, and if F is continuous at in the sense that the inverse
under F of a compact set is compact, then F may be extended to a continuous
map of the one-point compactification of X into the compactification of Z.
The following discussion applies directly to this situation. (Actually, by
using regular Borel measures instead of Baire, the condition of continuity at

may be dispensed with.)
If Y is a closed subset of a compact Hausdorff space Z, the identity map

induces a map of the Baire measures on Y into those on Z. The image, n,
under this induced map of a signed measure m is called the normal extension
of m. The carrier of n is surely a subset of Z.

1.6. LEMMA. f Z is a closed subset of Y, n is a signed measure on Y, and
if the carrier of n is contained in Z, then n is the normal extension of a unique
signed Baire measure m on Z. Iff is continuous on Z and g is an arbitrary con-
tinuous extension of f on Y, then f dn g dm.

Proof. First, each Baire set in Z is the intersection with Z of a Baire set
in Y, because" each compact G in Z is the set of zeros of a continuous func-
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tion on Z, this function has a continuous extension to Y, the set of zeros of the
extended function is a compact G in Y, and a routine argument then extends
the proposition to arbitrary Baire sets in Z. Since the carrier C of n is con-
tained in Z, if E and F are Baire sets in Y such that E n C F n C, then
n(E) n(F). For a Baire set G in Z we then define re(G) to be n(F) where
F is an arbitrary Baire set F in Y such that F C G. It is clear that m
is a signed measure, that n is its normal extension, and that the equality on
integrals is a special case of the corresponding formula for the image of a
signed measure under an induced map.

2. Averaging operators

Throughout this section, Y and Z are compact Hausdorff spaces, each with
a distinguished point, . The following lemma is a mild variant of one of
Birkhoff’s. Recall that the w* topology for the adjoint Moo (Y) of Coo (Y) is
the topology of pointwise convergence on Coo (Y).

2.1. LEMMA. Let T be a bounded linear operator on Coo (Y) to Coo (Z), and

for each z Z let nz be the signed measure such that T(f)(z) f(s) dnzs for each

f Coo (Y). Then the function n on Z to Moo (Y) is continuous relative to the
w* topology, noo O, and V sup {11 nz II’z Z }.
On the other hand, if n is continuous on Z to Moo (Y) and noo O, the oper-

ator T defined by T(f)(Z) f dnz for f Coo (Y), is a bounded linear operator
carrying Coo (Y) into Coo (Z).

Proof. If T is a given linear operator, the fact that for each f in Coo (Y) the
function T(f) is continuous on Z shows that n is continuous relative to the w*
topology. Clearly noo 0, and T sup{ll T(f)I1"11 f --< 1}
sup{ T(f)(z) ]:ze Z and f <= 1} sup{ll n lJ’ze Z}. On the other hand,
if n is given, continuous on Z to Moo (Y), the range of n is w* compact and
hence bounded, and there is no difficulty in showing that the corresponding 7’
is a bounded linear operator.
An operator T on Coo (Y) to Coo (Y) is to be called averaging if Y can be

broken up into "slices" such that for each function f the function T(f) assumes
on each slice an average of the values of f on this slice. This notion is made
precise as follows" For each y in Y let D, {x" T(f)(x) T(f)(y).for all f in

Coo (Y)}, and let n, be the signed measure such that T(f)(y) f f dn. Then
T is averaging if and only if the carrier of ny is a subset of Du for each y in Y.

2.2. THEOREM. A bounded linear operator T on Coo (Y) to C (Y) is aver-
aging if and only if T(fT(g)) T(f)T(g).for all f and g in Coo (Y).

Proof. Suppose that T(fT(g)) T(f)T(g) and that T(f)(x) f f(t) dnx t.
Then for f and g in Coo (Y) and y in Y it is true that

T(fT(g))(y) f [f(s)f g(r) dn r] dan s f(s) dn.l s g(t) dny l,
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and hence f(s)[y g(t) d(n n,,.,)t] dny s 0. By Lemma 1.4 it follows that
g(t) d(n n.v)t vanishes for s belonging to the carrier of ny. Consequently,

since this is the case for all functions g, n n, if s carrier n, hence T(f)(y)
T(f)(s) for such s, and it is proved that T is averaging. Conversely, if T is
averaging, then n. n 0 when s e carrier nv, and

f f(s)[] g(t) d(n n,,)t] dn,j s O,

because the function within square brackets vanishes on the carrier of n..
Consequently T(fT(g)) T(f)T(g).

