AVERAGING OPERATORS ON (.(X)

BY
J. L. KeLLey!

G. Birkhoff [1] investigated a linear operator T which is supposed to be de-
fined on a Banach algebra A, and satisfies, for all f and ¢ in 4, the identity:
TUT(g)) = T()T(g). It turnsout that a very interesting class of operators
satisfy this weakened form of the condition that 7" associate with multiplica-
tion. Birkhoff showed that if A is the algebra of real valued continuous
functions on a compact Hausdorff space Y, and if in addition to the above
identity T is positive and idempotent, then (1) ¥ may be decomposed into
slices, and on each slice T'(f) is an average of the values of f on this slice,
and (2) if Y is a topological group, and, in addition to the above requirements,
T commutes with right translation, then 7T is convolution on the left by Haar
measure of a subgroup. (Definitions and more precise statements of these
theorems occur in the text.) This last result suggests a connection with a
result of Kawada and It6 [4], who showed that a positive, finite, idempotent
(under convolution) measure on a compact topological group is necessarily
Haar measure on some subgroup. The purpose of this note is to exhibit this
connection and to extend the results mentioned above.

Let X be a locally compact Hausdorff space, let C(X) be the algebra of
continuous real valued functions on X which vanish at «, and let an operator
T on C,(X) be called averaging if condition (1) of the preceding paragraph
holds. The results of this note are: (1) T is averaging if and only if T(fT'(¢)) =
T(T(g). (2) If T is positive and idempotent, then 7' is averaging if and
only if the range of 7' is a subalgebra of C(X). (3) If X isa topological group,
then T commutes with right translation if and only if T is convolution on the
left by a finite signed measure m. (4) Given the hypothesis of (3) and the
fact that T is averaging, then m is &= Haar measure on a compact subgroup
of X. (5) On a locally compact topological group X, a finite (nonnegative)
measure which is idempotent under convolution is necessarily Haar measure
on a compact subgroup (proved for X compact by Kawada and It6 [4]).
Finally, we note in Section 4 that Halmos’ form of a theorem of Dieudonné [3]
is a consequence of the earlier results. The theorem in question, which states
that a certain Radon-Nikodym differentiation is averaging, arises from the
general probabilistic question as to when a conditional expectation has ‘“nice”
properties. The work of Moy [5], characterizing conditional expectation as a
linear operator, contains this theorem and many other results in this direc-
tion, and the theorem in question has been vastly extended by Maharam [7].

As a matter of convenience, not necessity, the discussion is limited to alge-
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bras of real functions. ((2) above would require the additional hypothesis
that the subalgebra be self-adjoint.)

The techniques used are those of elementary measure theory, and the first
section is devoted to a few lemmas on this subject. These are given in detail
simply because there seems to be no reference for the results.

1. Preliminaries

Let X be a locally compact Hausdorff space, and let Y be its one-point com-
pactification, obtained from X by adjoining a single point, «, and agreeing
that the complement in Y of each compact subset of X is a neighborhood of .
The space Cw(Y) of all continuous real valued functions on Y which vanish at
the point « is normed, asusual, by || f || = sup {| /(%) |:y e Y}. Cwo(X)isde-
fined to be the space obtained by restricting the domain of each member of
C(Y) to X; clearly C_(X) is isometric to C(Y).

The relation between Baire measures on X and those on Y is of importance.
(The terminology here, as in the other measure theoretic considerations, is
that of Halmos [2].) Since the Baire ¢-ring of X is contained in that of Y,
each measure on YV corresponds (by restricting its domain of definition) to a
measure on X. On the other hand:

1.1. LemMA. For each finite Baire measure m on X there is a unique Baire
measure n on Y such that n ts an extension of m and the ouler n-measure of
{ oo} 2s zero (i.e. for some Baire set E, © ¢ F and n(l) = 0).

Proof. Tirst, £ is a Baire subset of V if and only if either X or ¥ — E
is a Baire subset of X. To see that this is the case, consider the family S of
all subsets E of Y such that either ¥ or ¥ — E is a Baire set in X. Without
difficulty, it can be seen that S is a o-ring, and to show that S is the Baire
o-ring of Y it is only necessary to verify (in routine fashion) that the comple-
ment of a compact G5 set containing « is a Baire set in X. It follows that
the intersection of a Baire set in Y with a Baire set in X is a Baire set in X.
Given m, a finite Baire measure on X, there is a set £ such that m(¥ n F) =
m(F) for all Baire sets F'in X. For each Baire set Gin ¥ set n(G) = m(E n G).
Then n is an extension of m, © ¢ Y — E, and n(Y — E) = 0. If pis another
extension of m such that the outer p measure of { } is zero, then both p and
n assign measure zero to some Baire set G which contains «, and p and n
agree on subsets of ¥ — (. It follows that the extension is unique.

