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HEIGHT ESTIMATES FOR SURFACES WITH POSITIVE
CONSTANT MEAN CURVATURE IN M

2 × R

JUAN A. ALEDO, JOSÉ M. ESPINAR, AND JOSÉ A. GÁLVEZ

Abstract. We obtain height estimates for compact embedded
surfaces with positive constant mean curvature in a Riemann-
ian product space M

2 × R and boundary on a slice. We prove

that these estimates are optimal for the homogeneous spaces R
3,

S
2 × R, and H

2 × R and we characterize the surfaces for which

these bounds are achieved. We also give some geometric proper-
ties on properly embedded surfaces without boundary.

1. Introduction

The existence of height estimates for a wide class of surfaces in a 3-dimen-
sional ambient space reveals, in general, important properties on the geometric
behavior of these surfaces, as well as existence and uniqueness results (see, for
instance, [H], [HLR], [KKMS], [KKS], [R] and [RS]).

Heinz [H] showed that a compact graph with positive constant mean curva-
ture H in R

3 and boundary on a plane can reach at most a height 1/H from
the plane. Actually, this estimate is optimal because it is attained by the
hemisphere of radius 1/H . As a consequence, a compact embedded surface
with constant mean curvature H �= 0 and boundary on a plane is at most a
distance 2/H from that plane.

An optimal bound was also obtained for graphs and for compact embedded
surfaces in the hyperbolic 3-space H

3 with nonzero constant mean curvature
and boundary on a plane by Korevaar, Kusner, Meeks and Solomon [KKMS].
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Later, Rosenberg [R] exhibited an optimal bound for surfaces with positive
constant Gauss curvature in R

3 and H
3 (see also [GM]). In fact, he demon-

strated the existence of optimal height estimates for hypersurfaces with a
positive constant symmetric function of curvature in the Euclidean and hy-
perbolic n-space.

These estimates in the Euclidean 3-space were generalized by Rosenberg
and Sa Earp [RS] (see also [GMM]). They obtained an optimal height estimate
for a large class of Weingarten surfaces in R

3.
On the other hand, for the product space M

2 × R of a Riemannian surface
M

2 and the real line R, height estimates have recently been exhibited by
Hoffman, de Lira, and Rosenberg [HLR] for a surface with positive constant
mean curvature H and boundary on a slice (see also [CR]). However, these
estimates are not optimal and do not work for every expected value of H , see
[HLR, Remark 1].

In this paper, we obtain adjusted height estimates for graphs and compact
embedded surfaces with positive constant mean curvature in M

2 × R and
boundary on a slice, in such a way that they are optimal when M

2 is a space
form, that is, for the homogeneous spaces R

3, S
2 × R, and H

2 × R.
We also show that if these bounds are reached for a graph Σ on a domain

Ω ⊆ M
2, then Ω has constant Gauss curvature and the Abresch–Rosenberg dif-

ferential [AR] must vanish identically. In particular, Σ must be a hemisphere
of a complete rotational sphere with constant mean curvature if M

2 × R is a
homogeneous space. Moreover, these estimates are valid for all H > 1/2 in
H

2 × R as it was expected (see [HLR, Remark 1]).
Finally, using Alexandrov reflection principle for surfaces with constant

mean curvature and following the ideas given in [HLR], we get some geometric
properties of properly embedded surfaces without boundary.

2. Main results

Throughout this paper, we will deal with a 3-dimensional ambient space
M

2 × R given by the product of a Riemannian surface without boundary M
2

and the real line R. In particular, the homogeneous spaces R
3, S

2 × R, and
H

2 × R are contained in this family of manifolds.
Let us denote by gM2 the metric of M

2. Then the metric of M
2 × R is given

by 〈·, · 〉 = gM2 + dt2.
Let us consider now a surface S and an immersion ψ : S −→ M

2 × R of
mean curvature H and Gauss map N . If we take a conformal parameter z for
the induced metric on S via ψ, then the first and second fundamental forms
can be written, respectively, as

I = λ|dz|2,
(2.1)

II = pdz2 + λH|dz|2 + pdz̄2,
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where pdz2 = 〈−∇ ∂
∂z

N, ∂
∂z 〉 dz2 is the Hopf differential of ψ and ∇ is the

Levi–Civita connection of M
2 × R.