2.3. Remark. An averaging operator need be neither idempotent (T T)
nor positive (T(f) >= 0 when f _>_ 0). Clearly an averaging operator T is
idempotent if and only if for each x, ] 1 .dn is zero or one, and is positive if
and only if for each x, n is a nonnegative measure.

2.4. Remark. Each bounded operator T on a space C (Y) to another
function space C (Z) may be realized as the restriction of an averaging oper-
ator to a subalgebra, in the following simple way. For each function f which
is continuous on the cartesian product Y X Z, let T-(f)(y, z) f(t, z) dn, t,
where T(g)(z) g dn for g e C (Y). Clearly T- is averaging, for
T-(f)(y, z) is an average of the values of f on Y X {z}, and T-(f) is constant
on this set. The algebra C (Y) is isomorphic with the subalgebra of
C(Y X Z) consisting of functions which are constant on {y} X Z for each y
in Y, and 0 on X Z, and the algebra C (Z) is isomorphic with the sub-
algebra consisting of functions constant on each set of the form Y X {z}, and
0 on Y X {oo }. Moreover, under these two isomorphisms, T corresponds
exactly to T-.
The range of an averaging operator is automatically t subalgebra of C (Y),

since T(f)T(g) T(fT(g)). The structure of a subalgebra A of C (Y) is a
well known consequence of the Stone-Weierstrass theorem [6]. The sub-
algebra A divides Y together with the point into a family D of equivalence
classes, two points x and y belonging to the same class if f(x) f(y) for all f
in A, and A is dense in the algebra of all those continuous functions which are
constant on each member of D and vanish on the class containing . If A
is the range of an operator T, then D is precisely the family of all sets D,
where Dy {x: T(f)(x) T(f)(y) for all f in C (Y)}. If T is positive but
not averaging, then there is y in Y such that the carrier of n is not a subset
of D,, and it is then possible to find f in A such that f(y) 0 but f dn, O,
i.e. T(f)(y) O. But this cannot happen if T is idempotent, for f T(g)
for some g, and T(g)(y) 0 while T T(g)(y) O. Hence:

2.5. THEOREM. A positive idempotent operator on C Y) is averaging if and
only if its range is a subalgebra.

3. Operators commuting with group translation

Throughout this section it vill be ssumed that X is locally compact
topological group. Then for each x X, right translation by x is defined to be
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the operator Rx such that Rx(f)(y) f(yx-1). If m is a signed measure,
convolution on the left by m is defined by m f(x) f(y-Ix) dmy. If n is an-
other signed measure, the convolution of m and n, m n, is defined by
f f dm n ff f(xy) dmx dny. These definitions are arranged so that
m , (n , f) (m , n) , f.
The following simple theorem states the relationship between convolution

or the left and operators commuting with right translation.

3.1. THEOREM. A bounded linear operator T on C (X) is convolution on the
left by a signed measure ( and only if T commules with right lranslalion by each
group element.

Proof. Sice m Rx (f)(y) f Rz(f)(z-ly) dmz f(z-yx-) dmz
m ,f(yx-1) Rx (m f)(y), convolution on the left commutes with right
translation. On the other hand, suppose that a bounded linear operator T
commutes with right translations, that e is the identity element of X, and
that m is the signed measure such that for 11 f C (X),

T(f)(e) f f(x-) dmx.

