
SOME DUALITY THEOREMS

B J. J.

1. Basic notions

Certain concepts used in the theory of group representations apply equally
to matrix-valued functions defined on a set S. For instance, if f: S M1
and g: S --+ M2 whereM is the total matrix algebra over some field (i 1, 2),
then the Kronecker product f X g is defined iust as for representations.
Similarly, the concept of irreducibility also carries over. f will be called
irreducible if f maps S onto an irreducible set of matrices.

Suppose G is a compact topological group, and R1, R2 representations of
G. According to a basic theorem, the Kronecker product R1 X R. "decom-
poses" into irreducible components. More precisely, there exist irreducible
representations P, P2, "-’, P of G, positive integers m, m2, m,
and a nonsingular matrix A, such that

P1
P

(l) R1 )< R2= A

.m times

P1

P2
m2 times

P.

Pk

where the big matrix above is to be completed with zero matrices. We
shall denote this matrix by A=I m P.

Systems of matrix-valued functions which satisfy algebraic relations of
the type (1) wil be of interest. For this purpose we make the following
definition.
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DEFINITION 1. Let F {fl, f2, be a countable family of functions
defined on a set S. F will be called a Kronecler system on S if

(a) f "S --+ Gi where Gi is some group of matrices over the complex field.
(b) For each pair (i, j) there exists a unique sequence of nonnegative in-

tegers {mj} only a finite number of which are nonzero, and a non-
singular matrix A. such that f X f A. i J" "A-(c) If f F, then ] e F, where ] is the complex conjugate of f.

DEFITION 2. A Kronecker system F on a set S will be called irreducible
if each of its elements is irreducible.

We remark that a general algebraic proposition implies that if F is irre-
ducible, the decomposition assumed in (b) of Definition 1 is necessarily unique
up to the choice of the constant matrix Ai (see [1], p. 175).

DEFINITION 3. Let F {fl, f, be a Kronecker system on S. The
dual of F will be the totality of all mappings M defined on F such that

(a) If f "S G, then M(f) e G.
ij --1(b) If f X fi Ai A= (m)Ai then
A i A:?M(f,) x M(f )

(c) M(L) ,).

LEMMa 1. Let F be a Kronecker system on a set S, and its dual. If
M1, M and f e F, define (M1M)(f) M(f)M:(f). Under this
operation, is a group.

The proof of this lemma is a simple exercise (see [5]).

LnMMa2. Let F {f, f, be a Krone&er system on a set S such
that, for every i, f S G a compact group of matrices. Then its dual group

may be topologized in a natural way. Under this topology, is a compact
topological group.

Proof. The Cartesian product G G1 N G2 N is compact by Ty-
ehonoff’ theorem. Map into G by" M (M(f), M(f),... ). We
shall identify with a subset of G in this way, omitting the identification
map. Assign to the induced topology. Then becomes a topologieM
subgroup of G, for the algebraic operation in coincides with that of G.
Finally, to establish compactness, we need only show that is closed in G.
This follows directly from the compactness of the groups G and from the
fact that the mappings

M ; (M, N) M X N (M1,M2, Mn AA (mMk )A-
are all continuous on their respective spaces.

2. Kronecker sstems and 9roup representations.
N. J. Fine has proved recently [2] that a family of complex-valued func-

tions defined on a measure space and satisfying certain algebraic conditions
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is essentially the set of characters of a compact abelian group. In this sec-
tion, we extend these results to matrix-valued functions on non-abelian
groups. In particular, we shall investigate conditions under which Kro-
necker systems of functions can be regarded as representations of their dual
groups.

THEOREM 1. Let (S, 2, t) be a measure space, a complete measure, and
t(S) 1. Suppose that (R (R1, R., is a countable family of func-
tions defined on S such that

(a) (R is an irreducible Kronecker system.
(b) Ri S -- Ui, the unitary group of degree n, (i 1, 2, ).
(c) The set of all coecients r,(s) of the matrices R(s) (1 _<- a, / <_- nl;

i 1, 2, is an orthogonal system with respect to
Then, there exists a mapping q of S into its compact dual group such that

(d) (S) is a dense subset of 9, in fact, thicl with respect to the normalized
Haar measure , on .