Let π1 : M
2 × R −→ M

2 and π2 : M
2 × R −→ R be the usual projections.

If we denote by h : S −→ R the height function, that is, h(z) = π2(ψ(z)), and
ν = 〈N, ∂

∂t 〉, then we have the following lemma.

Lemma 2.1. Given an immersion ψ : S −→ M
2 × R, the following equations

must be satisfied:

|hz |2 =
1
4
λ(1 − ν2),(2.2)

hzz =
λz

λ
hz + pν,(2.3)

hzz̄ =
1
2
λHν,(2.4)

νz = −Hhz − 2
λ

phz̄,(2.5)

pz̄ =
λ

2
(Hz + kνhz),(2.6)

where k(z) stands for the Gauss curvature of M
2 at π1(ψ(z)).

Proof. Let us write
∂

∂t
= T + νN,

where T is a tangent vector field on S. Since ∂
∂t is the gradient in M

2 × R of
the function t, it follows that T is nothing but the gradient of h on S.

Thus, from (2.1), one gets T = 2
λ (hz̄

∂
∂z + hz

∂
∂z̄ ) and so

1 =
〈

∂

∂t
,

∂

∂t

〉
= 〈T,T 〉 + ν2 =

4|hz |2
λ

+ ν2,

that is, (2.2) holds.
On the other hand, from (2.1), we have

∇ ∂
∂z

∂

∂z
=

λz

λ

∂

∂z
+ pN,

∇ ∂
∂z

∂

∂z̄
=

1
2
λHN,(2.7)

−∇ ∂
∂z

N = H
∂

∂z
+

2
λ

p
∂

∂z̄
.

The scalar product of these equalities with ∂
∂t gives us (2.3), (2.4), and (2.5),

respectively.
Finally, from (2.7), we get〈

∇ ∂
∂z̄

∇ ∂
∂z

∂

∂z
− ∇ ∂

∂z
∇ ∂

∂z̄

∂

∂z
,N

〉
= pz̄ − 1

2
λHz.
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Hence, using the relationship between the curvature tensors of a product
manifold (see, for instance, [O, p. 210]), the Codazzi equation becomes

1
2
λkνhz = pz̄ − 1

2
λHz,

that is, (2.6) holds. �

It should be observed that the equations given in Lemma 2.1 are the inte-
grability equations in the case of a surface in S

2 × R and H
2 × R, see [FM]

and [D].
Now, in order to obtain some height estimates, let us first describe the only

topological spheres with constant mean curvature which can be embedded in
the homogeneous product spaces.

Let us consider the 2-dimensional hyperbolic space ofcurvature c < 0

H
2(c) =

{
(x1, x2, x3) ∈ R

3 : −x2
1 + x2

2 + x2
3 =

1
c
, x1 > 0

}

with the metric induced by the quadratic form −dx2
1 + dx2

2 + dx2
3. Let us also

consider the 2-dimensional sphere of curvature c > 0

S
2(c) =

{
(x1, x2, x3) ∈ R

3 : x2
1 + x2

2 + x2
3 =

1
c

}

with the metric induced by the standard Riemannian metric of R
3.

It is well known that the only topological sphere with constant mean cur-
vature H > 0 which can be immersed in R

3 ≡ R
2 × R is the totally umbilical

sphere of radius 1/H .
Regarding H

2(c) × R and S
2(c) × R, it was shown by Abresch and Rosenberg

[AR] that the only such surfaces are the Hsiang and Pedrosa spheres which,
up to congruences, can be parametrized as follows:
• For H

2(c) × R, given H0 > 1/2, let us take the revolution surface which
results when we turn the curve α(t) = 1√

−c
(coshk(t), sinhk(t),0, h(t)), −1 ≤

t ≤ 1, around the axis {( 1√
−c

,0,0)} × R, with

k(t) = 2arcsinh

(√
1 − t2

4H2
0 − 1

)
, h(t) =

4H0√
4H2

0 − 1
arcsin

(
t

2H0

)
.