Then for each g C (X), T(g)(y) R,_o T(g)(e) T oR_(g)(e)
R._I (g)(x-) dmx m g(y).
It is necessary to establish the connection between the measure m, which

according to Theorem 3.1, completely describes an operator 7’ which com-
mutes with right translation, and the measures n, for x in X, which were
used in the preceding section to describe T. Suppose then that T(f) m f,
that for each x X, T(f)(x) f f dn, that x" is the "point" measure defined
by f f dz" . f(t) dz’t f(x), and that m- is the measure such that f f dm-
f f (y-i) dmy. Then for each f C (X) and each x X,

f f dnx f f(y-lx) dmy f f(yx) dm-y f f(yz) dm-y dx’z f f dm- x’.

Consequently, nx m- x’. Either from this formula, or directly from the
definition of T, it is not hard to see thtt the right translate by the carrier of
the measure nx is (carrier m-)z (that is, the right translate by x of the carrier
of m-). For convenience, i what follows, the carrier of m- will be denoted
by C-.
The operator T, where T(f) m, f, is averaging if the carrier of nx

m-, z" is a subset of Dx IY" for all f, T(f)(x) T(f)(y)}. Rewritten,
Dx {y:n n} {y’m- , x" m- , y’} {y’m- , (xy-1) m-}.
Define H to be z’m- z" m-}; by a simple calculation,

H {z" for all.(, T(f)(z) T(f)(e)}.

Then H is a subgroup of X, and by the last equality above, it is clear that H
is , closed subgroup. Moreover, D is precisely the right coset of x modulo H.
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It follows that T is averaging if and only if for each x X, C-x c Hx, which
is the ease if and only if C- c H. Finally, since

(m- x’)(A-1) (x-l) m(A)

for each Baire set A, the subgroup H is precisely the set of all x such that
x" m m, and since the carrier C of m is (C-)-1, T is averaging if and only
if C c H. Since, from above, H {z: for all f, T(f)(z) T(f)(e)}, an
equivalent statement is: T is averaging if and only if for each x e C, and each
f C (X), T(f)(x) T(f)(e). Hence:

3.2. ]EMMA. If T is convolution on the left by a Baire measure m, then 7’ is
averaging if and only if the carrier C of m is a subset of the group H of all x such
that m is invariant under left translation by x (i.e. x" m m). Equivalently,
T is averaging if and only if for each x e C, T(f)(x) T(f)(e) for all f e C (x).

It is almost obvious that if convolution by m is averaging, then m is, in
some sense, the Haar measure of H. A few minor technical details remain.
It may be that no Baire subset of H is a Baire set in X. Itowever, (Lemma
1.6) there is a unique signed measure h on H such that for f e C (H),
f dh g dm, where g is any member of C (X) which is an extension of f.
The signed measure m is the normal extension of h. If g is an extension of
f, then the translation of g by a member of H is an extension of the translation
of f by the same element, and it follows that h is invariant under left transla-
tion by members of H. Finally, it must be shown that either h or -h is non-
negative, from which it will follow that h or -h is a left Haar measure for
H, and since h is finite, H will be compact. Let J be the union of all Baire
sets A in H such that each Baire subset of A has nonnegative h measure.
Then J is invariant under left translation, and HJ J. Hence either
J H, or J is void. In the first case h is nonnegative, and in the latter (see
Halmos, loc. cir. p. 1.21) h is nonpositive. It is then proved:

3.3. THEOREM. If X is a locally compact group and T is a bounded linear
operator on C (X) such that T is averaging and commutes with right translation,
then T is convolution on the left by (the normal extension o;) -+- Haar measure on
a compact subgroup of X.

Using the preceding result, the following generalization of a theorem of
Kawada and It5 [4] will be demonstrated.

3.4. THEOREM. If X is a locally compact group and m is a nonnegative

.finite measure which is idempotent under convolution, then m is necessarily (the
normal extension of) Haar measure on a compact subgroup of X.

Proof. Suppose that m is nonnegative, m 0, and m m m. It will
be shovn that for each y belonging to the carrier C of m, and each f C (X),
m f(y) m f(e), from which, using 3.2 and 3.3, the theorem will follow.