(e) The functions R q-il can be extended to form a full system of inequiv-
alent, irreducible, unitary representations of

(f) For any ,-measurable subset H of , -I(H) is t-measurable and
t(-i(H)) p(H).

(g) is one-to-one if and only if the functions of (R separate points of S.

Proof. Without loss of generality, we may assume that the system (R

separates points of S. For otherwise, we could use the standard device of
defining an equivalence relation among the points of S by" sl s if and
only if Ri(sl) R(s:) for i 1, 2, .... The given functions and meas-
ure can then be transferred to the set of equivalence classes.
Given s e S, the mapping Ms defined on by" M(R) R(s)

(i 1, 2, is clearly an element of the dual group . Since (R separates
points of S, M M if and only if s s. We may therefore identify
S with a subset of i). The composition of the two identification maps just
defined is the mapping in the statement of the theorem. During the
course of this proof, we shall omit and simply consider S as a subset of. In this way, if H ;, then q-(H) is identified with H S.
A point U of is of the form (M(R), M(R:),... ). Let P be the

projection of M onto its i component. P " -- Ui by" P(M) M(R).
P is continuous, being a projection. Furthermore, P is a homomorphism
since

P(M Ms) (M M.)(R) M(Ri)M(R) P(M)P(M.).

Therefore the system (9 /P} is a set of unitary representations of the
compact group ). We shall show that (9 is a full system of inequivalent,
irreducible representations of , i.e. (9 contains exactly one member from
each equivalence class of irreducible representations of .

First, P is an extension of the given function R to all of . For, given
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s e S, Pi(s) M,(R) Ri(s). Thus, P agrees with R on the subset S.
It follows that P is irreducible. For on the subset S it coincides with R
which is assumed irreducible on S. The reducibility of P would then im-
ply the reducibility of R, contrary to assumption. Furthermore, P and
P. are inequivalent when i j. If not, there would exist a constant matrix
A such that P AP A-1. Then the coefficients of P would be linear
combinations of those of P. But this is impossible, for on the subset S,
the coefficients in question are assumed orthogonal. We have shown, there-
fore, that the set ( is a system of inequivalent, irreducible, unitary repre-
sentations of 9re. It remains to show that every irreducible representation
of 9Z is equivalent to some element of
Denote the coefficients of P by p. Considered as functions on the com-

pact group , the set of all such coefficients (1 -< a, =< n i 1, 2,
is an orthogonal system in the Haar measure on 9r. We take to be nor-
malized.

Let a be the set of all complex linear combinations of the functions p,
We shall show that

(i) ( is an algebra over the complex field.
(ii) ( is closed under complex conjugation.
(iii) The functions of a separate points of
(iv) Given any point M e 9Z, not all functions of ( vanish at M.

(i) It is enough to show that the product of any two functions p, and
p is an element of a. This product occurs in the matrix Pi X Pi. Now,

P(M) X P(M) M(R) M(Rj)
--1i A-1 A(m P(M))A.A A(mM(R)) Aj

The coefficients on the left are linear combinations of the coefficients from a
finite number of the P, hence elements of (. Therefore pp e (.

(ii) Given any function po it is enough to show po e (. By assump-
tion, for each i there is a j such that R. /. Since M([) M(Ri) for
every M e 9Z, we have

Pi(M) M(Ri) M() M(R) Pi(M).

