
Illinois Journal of Mathematics
Volume 52, Number 1, Spring 2008, Pages 153–180
S 0019-2082

FREE MARKOV PROCESSES AND STOCHASTIC
DIFFERENTIAL EQUATIONS IN

VON NEUMANN ALGEBRAS

MINGCHU GAO

Abstract. Free Markov processes are investigated in Voicules-
cu’s free probability theory. We show that Voiculescu’s free

Markov property implies a property called “weak Markov prop-
erty”, which is the classical Markov property in the commutative

case; while, in the general case, the “weak Markov property” is

the same as the Markov property defined by Bozejko, Kummer,

and Speicher. We also show that a kind of stochastic differential

equations driven by free Levy processes has solutions. The solu-
tions are free Markov processes.

Introduction

The concept of reduced free products of von Neumann algebras was in-
troduced by Ching [Ch] in 1973. Later, Voiculescu [V1] and Avitzour [Av]
introduced the free product construction in the framework of C∗-algebras in-
dependently in 1980s. Since then, the study on free product operator algebras
has been considerably developed and become an independent and important
direction of research free probability theory. This theory has many inter-
actions with other subjects in mathematics such that quantum probability,
operator algebras, and operator spaces ([RX], [S], [V2], [VDN]).

The study on stochastic processes is a vast research area in free probability.
The analogues of classical Brownian motion and Levy processes in free proba-
bility were introduced in 1990s. The concept of Markov processes of bounded
self-adjoint operators in a (tracial) probability space (i.e., a finite von Neu-
mann algebra with a normal tracial faithful state) was introduced by Bozejko,
Kummer, and Speicher in [BKS]. They showed that a Markov process in a
(noncommutative) probability space can be “realized” as a classical Markov
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process. Moreover, they defined transition functions for a Markov process (see
4.3 and 4.4 in [BKS]). Voiculescu [V3], [V4] defined Markovinian property for
a parameterized family of ∗-homomorphisms from a unital C∗-algebra into
a finite von Neumann algebra. Voiculescu’s idea to define the Markovinian
property is the free independence with amalgamation of the “future” alge-
bra and the “last” algebra with respect to the “present” algebra. We adapt
Voiculescu’s definition for free Markov processes. So far, most of the research
work on stochastic processes in free probability is on free Brownian motion
and free Lévy processes (see [A], [BT1], [BT2], [BeP], [BeV], [Bi1], [Bi2], [Bi3],
[BiS1], [BiS2], [Bo], [BS], [GM]).

In this article, we study the properties of free Markov processes and a kind
of stochastic differential equations driven by free Lévy processes. We get some
results in the following three aspects.

I. The properties of free Markov processes.

(1) We classify the relation between the free Markov property, the classical
Markov property, and Markov processes defined in [BKS]. We show that a
free Markov process has a weak Markov property (Theorem 2.5), that is,
the “future” subalgebra and the “past” subalgebra are “conditionally per-
pendicular” with respect to the “present” algebra. In the case of Abelian
algebras, the weak Markov property is the same as the classical Markov
property (Theorem 2.4); while, in general case, the weak Markov prop-
erty is the same as the Markov property defined in [BKS] (Theorem 2.6).
Hence, we see that the concept of Markov processes defined in [BKS] is a
classical version of the Markov property in a noncommutative probability
space. Voiculescu’s concept of free Markov property is a free version of
the classical Markov property in free probability.

(2) Biane [Bi2] showed that every free increments process has Markov transi-
tion functions. [BKS] defined transition functions for a Markov process.
But, there were no properties of the transition functions given in [BKS].
We now show that every weak Markov process has transition functions.
The transition functions have very similar properties to those transi-
tion functions of a classical Markov process. In the commutative case,
these transition functions determine the weak Markov property com-
pletely (Theorem 2.8).

II. Free stochastic differential equations. Certain free stochastic differential
equations driven by free Brownian motion were studied by Biane and Speicher
in 2001 (see [BiS2]). They showed that the free stochastic differential equa-
tions driven by free Brownian motion have solutions, and the solutions have
the free Markov property (see [BiS2]).

We consider the similar free stochastic differential equations driven by free
Lévy processes. We prove that the equations have solutions (Theorem 3.6).
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Under certain conditions, the solutions are free Markov processes (Theo-
rems 3.7 and 3.8). Our proofs rely on a free Burkholder–Gundy type inequality
in L2-norm (for the Lévy case) proved by M. Anshelevich [A]. A similar in-
equality in operator norm for stochastic integrals with respect to free Brown-
ian motion was obtained in [BiS1]. Our results provide a method to find
examples of free Markov processes of random variables with noncompactly
supported distributions.