A Baire measure on Y such that the outer measure of « is zero will be said
to vanish at o, and a signed measure which is the difference of two such
measures will also be said to vanish at . The set of all signed measures
which vanish at « is denoted M (Y), and is normed by || m | = variation of
m=sup {|[fdm]|:feC,(Y)}. (It is not hard to see, because each Baire
measure is regular, that sup { ]ffdml feCu(Y)} =sup {|[fdm]|:fan
arbitrary continuous function on Y}, whenever m ¢ M (Y).) Clearly the space
of all signed measures on X is in one to one norm preserving correspond-
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ence with M_(Y), and we use either measures on X, or measures vanishing
at « on the compactification ¥ of X, as convenience dictates.

1.2. LEmMA. For each bounded linear functional F on C_(Y) there is a unique
signed measure m in M (Y) such that F(f) = [ fdm for all f in C,(Y). More-
over, | F || = [[m].

Proof. Using the Hahn-Banach theorem, extend F to a linear functional
F’ on the space of all continuous functions on X such that | F || = || F’|.
By the Riesz-Kakutani theorem there is a unique signed Baire measure m on
X such that [ fdm = F'(f) for all continuous f on X, and || F' || = || m|.
It must be shown that m vanishes at . For e > 0, there is f in C(Y), of
norm at most one, such that [ fdm = || m| — e. Because f e C(Y), there
is a continuous function gon Y such that || g || £ 1,/ 4+ g < 1,and [ gdm + ¢
is greater than or equal to the outer measure of {»}. Then

[fdm+ [gdm < | m]|

and the outer measure of { « } isless than orequalto || m || — f fdm + e < 2e.
Hence m e M _(Y). The uniqueness of m follows from regularity of Baire
measures.

The w* topology for M_(Y) is the topology of elementwise convergence of
the corresponding functionals on C(Y). This is related to w* convergence
in the adjoint of the space of all continuous functions on Y as follows: The
signed measures m, converge to m relative to the latter topology if and only if
m, converges to m relative to the w* topology for M (Y) and [ 1 dm, = m.(Y)
converges to m(Y). (This is easily proved since the direct sum of the set of
constant functions and C_(Y) is the space of all continuous functions on Y.)

The carrier of a signed Baire measure m is defined to be the set of all points
y such that each neighborhood of ¥ contains a set E with m(E) > 0. (If m is
a measure, this is equivalent to requiring that the measure of each Baire
neighborhood of x is not zero.) Clearly the carrier of a measure is a closed
set; in general it is not a Baire set. The carrier of a signed measure on X and
the carrier of the corresponding measure on the compactification Y are re-
lated in a simple fashion: the latter is the closure of the first. The following
results will be stated for signed measures on Y, but clearly the corresponding
propositions about signed measures on X are correct.

1.3. Lemma. IffeC (Y), meM_(Y), and f = O on the carrier of m, then
Jfdm = 0. Consequently, if f = g on the carrier of m, then [ fdm = [ g dm.
If m is a measure and f = 0, then [ f dm > 0 if and only if f(x) > 0 for some
x in the carrier of m.

This is an elementary consequence of the definition of integral—one only
needs the fact that if f vanishes on the carrier of m then f vanishes on a Baire
set containing the carrier of m.
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14. LemMa. If g e C(Y), m e M (Y), and [ fgdm = 0 for all f in C(Y),
then g is zero on the carrier of m.

Proof. 1If g is not zero on the carrier of m, there is a neighborhood U of a
point z of the carrier of m on which ¢ is nonzero and of constant sign—say
g(z) > 0. We may assume that g(z)/2 £ g(u) = 3¢g(x)/2 for all v in U.
There is then a Baire set £ contained in U such that m(E) £ 0 and the meas-
ure of each Baire subset of E is zero or of the same sign as m(E). Since m is
regular, there is a compact Baire subset K of E of nonzero measure, and a
Baire neighborhood V of K such that for each subset F of V — K, m(F) <
m(K)/6. Then a simple calculation shows that if f is nonegative, 1 on K and 0
outside V, then [ fg dm = 0.