This surface has constant mean curvature H =
√

−cH0 and the height dif-
ference between its upper point and its lower point is

8H√
−4cH2 − c2

arcsin
( √

−c

2H

)
.

• With regard to S
2(c) × R, given H0 > 0, let us take the revolution surface

which results when we turn the curve α(t) = 1√
c
(sink(t), cosk(t),0, h(t)),
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−1 ≤ t ≤ 1, around the axis {( 1√
c
,0,0)} × R, with

k(t) = arcsin
(

−1 + 4H2
0 + 2t2

4H2
0 + 1

)
, h(t) =

4H0√
4H2

0 + 1
arcsinh

(
t

2H0

)
.

This sphere has constant mean curvature H =
√

cH0 and the height differ-
ence between its upper point and its lower point is

8H√
4cH2 + c2

arcsinh
( √

c

2H

)
.

Observe that these surfaces are characterized by the fact that the Abresch–
Rosenberg differential

Qdz2 = (2Hp − ch2
z)dz2,

where z is a conformal parameter, vanishes identically on them [AR]. That is,
an immersion with constant mean curvature H > 0 (H >

√
−c/2 when c < 0)

in a homogeneous product space such that Q ≡ 0 must be a piece of one of
the complete spheres described above.

Bearing that in mind, we can establish the following optimal estimate for
the maximum height that a surface with constant mean curvature can rise on
a slice M

2 × {t0}.

Theorem 2.1. Let Σ ⊆ M
2 × R be a compact graph on a set Ω ⊆ M

2, with
constant mean curvature H > 0 and whose boundary is contained on the slice
M

2 × {0}. Let c be the minimum of the Gauss curvature on Ω ⊆ M
2. Then

the maximum height that Σ can rise on M
2 × {0} is

4H√
−4cH2 − c2

arcsin
( √

−c

2H

)
if c < 0 and H >

√
−c

2
,

1
H

if c = 0,

4H√
4cH2 + c2

arcsinh
( √

c

2H

)
if c > 0.

Moreover, if the equality holds, then Ω has constant Gauss curvature c and
the Abresch–Rosenberg differential vanishes identically on Σ. In particular,
Σ must be a hemisphere of a complete example described above if M

2 × R is a
homogeneous space.

Proof. We can assume, without loss of generality, that Σ lies over the slice
M

2 × {0} and so ν ≤ 0 everywhere. Moreover, in order to simplify the proof,
we will suppose that c is −1,0, or 1. To do that it is enough to consider, if
c �= 0, the new metric on M

2 × R given by the quadratic form |c|gM2 +dt2 and
the surface Σ′ = {(x,

√
|c|t) ∈ M

2 × R : (x, t) ∈ Σ} which has constant mean
curvature H/

√
|c|.
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By differentiating (2.5) with respect to z̄ and using (2.3), (2.4), and (2.6),
one gets

νzz̄ = −kν|hz |2 − 2
λ

|p|2ν − H2

2
λν.

Then from (2.2),

νzz̄ = − λν

4

(
k(1 − ν2) +

8|p|2
λ2

+ 2H2

)
.(2.8)

In addition, from (2.5),

|νz |2 =
4|p|2|hz |2

λ2
+ H2|hz |2 +

2H

λ
(ph2

z̄ + ph2
z),

and taking into account that

|Q|2 = 4H2|p|2 + |hz |4 − 2cH(ph2
z̄ + ph2

z),

we obtain, using also (2.2) that

|νz |2 =
(

|p|2
λ

+
H2λ

4

)
(1 − ν2) +

c

λ

(
4H2|p|2 +

λ2

16
(1 − ν2)2 − |Q|2

)
(2.9)

when c �= 0.
Now, let us define φ as the map on Σ given by

φ = h + g(ν),(2.10)

where the function g will be chosen later. Then we have

φzz̄ = hzz̄ + g′(ν)νzz̄ + g′ ′(ν)|νz |2.(2.11)