III. Free Ornstein–Uhlenbeck equations. Biane and Speicher [BiS2] studied
the solution to the following stochastic differential equation (a special case of
the free stochastic differential equations mentioned previously)

(0.1) Xt = X0 − λ

∫ t

0

Xs ds + St, t ≥ 0,

where λ > 0, {St : t ≥ 0} is free Brownian motion, and the initial variable X0

and {St : t ≥ 0} are free. They proved that the unique solution to (0.1) has
the following form

(0.2) Xt = e−λtX0 + e−λt

∫ t

0

eλs dSs, t ≥ 0.

The process given in (0.2) is called a free Ornstein–Uhlenbeck process (briefly, a
free OU process). They also showed that its limit distribution is a semicircular
law. Barndorff-Nielsen and Thorbjornsen [BT2] mentioned free OU processes
driven by free Lévy processes (but there were no details given).

In this paper, we study similar equations to (0.1), driven by free Lévy
processes. It is shown that the solution of the equation has the same form
as (0.2), a free OU process driven by a free Lévy process (Theorem 4.3). We
show that a probability measure on R is freely self-decomposable if and only
if it is the limit distribution of a free OU process driven by a free Lévy process
(Theorem 4.4).

We study free OU processes in detail in [G].
The paper is organized as follows. In Section 1, we review some basic con-

cepts and results in classical Markov processes, unbounded operators affiliated
with a von Neumann algebra and operator Lipschitz functions. In Section 2,
we study some basic properties of free Markov processes. Section 3 is devoted
to the study of a kind of free stochastic differential equations driven by free
Lévy processes. We prove the existence, uniqueness, and the free Markov
property of the solution to this kind of systems of the equations. The purpose
of Section 4 is to study free Ornstein–Uhlenbeck processes in some details.

1. Preliminaries

In this section, we briefly discuss relevant background materials on classical
Markov processes, stochastic processes in noncommutative probability spaces,
unbounded operators affiliated with a von Neumann algebra, the convergence
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in distribution for stochastic processes, and operator Lipschitz inequality. We
refer to [BT2], [KR], and [VDN] for the general basics on free probability,
operator algebras, and unbounded operators affiliated with a von Neumann
algebra and the convergence of unbounded operators in distribution, respec-
tively.

We first review some basic concepts in free stochastic processes (see, e.g.,
[BKS]).

Let M be a finite von Neumann algebra, τ be a faithful normal tracial state
on M. We call (M, τ) a (tracial) probability space, (or a W ∗-probability
space). A random variable is a self-adjoint operator X ∈ M. A stochastic
process on (M, τ) is a family (Xt)t≥0 of random variables Xt in M. The dis-
tribution of a random variable X ∈ M is a probability measure μX on the
spectrum σX of X determined by the equation

τ(Xn) =
∫

xn dμX(x) ∀n = 0,1,2, . . . .

Free Brownian motion ([BiS1], [BiS2]). Let (M, τ) be a tracial probabil-
ity space with filtration { Mt : t ≥ 0} (that is, { Mt : t ≥ 0} is a family of von
Neumann subalgebras of M such that Mt ⊆ Ms, when 0 ≤ t ≤ s). A sto-
chastic process {St : t ≥ 0} is called (Mt)-free Brownian motion, if S0 = 0,
and, for 0 ≤ s < t, St − Ss and Ms are free, and St − Ss has a semicircular
distribution of mean zero and variance t − s.

To define free Lévy processes, we need some basics on unbounded operators
(see [BT2]).

Unbounded operators and convergence in distribution. Let (A,, τ) be
a tracial probability space with A, acting on the Hilbert space H (= L2(A,, τ))
by left multiplications. A self-adjoint (unbounded) operator A defined on a
dense subspace of H is said to be affiliated with A,, if all spectral projec-
tions of A lie in A,. Generally, a closed densely defined operator T on H is
said to be affiliated with A,, if T = UA, for some U in A,, and self-adjoint
operator A affiliated with A,, where T = UA is the polar decomposition of
T . Denoted by Ã, the algebra of all densely defined and closed (unbounded)
operators affiliated with A, (see [BT2], [KR], [MV], [N] for details). Elements
in Ã, are called random variables, in general, with noncompactly supported
distributions.