1.5. LemMmA.  If m is a nonnegative member of M (Y), f is continuous and

[fdm = || m| sup {f(x): x in the carrier of m}, then f is constant on the car-
rier of m.

This is, again, an elementary consequence of the definitions of integral and
of carrier.

Let F be a continuous map of the compact Hausdorff space Y into another
compact Hausdorff space Z. Then for each signed Baire measure m on Y
there is a unique signed measure, which we denote F*(m), such that

F¥(m)(B) = m(F'[E))

for each Baire set E in Z; equivalently, for f on Z, [ f dm = [ fo F dF*(m)
where fo F is the composition of the two functions. The map F* is said to
be tnduced by F.

If F is a continuous map of a locally compact Hausdorff space X into an-
other such space Z, and if F is continuous at « in the sense that the inverse
under I of a compact set is compact, then F may be extended to a continuous
map of the one-point compactification of X into the compactification of Z.
The following discussion applies directly to this situation. (Actually, by
using regular Borel measures instead of Baire, the condition of continuity at
© may be dispensed with.)

If Y is a closed subset of a compact Hausdorff space Z, the identity map
induces a map of the Baire measures on Y into those on Z. The image, n,
under this induced map of a signed measure m is called the normal extension
of m. The carrier of n is surely a subset of Z.

1.6. Lemma. If Z is a closed subset of Y, n is a signed measure on Y, and
if the carrier of n is contained in Z, then n is the normal extension of a unique
signed Baire measure m on Z. If f is continuous on Z and g is an arbitrary con-
tinuous extension of fon Y, then [ fdn = [ g dm.

Proof. First, each Baire set in Z is the intersection with Z of a Baire set
in Y, because: each compact G5 in Z is the set of zeros of a continuous func-
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tion on Z, this function has a continuous extension to Y, the set of zeros of the
extended function is a compact G5 in Y, and a routine argument then extends
the proposition to arbitrary Baire sets in Z. Since the carrier C' of n is con-
tained in Z, if £ and F are Baire sets in Y such that ¥ n C = F n C, then
n(E) = n(F). Tor a Baire set G in Z we then define m(G) to be n(F) where
F is an arbitrary Baire set F' in ¥ such that F n C = @. It is clear that m
is a signed measure, that n is its normal extension, and that the equality on
integrals is a special case of the corresponding formula for the image of a
signed measure under an induced map.

2. Averaging operators

Throughout this section, ¥ and Z are compact Hausdorff spaces, each with
a distinguished point, «. The following lemma is a mild variant of one of
Birkhoff’s. Recall that the w* topology for the adjoint M, (Y) of C, (Y) is
the topology of pointwise convergence on C, (Y).

2.1. Lemma. Let T be a bounded linear operator on C, (Y) to C (Z), and
for each z € Z let n, be the signed measure such that T(f)(2) = [ f(s) dn, s for each
feC,(Y). Then the function n on Z to M, (Y) is continuous relative to the
w* topology, n, = 0, and || T || = sup {|| n. ||:2 e Z}.

On the other hand, if n is continuous on Z to M (Y) and n, = 0, the oper-
ator T defined by T(f)(Z) = [ fdn,, for f € C,, (Y), is a bounded linear operator
carrying C, (Y) into C, (Z).

Proof. If T is a given linear operator, the fact that for each fin C_, (¥) the
function T'(f) is continuous on Z shows that n is continuous relative to the w*
topology. Clearly n, = 0, and || T || = sup{|| TC/) :[| f | = 1} =
sup{| T(f)(2) |:z e Z and || f|| £ 1} = sup{| n. ||:2 € Z}. On the other hand,
if » is given, continuous on Z to M (Y), the range of n is w* compact and
hence bounded, and there is no difficulty in showing that the corresponding 7'
is a bounded linear operator.

An operator T on C_ (Y) to C_ (Y) is to be called averaging if ¥ can be
broken up into “slices’” such that for each function f the function 7'(f) assumes
on each slice an average of the values of f on this slice. This notion is made
precise as follows: For each y in Y let D, = {x:T(f)(x) = T(f)(y) for all f in
C, (Y)}, and let n, be the signed measure such that T(f)(y) = [ fdn,. Then
T is averaging if and only if the carrier of n, is a subset of D, for each y in Y.

2.2. TueoreMm. A bounded linear operator T on C, (Y) to C (Y) is aver-
aging if and only of T(fT(g)) = T(NHT(g) for all f and g in C, (Y).