Let us distinguish the cases c = 0 and c �= 0 separately. First, if c = 0, we
take g(s) = s/H . Thus, one gets from (2.4), (2.8), (2.11), and k ≥ 0

φzz̄ = − ν

H

(
2|p|2

λ
+ k|hz |2

)
≥ 0.(2.12)

On the other hand, if c �= 0, from (2.4), (2.8), (2.9), and (2.11)

φzz̄ = − c

λ
|Q|2g′ ′(ν) +

|p|2
λ

(
(1 − ν2 + 4cH2)g′ ′(ν) − 2νg′(ν)

)
+

λ

16
(
8Hν −

(
2H2 + k(1 − ν2)

)
4νg′(ν)(2.13)

+
(
4H2(1 − ν2) + c(1 − ν2)2

)
g′ ′(ν)

)
.

We choose g to make the coefficient of the |p|2 term vanish and g′ > 0.
Hence, the derivative of g is only determined up to a positive constant m0

g′(ν) =
m0

4H2 + c(1 − ν2)
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and so we have

g(ν) =
m0√

4H2 − 1
arcsin

(
ν√

4H2 − 1 + ν2

)
if c = −1,

g(ν) =
m0√

4H2 + 1
arcsinh

(
ν√

4H2 + 1 − ν2

)
if c = 1.

By using k ≥ c, we get from (2.13)

φzz̄ ≥ − 8Hν|Q|2
λ(4H2 + c(1 − ν2))2

+
λν

8
(4H − m0).(2.14)

Therefore, taking m0 = 4H, one has φzz̄ ≥ 0.
Consequently, for every value of c, we have that φ ≤ 0 on the boundary of

our surface ∂Σ and since φzz̄ ≥ 0, it follows that the Laplacian of φ verifies
that Δφ ≥ 0 on Σ. Therefore, φ ≤ 0 everywhere on Σ. Thus, by using that g
is strictly increasing, one has

h ≤ −g(ν) ≤ −g(−1),

as we wanted to prove.
Finally, observe that if the maximum height is attained at a point then φ

vanishes identically on Σ. But, from (2.2) and (2.4), |hz | cannot vanish on an
open set of Σ, or equivalently ν �≡ 1 on an open set, because H > 0. Thus, it
follows from (2.12) and (2.14) that k ≡ c and Q ≡ 0. �

Remark 2.1. In [HLR] height estimates were given for all H >
√

−c/2
when c < 0. Here, we have sharp bounds for all H >

√
−c/2 and c < 0.

In addition, the requirement H >
√

−c/2 when c < 0 is essential, because
there exists a revolution surface in H

2(c) × R with H =
√

−c/2 which is a
graph on H

2 such that the height function attains a minimum but not a
maximum [AR].

As a standard consequence of the Alexandrov reflection principle for sur-
faces of constant mean curvature with respect to the slices M

2 × {t0}, we have
the following corollaries (see [HLR]).

Corollary 2.1. Let c be the infimum of the Gauss curvature on M
2 and

Σ ⊆ M
2 × R an embedded compact surface with constant mean curvature H > 0

(H >
√

−c/2 if c < 0) and boundary contained on the slice M
2 × {t0}. Then

the maximum height that Σ can attain on M
2 × {t0} is

8H√
−4cH2 − c2

arcsin
( √

−c

2H

)
if c < 0,

2
H

if c = 0,(2.15)

8H√
4cH2 + c2

arcsinh
( √

c

2H

)
if c > 0.
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Corollary 2.2. Let c be the infimum of the Gauss curvature on M
2 and

Σ ⊆ M
2 × R a properly embedded surface without boundary and with constant

mean curvature H > 0 (H >
√

−c/2 if c < 0). Then:
• If Σ is compact, the height difference between its upper point and lower point

is less than or equal to the one given by (2.15).
• If Σ is not compact and M

2 is compact, Σ must have at least one top end
and one bottom end.

These corollaries are an improvement of the corresponding ones given by
Hoffman, de Lira, and Rosenberg [HLR], but their proofs are analogous to
those.
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José M. Espinar, Departamento de Geometŕıa y Topoloǵıa, F. Ciencias, Uni-
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