Comparing coefficients, po po e a.
(iii) P is the projection of gg onto its itu coordinate. Two distinct points

M1 and M must differ in some coordinate, say the /. This means
kpo(M) po(M) for some pair (a, ), 1 -< a, <= n. Therefore (

separates points of 9E.
(iv) For every M e 9Z and any i, P(M) is a nonsingular matrix. Not

all of its coefficients po(M) can vanish.
The four properties of ( iust established are precisely the conditions of the

Stone-Weierstrass Theorem. We may conclude that the set a is uniformly
dense in the space of all continuous, complex-valued functions defined on 9E.
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Now suppose there were an irreducible representation Q of not equiva-
lent to any element of (. Its coefficients must be orthogonal (with respect
to the Haar measure ) to the functions in (. However, this is impossible
since these coefficients, being continuous, can be uniformly approximated by
functions of a. Therefore no such Q can exist, and assertion (e) of the
theorem is proved.

Since (P is a full set of irreducible representations, (P contains a representa-
tion, say P1, such that PI(M) 1 for every M e 91. It follows from as-
sumption (c) that

rod pod
0, (i> 1).

By the orthogonality relations for compact groups, it is Mso true that

P0d= 0, (i> 1),
where , is the normalized Haar measure on . Therefore in all cases

p, d p, d.

Since any continuous function f on 91 can be uniformly approximated by
linear combinations of the p,, a standard argument shows that

(2) f fd ff d,

Now let N denote the closure of S. If N were a proper subset of 91Z, there
would exist by Urysohn’s Lemma a continuous nonnegative function f vanish-
ing on S but not vanishing identically on 91. Then, from (2)

0= f fd ff d, > O,

a contradiction. Therefore S 91Z, so that S is dense in
Assertions (d) and (f) are proved by the technique employed in [2]. Since

the argument of [2] carries over nearly word for word, we shall only outline it
here. If H is a closed subset of 91, one can approximate the characteristic
function of H by a sequence of continuous functions. It then follows easily
from equation (2) above that (H) (H n S). This relation is then ex-
tended to all Borel sets. Finally it is extended to all measurable subsets H
of 91 using the regularity of Haar measure and the completeness of . This
finishes the proof of the theorem.

It has been brought to the attention of the author that there is a paper of
Kreln [4] containing a result similar to Theorem 1. Kreln’s point of depar-
ture is somewhat different from ours, however; it is what he calls a "block



algebra." This is a commutative algebra over the complex field with a unit
element and an involution, and which can be grouped into square matrices
satisfying conditions similar to ours. He proves that such an algebra is the
set of representative functions of a compact group. He does not deal with
questions of measure.
As a corollary of Theorem 1, one can obtain the result of Fine [2] mentioned

earlier. He postulates an orthonormal semigroup of functions defined on
decent measure space and closed under complex coniugation. Such a system
is proved to be essentially the set of characters of a compact group and the
given measure essentially the Haar measure on the group. This result follows
from Theorem 1 in the following way.

It is easy to show that each function must assume values on the unit circle.
But then the conditions of our theorem are satisfied. The Ri’s are unitary,
Kronecker multiplication reduces to ordinary multiplication, and a Kronecker
system is a multiplicative semigroup of functions with the properties
sumed. The dual group in this case is clearly abelian.
A second corollary of Theorem 1 is the duality theorem of Tannaka. In

this case the given measure space (S, 2, ) is a compact, second countable,
topological group with normalized Hair measure . 6t is a full system of
inequivalent, irreducible, unitary representations of S. All conditions of
Theorem 1 are clearly satisfied. The mapping 99 of S into its compact dual
group yrC is easily seen to be a continuous homomorphism. Since 61 separates
points, 99 is one-to-one. Since S is compact and 99(S) is dense in 91Z, 99 is a
homeomorphism onto. Therefore, S and are isomorphic topological
groups, which is equivalent to the statement of Tannaka’s Theorem.

In the above argument, there is a slight technical difficulty which was
pointed out by the referee. If R 61 and is equivalent to R, then 61 does
not satisfy condition (c) of Definition 1. Nevertheless, the proof of Theorem 1
still goes through. (c) is needed only to insure that the algebra a is closed
under complex coniugation. But if / ARA-1, the coefficients of / are
linear combinations of those of R, hence elements of a.