Proof. Suppose that T(fT(g)) = T(f)T(g) and that T(f)(x) = [ f(¢) dn. t.
Then for fand g in C_ (Y) and y in Y it is true that

T(FT (@) (y) = [ g(r) dnirldny s = [ f(s) dny s [ g(1) dny ¢,
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and hence [ f(s)[f ¢(¢) d(n. — n,)t] dny s = 0. By Lemma 1.4 it follows that
[ g(t) d(n, — n,)t vanishes for s belonging to the carrier of n, . Consequently,
since this is the case for all functions g, n, = n, if s e carrier n, , hence T(f)(y) =
T(f)(s) for such s, and it is proved that T is averaging. Conversely, if 7 is
averaging, then n, — n, = 0 when s e carrier n, , and

[ 1S g(t) d(ny — n)t dny, s = 0,

because the function within square brackets vanishes on the carrier of n, .
Consequently T(fT(g)) = T()T(g).

2.3. Remark. An averaging operator need be neither idempotent (7% = 17
nor positive (T'(f) = 0 when f = 0). Clearly an averaging operator 7 is
idempotent if and only if for each x, [ 1-dn, is zero or one, and is positive if
and only if for each z, n, is a nonnegative measure.

2.4. Remark. Each bounded operator T on a space C, (Y) to another
function space C, (%) may be realized as the restriction of an averaging oper-
ator to a subalgebra, in the following simple way. For each function f which
is continuous on the cartesian product ¥ X Z, let T~ (f)(y, 2) = [ f(t, 2) dn. t,
where T(¢)(2) = [ g dn, for g € C, (Y). Clearly T~ is averaging, for
T~ (f)(y, 2) is an average of the values of fon Y X {2z}, and T7(f) is constant
on this set. The algebra C, (Y) is isomorphic with the subalgebra of
C(Y X Z) consisting of functions which are constant on {y} X Z for each y
inY,and 0 on {} X Z, and the algebra C_, (Z) is isomorphic with the sub-
algebra consisting of functions constant on each set of the form ¥ X {2}, and
Oon Y X {x}. Moreover, under these two isomorphisms, 7 corresponds
exactly to 1.

The range of an averaging operator is automatically a subalgebra of C, (Y),
since T(f)T(g) = T(fT(g)). The structure of a subalgebra 4 of C, (Y) is a
well known consequence of the Stone-Weierstrass theorem [6]. The sub-
algebra A divides Y together with the point « into a family D of equivalence
classes, two points z and y belonging to the same class if f(x) = f(y) for all f
in A, and A is dense in the algebra of all those continuous functions which are
constant on each member of D and vanish on the class containing «. If A
is the range of an operator 7', then D is precisely the family of all sets D, ,
where D, = {z:T(f)(x) = T()(y) for all fin C, (Y)}. If T is positive but
not averaging, then there is i in Y such that the carrier of n, is not a subset
of D, , and it is then possible to find f in A such that f(y) = 0 but [ fdn, = 0,
ie. T(f)(y) ## 0. But this cannot happen if 7T is idempotent, for f = T(g)
for some ¢, and T(g)(y) = 0 while 7' o T'(g)(y) # 0. Hence:

2.5. TueorEM. A positive idempotent operator on C,, (Y') is averaging if and
only if its range is a subalgebra.

3. Operators commuting with group translation

Throughout this section it will be assumed that X is a locally compact
topological group. Then for each « e X, right translation by « is defined to be
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the operator I, such that R,(f)(y) = f(yz™"). If m is a signed measure, then
convolution on the left by m is defined by m = f(z) = f(y @) dmy. If nis an-
other signed measure, the convolution of m and n, m * n, is defined by
[fdmxn = [[f(xy)dmzdny. These definitions are arranged so that
mx(n*f) = (mxn)x*f

The following simple theorem states the relationship between convolution
on the left and operators commuting with right translation.

3.1. TrroreM. A bounded linear operator 1 on C., (X) is convolution on the
left by a signed measure if and only if T' commules with right translation by each
group element.

Proof. Since m x R, (f)(y) = [ RN "y)dmz = [ fE 'y ") dmz =
m* f(yz™) = R, (m % f)(y), convolution on the left commutes with right
translation. On the other hand, suppose that a bounded linear operator 7'
commutes with right translation, that e is the identity element of X, and
that m is the signed measure such that for all f ¢ C, (X),

T(f)e) = [ (™) dma.