First, it must be shown that, if m 0, then m 1. Because m
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llm**nll =< [1mll Ilmll >= 1. 0n the other hand ifDisacompactBaire
set 8ndfeC(X), 0 f(z) 1 for 11 zeXnd f 1 on D-D-, then
m f f(y-) dmy m f(e) m m f(e) ff f(y-z-) dmy dmz, and

since, for fixed z in D, the integrnd is one on D, the double integral is
greater than or equal to (m(D)). Hence m[[ [[m[,and lm 1.

Next, it will be shown that C is the closure of CC. Let f be a nonnegative
member of C (X) which is zero save on an open set U. Then m. f(x)
f f(y-x) dmy is positive if and only if f(y-x) > 0 for some y in C, which is
true if and only if for some y in C, y-ix e U, or equivalently x e yU. Hence
m .f is zero precisely on the complement of the set CU. Consequently,
m m f m f is zero except on CCU, and therefore CU CCU. Taking
the intersection of the sets CU for all neighborhoods U of e, we obtain, on the
one hand, C, and on the other, the closure of CC, and the assertion is proved.

Finally, for an arbitrary nonnegative f in C (X), let x be a fixed member
of C-1 such that m, f(x) sup{m f(z):z e C-}. Then

m * f(x) f m * f(z-lx) dmz,

because m is idempotcnt. Now if z e C, z-ix e C-x c-iC-, and by virtue
of the preceding paragraph, z-x e C-1. Consequently, m, f(x) is equal to
the integral of function, which on the carrier C of the measure m, is every-
where less than or equal to m f(x). By Lemm 1.5 it follows that for z C,
m f(z-x) m f(x), nd since x- C, m f(x) m f(e). Hence m f
is constant on C, and since x is then n arbitrary point of C, for all x e C,
m,f(x) m,f(e). If h f g, wherefand g are nonnegative, then
m , h(x) m , f(x) m , g(x) m , f(e) m , g(e) m , h(e) and hence
m h(x) m h(e) for every h in C (X), and the theorem is proved.

4. A remark on meosore theor
A theorem of Dieudonnd tins been reformulaed by Hlmos [3] in such

wy that it states, in our terminology, that certain operator is veraging.
This theorem will be shown to be u consequence of 2.4 and 2.5. The argu-
ment is given, not as simplification of Halmos’ (which is really about as
simple as one could hope), but because it seems to throw a little additional
light on the theorem.
The problem is the following. We are given set X, z-algebr of subsets, and finite mesure m on . We are also given a set Y, z-algebr 3 of

subsets, and an 8-5 measurable function P on X onto Y, and p is defined to be
the mesurc on 5 induced by m (that is, p(A) m(P-[A])). The question:
under what conditions does there exist, for each y in Y, t measure n on
such that f f dm f If f(t) dn t] dpy for all f in L, (m)? It is not true thut
such measures n always exist; the content of the ])ieudonn-Halmos theorem
is that they do exist, provided that X and Y are the "natural coordinate
sp:ces" for the measures.

For convenience, let us ssume that X Y ttnd 5 , and that P is the
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identity mapping. Then p is simply m 5, the restriction of m to the domain
5. For each member f of L (m) let f.m, the indefinite integral, be the signed
measure such that f.m(A) f.fdm. Clearly f.ml5 is absolutely con-
tinuous with respect to m15 and in fact the Radon-Nikodym derivative be-
longs to L (m]5). Moreover, the map carrying f into its derivative
d(f.mlS)/d(ml5 is a positive idempotent mapping of L (m) ontoL (m15).
But L,(m) is isomorphic to the space of all continuous functions on a compact
Hausdorff space Z, where Z is the class of all multiplicative linear functionals
on L (m) with the weak* topology (equivalently, Z is the Stone space of the
Boolean measure algebra of m). Since L (m15) is a subalgebra of L (m),
Theorem 2.5 shows that the Radon-Nikodym differentiation is averaging.
The desired equality then follows from application of 2.4 to the equation.

f f dm f 1 d(f.m) f l[d(f.m S)/d(m 15)] d(mlS).
It is also possible to verify directly that the differentiation T satisfies the
identity T(fT(g)) T(f)T(g).
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