Let us observe that it is the algebraic structure of a Kronecker system which
allows us to define the dual group and its representations. It is therefore of
interest to divest the theorem of all considerations of measure and state it
purely in algebraic terms.

THEOREM 2. Let 61 {R1, R2,... be an irreducible Kroneclcer system
defined on a set S such that

(a) Ri’S Gi, a compact matrix group (not necessarily unitary).
(b) If i j, then Ri is not equivalent to R;, i.e. there exists no constant

matrix A such that R ARi A-.
Then, there is a mapping 99 of S into its compact dual group 91; such that

99
-1(c) The functions {R can be extended to form a full system of inequiva-

lent, irreducible representations of
(d) The subgroup generated by 99(S) is dense in 91Z.
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Proof. With one minor change the proof of assertion (c) is the same as
in Theorem 1. The dual group r is now a compact subgroup of the compact
group G1 X G2 ( .-’. The Stone-Weierstrass argument goes through
exactly as before. The only modification occurs in proving P and P. are
inequivalent when i j. In Theorem 1 this is done by the assumed orthog-
onality of the coefficients r,. Actually, the strength of orthogonality is
not needed for this purpose; linear independence would suffice. Here we
need only the even weaker assumption (b). If P were equivalent to P on, they would be equivalent on the subset S, contradicting (b).
Now let H be the closed subgroup of generated by S, and consider the

functions P restricted to H. Since H is compact and these functions are
extensions of the given functions R, the same reasoning as used above ap-
plies to H as well as . The conclusion is that we also have a full system of
irreducible representations of H.

It now follows easily that H . For, every representation of a compact
group is equivalent to a unitary representation. Therefore, there exist
constant matrices A, A, such that Q A P A7 is a full system of
irreducible unitary representations of and likewise for their restrictions to
H. Let and denote the normalized Haar measures on H and respec-
tively. Then, by the orthogonality relations,

f fq, d q, d; (Q q, ).

The argument of Theorem 1 then yields H , proving (d).
It is of interest to try to drop the assumption of irreducibility in Theorem 2.

We shall show that if this is done, we still obtain Kronecker system of
representations of . These representations are not necessarily irreducible.
However, is complete in the weaker sense that every irreducible representa-
tion of is contained in at least one element of .
Tnonn 3. Let be as in Theorem 2, but not necessarily irreducible. Then

there is a mapping of S into the dual group such that
() The functions R-1 can be extended to form a Kronecler system

of representations of .
(b) Every irreducible representation of occurs as an irreducible com-

ponent of at least one element of .
Proof. The arguments of the preceding theorems show that S may be im-

bedded in its compact dual group so that the set of projections P
is a Kronecker sstem of representations of , P extending R for each i.
These representations are not necessarily irreducible however. Still, we may
pply the Stone-Weierstrass Theorem as before and conclude that the ring
is uniformly dense in the space of continuous functions on . is again
he set of all linear combinations of the coecients p,

Let {K, K, ..-} be a full set of irreducible representations of . Then

(3) P A A(m K)AT; (i 1, 2, ...).
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We must prove that for each r 1, 2, Kr occurs in at least one of the
expressions (3). Suppose this were not the case. By virtue of (3), each
function P-8 is a linear combination of functions ]c-8. It follows that each
element of ( is a linear combination of the/c,8 where i runs over some index
set not containing r. Now the system {/c8 i 1, 2,... is orthogonal
with respect to the Haar measure on i)l. Therefore, /c:8 is orthogonal to
every element of (t. But this is a contradiction, for /-8 being continuous
and not identically zero can be uniformly approximated by elements of (.

Consequently for every r, Kr must occur in one of the expressions (3). This
establishes the theorem.

It is a basic result that the characters of irreducible representations of a
compact group form an orthogonal system. With this in mind, it is natural
to seek an analogue of Theorem 1 in which we assume orthogonality only
for the traces of the given functions.