Then for each g eC, (X)), T()(y) = Ry1°T(g)e) = ToR, 1(g)e) =
J Ry () (@) dma = m % g(y).

It is necessary to establish the connection between the measure m, which
according to Theorem 3.1, completely describes an operator 7' which com-
mutes with right translation, and the measures n,, for  in X, which were
used in the preceding section to describe 7.  Suppose then that 7'(f) = m * f,
that for each z ¢ X, T(f)(x) = [ fdn., that 2" is the “point” measure defined
by [ fdx = [ f(t) d't = f(z), and that m™ is the measure such that [ f dm™ =
[ f (™) dmy. Then for each f e €', (X) and each = € X,

[Tdn. = [fly"a) dmy = [ f(yx) dm™y = [ f(y2) dm y de'z = [ fdm™ .

Consequently, n, = m~ % 2. Either from this formula, or directly from the
definition of 7', it is not hard to see that the right translate by the carrier of
the measure n, is (carrier m™)x (that is, the right translate by x of the carrier
of m™). For convenience, in what follows, the carrier of m~ will be denoted
by C.

The operator 7', where 17'(f) = m * [, is averaging if the carrier of n, =
m~ x 2 is a subset of D, = {y: for all f, T(f)(x) = T(f)(y)}. Rewritten,
D, = {yim, = n,} = {yimm sxa = m xy} = {yim % (xy ) = m}.
Define H to be {z:m™ * 22 = m™}; by a simple calculation,

H = {z: for all f, T(f)(2) = T(N)(e)}.

Then H is a subgroup of X, and by the last equality above, it is clear that H
is a closed subgroup. Moreover, D, is precisely the right coset of x modulo H.
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It follows that 7" is averaging if and only if for each x ¢ X, C 2 < Hzx, which
is the case if and only if C~ < H. Tinally, since

(m™ x2)(A7) = (@) *m(4)

for each Baire set A, the subgroup H is precisely the set of all x such that
a- % m = m, and since the carrier C' of m is (C7)™", T is averaging if and only
if ¢ < H. Since, from above, H = {z: for all f, T(f)(z) = T(f)(e)}, an
equivalent statement is: 7' is averaging if and only if for each z e C, and each
feCy(X), T(f)(x) = T(f)(e). Hence:

3.2. Lumma. If T 4s convolution on the left by a Baire measure m, then T is
averaging if and only if the carrier C' of m is a subset of the group H of all x such
that m is tnvariant under left translation by x (i.c. x= * m = m). Fquivalently,
T is averaging if and only if for each x € C, T(f)(x) = T(f)(e) for all f e C_, ().

It is almost obvious that if convolution by m is averaging, then m is, in
some sense, the Haar measure of H. A few minor technical details remain.
It may be that no Baire subset of H is a Baire set in X. However, (Lemma
1.6) there is a unique signed measure h on H such that for fe C, (H),
fdh = gdm, where ¢ is any member of C, (X) which is an extension of f.
The signed measure m is the normal extension of h. If ¢ is an extension of
f, then the translation of g by a member of H is an extension of the translation
of f by the same element, and it follows that & is invariant under left transla-
tion by members of H. Finally, it must be shown that either 2 or —h is non-
negative, from which it will follow that A or —h is a left Haar measure for
H, and since & is finite, H will be compact. ILet J be the union of all Baire
sets A in H such that each Baire subset of A has nonnegative h measure.
Then J is invariant under left translation, and HJ < J. Hence either
J = H,or Jisvoid. In the first case h is nonnegative, and in the latter (see
Halmos, loc. cit. p. 121) k is nonpositive. It is then proved:

3.3. TuroreMm. If X 4s a locally compact group and T is a bounded linear
operator on C, (X) such that T is averaging and commutes with right translation,
then T is convolution on the left by (the normal extension of) &= Haar measure on
a compact subgroup of X.

Using the preceding result, the following generalization of a theorem of
Kawada and It6 [4] will be demonstrated.

3.4. TuroreMm. If X s a locally compact group and m s a nonnegalive
finite measure which is idempotent under convolution, then m is necessarily (the
normal extension of) Haar measure on a compact subgroup of X.

Proof. Suppose that m is nonnegative, m = 0, and m *m = m. It will
be shown that for each y belonging to the carrier C of m, and each f e C,, (X),
m * f(y) = m * f(e), from which, using 3.2 and 3.3, the theorem will follow.