THEOREM 4. Let (S, , ) be a measure space as in Theorem 1, and
(R R1, R2 a Kronectcer system on S such that

(a) is irreducible.
(b) Ri: S -- Gi a compact group of matrices.
(c) If b is the trace of R the system {} is an orthogonal set of functions

with respect to t.
Then there is a mapping q of S into its compact dual group such that

(d) The functions R q-l} can be extended to form a full system of inequiva-
lent irreducible representations of .

(e) Let K8 be the conjugate class of containing q(s). Then [Js K8 is
dense in 9 under the wealc topology induced in 9 by its characters.

(f) If H is any ,-measurable union of conjugate classes of 9, then q-(H)
is tt-measurable and t(q-I(H)) (H).

Proof. The proof of (d) is as in Theorem 1, except for one minor change.
This time, P and P. are inequivalent when i j because of assumption (c).
Their traces x and x" must be extensions of and respectively. (c)
implies x x when i j. But the traces of equivalent representations
are identical.
To prove (e), we shall modify an argument used in Theorem 1. Let

Z denote the complex plane and Z0 the countable Cartesian product
Z X Z X .... Define a mapping p:gg-- Z0 by:
p(M) (x(M), x2(M), ""). p is clearly continuous, and since is com-
pact, Oz p(ifft) is also compact.

Oz may be thought of as the set lift under the weak topology induced by its
characters. A subset U of 97t is open if and only if it is the complete inverse
image under p of an open subset of OZ. This is the weakest topology on 91
under which its characters are continuous.

It is easily seen that there is a one-to-one correspondence between the con-
tinuous functions on OZ, and the continuous class functions on lift, i.e. functions
constant on each conjugate class. In fact, the correspondence is given by
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f(M) g(p(M)) (M e

From assumption (c), and an argument already used several times, we may
assert

But since linear combinations of characters are uniformly dense among the
continuous class functions, it follows that

(4) fsf d
for any continuous class function f defined on .
We assert that P(S) , where the bar denotes closure. Suppose this

were not so. Then, by Urysohn’s Lemma, there would exist a continuous
function g on vanishing on p(S) but not vanishing identically. The cor-
responding class function f g(p) would vanish on S but not everywhere on. As in the proof of Theorem 1, the existence of such a function contradicts
relation (4). Therefore p(S 9, or equivalently, S is dense in the weak
topology described above. This establishes assertion (e).

Since p is a continuous mapping of onto 9, both Hausdorff spaces, it
follows that H1 is a compact subset of 9 if and only if H p-l(H1) is a com-
pact subset of . An immediate consequence is that H1 is a Borel set if
and only if H is a Borel set.
Now let H1 be a compact subset of 9 and H p-(H). If r is the charac-

teristic function of H, then r r(p) is the characteristic function of the
(compact) set H. Again we use a technique of Fine [2]. By repeated use
of Urysohn’s Lemma, one can construct a bounded sequence of nonnegative
continuous functions {g} converging pointwise on 9 to r. There is a cor-
responding sequence {g(p)} of continuous class functions converging point-
wise on to . From (4),

Letting n -- , fsg(p) d fs g(p) d.

(5) fsrd--frd,.
Since r is the characteristic function of the set H, (5) is equivalent to the
statement: (H n S) (H). This proves assertion (f) in the case when H
is a compac.t subset of i). By the usual arguments, this result can be ex-
tended to all Borel sets H which are unions of conjugate classes of (com-
plete inverse images under p of Borel sets in 9).
For brevity, let us call any union of coniugate classes of i) an invariant

set. In order to complete the proof of the theorem, it will suffice to show that,
given any -measurable invariant set H c , there exist invariant Borel
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sets A and B such that A c H c B and v(A) v(B). For then,
A n S H n S c B n S, and as we have already shown,
(A n S) v(A) v(B) (B n S). Hence, by the completeness of ,
H n S is -measurable and (H n S) v(H).