Tiirst, it must be shown that, if m ¢ 0, then || m || = 1. Because | m || =
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lmsm]| <[ m|%|m]| = 1. On the other hand, if D is a compact Baire
set and feC, (X),0 < f(x) < 1forallzeX and f = 1 on D7'D™, then
[mll = [fy™) dmy = mxf(e) = mxmxf(e) = [[f(y~2"") dmy dme, and
since, for a fixed z in D, the integrand is one on D, the double integral is
greater than or equal to (m(D))*. Hence || m || = ||m ||’, and | m || = 1.

Next, it will be shown that C is the closure of CC. Let f be a nonnegative
member of C, (X) which is zero save on an open set U. Then m * f(z) =
[ f(y'x) dmy is positive if and only if f(y~x) > 0 for some y in C, which is
true if and only if for some y in C, y "¢ e U, or equivalently = e yU. Hence
m x f is zero precisely on the complement of the set CU. Consequently,
m *m *f = m * fis zero except on CCU, and therefore CU = CCU. Taking
the intersection of the sets CU for all neighborhoods U of e, we obtain, on the
one hand, C, and on the other, the closure of CC, and the assertion is proved.

Finally, for an arbitrary nonnegative f in C, (X), let « be a fixed member
of C™" such that m = f(z) = sup{m % f(2):2 ¢ C"'}. Then

m*f(x) = [ m*f ) dme,

because m is idempotent. Now if 2z € €, 2z ¢ C"'2 < C7'C™", and by virtue
of the preceding paragraph, 2z ¢ C™'. Consequently, m = f(z) is equal to
the integral of a function, which on the carrier C' of the measure m, is every-
where less than or equal to m * f(x). By Lemma 1.5 it follows that for z € C,
m *f(z72) = m *f(x), and since 27 € C, m * f(x) = m % fle). Hence m f
is constant on C, and since @ is then an arbitrary point of C, for all z € C,
mxf(x) = m=*fle). If h = f — g, where f and ¢ are nonnegative, then
mx h(x) = m*f(x) — m*g(x) = mx*fle) — mxgle) = m * h(e) and hence
m * h(z) = m * h(e) for every h in C, (X), and the theorem is proved.

4. A remark on measure theory

A theorem of Dieudonné has been reformulated by Halmos [3] in such a
way that it states, in our terminology, that a certain operator is averaging.
This theorem will be shown to be a consequence of 2.4 and 2.5. The argu-
ment is given, not as a simplification of Halmos’ (which is really about as
simple as one could hope), but because it seems to throw a little additional
light on the theorem.

The problem is the following. We are given a set X, a o-algebra of subsets
8, and a finite measure m on 8. We are also given a set Y, a s-algebra 3 of
subsets, and an $-3 measurable function P on X onto Y, and p is defined to be
the measure on 5 induced by m (that is, p(4) = m(P'[4])). The question:
under what conditions does there exist, for each y in Y, a measure n, on 8
such that [ fdm = [ [[ f(¢) dn, t] dpy for all fin L, (m)? It is not true that
such measures n, always exist; the content of the Dieudonné-Halmos theorem
is that they do exist, provided that X and Y are the ‘“natural coordinate
spaces’ for the measures.

Jor convenience, let us assume that X = ¥V and 3 C 8, and that P is the
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identity mapping. Then p is simply m | 3, the restriction of m to the domain
3. TIor each member f of L, () let f-m, the indefinite integral, be the signed
measure such that f-m(4) = [yfdm. Clearly f-m |3 is absolutely con-
tinuous with respect to m | 3, and in fact the Radon-Nikodym derivative be-
longs to L, (m]3). Moreover, the map carrying f into its derivative
d(f-m | 3)/d(m | 3) is a positive idempotent mapping of L, (m) onto L, (m | 3).
But L,(m) is isomorphic to the space of all continuous functions on a compact
Hausdorff space Z, where Z is the class of all multiplicative linear functionals
on L, (m) with the weak* topology (equivalently, Z is the Stone space of the
Boolean measure algebra of m). Since L, (m | 3) is a subalgebra of L, (m),
Theorem 2.5 shows that the Radon-Nikodym differentiation is averaging.
The desired equality then follows from application of 2.4 to the equation

[fdm = [1d(f-m) = [1[d(f-m|5)/d(m |3)] d(m|3).
It is also possible to verify directly that the differentiation 7' satisfies the
identity T(fT(g)) = T(N)T(g).
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