Let H, therefore, be a v-measurable invariant subset of . By the regu-
larity of Haar measure, v(H) sup v(C) where C runs over all compact
subsets of H. Hence, there exists a compact subset C of H such that
v(Cn) > v(H) l/n, (n 1, 2,...). Define C* UmC,m-1 where the
union is over all m e 9. Clearly C* is invariant, and C C* H. We
assert that C* is closed. For let be a limit point of C and {mc m71} a
sequence of points of C converging to . Now {m} and {c} are sequences
in the compact sets OZ and C respectively. Without loss of generality, we
may assume that they converge to points m and c of gg and C. By the
continuity of multiplication, lim mcm mc,m-. Bu mc,m- e C*
since c e C. Therefore C* is closed (compact). Since C C*,
(C*) > v(H)- 1In. Define A (J *=1C. Then A is a Borel set (in
fact, an F) such that A c H and v(A) (H). By the "complementary"
argument, there exists a G, B such that H B and (H) (B). This
establishes assertion (f), completing the proof of the theorem.
The following seems a natural question to ask. Given a Kronecker system,

what can one say about the nature of its dual group? The next theorem
gives some information in that direction. We shall need a lemma of ChevMley
([1], p. 196), which we paraphrase in terms of our definitions.

IEMMA 3. Let be a Kronecker system defined on a set S, and () the ring
generated by the coejcients r,. Denote by the set of all homomorphisms of
o-() into the complex field. If the functions r, are linearly independent, there
is a one-to-one mapping of onto the dual group 9 as follows" To each o

assign the element M e defined by" M(R) (r,) I].

THEOREM 5. Let (R {R1, R2, be a Kronecker system on a set S with
the properties

(a) The coecients r,o are linearly independent.
(b) a(61) is finitely generated.

Then the dual group 91Z is finite dimensional.

Proof. Without loss of generality, we may assume that the coefficients of
R, R:, R generate (). According to Lemma 3, each M 9 cor-
responds to a homomorphism of a(). is determined by its value
on the generators of a(). Therefore, M is determined by its values on

R1, R2, ,Rn.
From the definition of a Kronecker system, R: S -- G where G is some

group of matrices over the complex field. Previously, we associated with

For the measure-theoretic concepts considered in this paper, see [3].
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each element M of OZ the point (M(/I), M(R2),...) in G1 X G2 X
Now define a mapping

X:(M(R1), M(R2), ...) ---> (M(R), M(R), ..., M(R))., is clearly one-to-one and continuous both ways. Therefore is homeo-
morphic to subgroup of G X G X X G.

3. Finite Kronecker systems
Because certain simplifications occur when we consider finite Kronecker

systems, it is possible to establish analogues of some of the theorems of the
preceding section under weaker assumptions. The following theorem, for
example, is an analogue of Theorem 1 which weakens the orthogonality to
linear independence and does away with the assumption of irreducibility
altogether.

THEOIEM 6. Let (R R1, R2, R,} be a system of functions defined
on a set S such that

(a) ( is a Kronecker system (not necessarily irreducible).
(b) Ri: S ---> G a compact group of matrices of degree hi.

and either
(c) The coejcients r, are linearly independent functions on S.

or
(d) (R induces a finite number n of equivalence classes in S, andl n n.

Then, the dual group is finite, and there exists a mapping q of S onto such
that R q-l} is a full system of irreducible representations of .

Proof. First perform the usual collapsing of each equivalence class in
to a single point. We may therefore assume that (R separates points of S.
Under assumption (d) this means that S is identified with a finite set having
n elements.
We shall prove first that, under the assumptions of the theorem, the dual

group is finite. As in the preceding theorems, i) is identified with
a compact subgroup of G1 X G2 X... X Gm and the projections
(i 1, 2, m) are representations of , Pi extending R. These repre-
sentations may not be irreducible. However, the same argument used in
the proof of Theorem 3 shows that every irreducible representation of
occurs as an irreducible component of one of the P. Consequently, i) has
only a finite number of irreducible representations.
We shall show that a compact second countable topological group G having

only a finite number of irreducible representations is finite. The coefficients
of these representations form a complete orthogonal set in L(G, ,) where
is the normalized Haar measure on G. Therefore, L(G, ,) is finite dimen-
sional.
However, if G is infinite, then L(G, ) must be infinite dimensional. It

suffices to prove the existence of a sequence H1, H, of disjoint subsets
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of G all of positive -measure. For then, the corresponding characteristic
functions form an infinite orthogonal set in L(G, ,).
The Haar measure on G is non-atomic. Therefore, since (G) 1, there

exists a subset H1 of G such that 0 < (H1) < 1. Its complement, H*,
has positive -measure. By the same argument, there is a set H2 c H* such
that 0 < (H.) < (H*). Then there is a set H3 c (H u H.)* such that
0 < (H3) < ((H u H)*). If G is infinite, this process may be repeated
indefinitely yielding a sequence {H, H, of disjoint subsets all having
positive -measure. Hence, G must be finite.

In our case, the dual group 91Z is a compact Lie group with only a finite
number of irreducible representations. Therefore 9Z is finite, hence compact
in the discrete topology. By the usual Stone-Weierstrass argument, the
coefficients p span all complex-valued functions on OZ (since all functions
on 9E are continuous, and uniform approximation is replaced by equality).
For brevity, we shall denote the vector space of all complex-valued functions
on a finite set T by V(T).
S is also compact in the discrete topology. The same reasoning shows that

the functions r span V(S). If we use assumption (c), they actually form
a basis. Therefore, card /r} dim V(S). Now the functions pa are
also linearly independent, being extensions of the linearly independent
functions r. Then, from what we have already shown, {p is a basis
for V(aZ). Hence,
card S dim V(S) card r} card {p} dim V(91Z) card

Since S c and card S card 9;, we have S 9r.
Using assumption (d) instead of (c),

=n n (= card S).

In other words, card po} n. Since p} spans V(OlZ), dim V(OZ) -< n.
Therefore,

n dim V(91Z) card aZ -> card S n.

Thus, card S card 91Z, so that again S 91Z.
It remains to show that the representations P are irreducible. Let

{Q, Q,"-, Qr} be a full system of irreducible representations of 91Z.

Then,

(6) P A Ak=l(m -Qk)A (i 1, 2,..., m).

The sets p,o} and q,} are both bases for V(Z). Therefore each Qs must
appear in at least one of the expressions (6). Otherwise, the basis P,o}
would be independent of some of the elements of the basis q,o}. Let c
be the degree of P and d the degree of Q. Then

’i=l Ci i=l di n.
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Since the degree of A (m Q)A is m d, we obtain by summing the
squares of the degrees in (6),

(7) n c E (Em d).
Since each Q, occurs at least once in (6), the corresponding d occurs at least
once in (7). The multiplicities m are nonnegative integers. Therefore,

(s) Z,
Equality holds in (8) if and only if ech of the inner summnds consists of
exactly one term, nd ech d occurs exactly once with coefficient unity. In
other words, given i, ll multiplicities m, wnish except one, m; furthermore,
m 1 nd lc, k, k is permutation of the numbers 1, 2, m.
It follows that the expressions (6) must reduce to

P AQ A7, (i 1, 2, .--, m)"

Thus, ech P is equivalent to n irreducible representation. This completes
the proof.
We remark that there exist finite nlogues to the other theorems of the

preceding section. These cn be established by the means used in the proof
of Theorem 6. For instance, the following is the analogue of Theorem 3.

THEOREM 7. Let {R, R, ..., R} be a Kronecer system on a set
S such that
() R: S G a compact group of matrices.
(b) R is not equivalent to R when i j.

Then, there exists a mapping of S onto a set of generators of the finite dual
group such that

(c) The functions R-} can be extended to form a Kronecer system
of representations of .

(d) Every irreducible representation of occurs as an irreducible component
of at least one element of .
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