Let Ã,sa be the set of all self-adjoint elements in Ã,. Given X in Ã,sa,
let C∗(X) be the unital C∗-algebra generated by {f(X) : f ∈ BC(R)}, where
BC(R) is the space of all bounded continuous functions on R. Let W ∗(X)
be the von Neumann subalgebra of A, generated by C∗(X). Let U |A| be the
polar decomposition of the element A in Ã,, W ∗(A) be the von Neumann
subalgebra of A, generated by U and W ∗(|A|). The family {Xi ∈ Ã, : i ∈ Λ}
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is said to be free if {W ∗(Xi) : i ∈ Λ} forms a free family. Similarly, we can
define freeness with amalgamation for elements in Ã, (see [VDN]).

The distribution of element X ∈ Ãsa, denoted by μ(X), is a linear func-
tional on BC(R), which maps function f in BC(R) to τ(f(X)). Let
A,B ∈ Ã,sa be freely independent elements with distributions μ(A) and μ(B),
respectively. We call the distribution μ of A + B the freely additive convolu-
tion of μ(A) and μ(B), denoted by μ(A) � μ(B). A probability measure on
R is � (or free)-infinitely divisible, if for every natural number n, there exists
a probability measure μn on R such that

μ = μn � · · · � μn︸ ︷︷ ︸
n times

.

In classical probability theory, there are very similar concepts. Let f and
g be independent (classical) random variables on a (classical) probability
space (Ω,Σ, μ) with distributions μ(f) and μ(g), respectively. The distrib-
ution μ(f + g) of f + g is called the convolution of μ(f) and μ(g), denoted by
μ(f) ∗ μ(g). A probability measure μ on R is infinitely divisible if for every
natural number n, there is a probability measure μn such that

μ = μn ∗ · · · ∗ μn︸ ︷︷ ︸
n times

.

We use I D(�) and I D(∗) to denote the set of all �-infinitely divisible distri-
butions on R and that of all infinitely divisible measures on R, respectively.

A probability measure μ on R is said to be free (or �) self-decomposable
if, for any c ∈ (0,1), there exists a probability measure μc on R such that μ =
Dcμ � μc, where measure Dcμ is defined by the formula Dcμ(B) = μ(c−1B),
for Borel set B ⊆ R. A sequence (σn) of finite measures on R is said to
converge weakly to a finite measure σ on R, denoted by σn

w→ σ, if for all f in
BC(R), ∫

R

f(t)σn(dt) →
∫

R

f(t)σ(dt),

as n → ∞. For Xn,X in Ãsa, {Xn} ∞
n=1 is said to converge to X in distribution,

denoted by Xn
d→ X , if μ(Xn) w→ μ(X). Given Xn,X in Ã, {Xn} ∞

n=1 is said
to converge to X in probability, denoted by Xn

p→ X , if |Xn − X| d→ 0. By
[BT2], for Xn,X ∈ Ãsa, Xn

p→ X if and only if Xn − X
d→ 0, and Xn

p→ X

implies that Xn
d→ X . For X,Y ∈ Ãsa, X

d= Y means μ(X) = μ(Y ).

Free Lévy processes. A family {St : t ≥ 0} of elements in Ã,sa is a free Lévy
process, if S0 = 0, it has free increments (that is, St0 , St1 − St0 , . . . , Stn − Stn−1

are free, for 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn), it is stationary [that is, μ(St+s − Ss) =
μ(St), for s, t ∈ (0, ∞)] and St

d→ 0, as t → 0 (see [A], [BT2], [BiS2]). We say
that a free Lévy process {St : t ≥ 0} is adapted to the filtration {A,t : t ≥ 0}



158 M. GAO

of A (we call it an At-free Lévy process), if W ∗(St) ∈ At, for t ≥ 0, and St − Ss

and As are free, for 0 ≤ s < t (see [A]).

Classical Markov processes. Let (Ω, F , μ) be a probability space, {ft :
t ≥ 0} a family of measurable functions from (Ω, F , μ) into a locally com-
pact Hausdorff space X with a Borel σ-algebra B. Define F ≤t to be the
σ-subalgebra of F generated by f −1

s (B) for all Borel subsets B of X and
s ≤ t. Similarly, one may define F=t and F ≥t. The family {ft : t ≥ 0} is a
Markov process if

P(AB| F=t) = P(A| F=t)P(B| F=t),

for all A in F≤t, B in F ≥t, where P(· | F=t) is the conditional probability with
respect to F=t. Given s ≤ t, x ∈ X , and Borel subset Γ ⊆ X , we can define
a transition function P (s,x, t,Γ) = P (ft ∈ Γ|fs = x). Then {ft : t ≥ 0} is a
Markov process if and only if P (s,x, t,Γ) has the following properties (see
8.1.3 and 8.2.3 in [W]).
(1) When s, t, x are given, P (s,x, t, ·) is a probability measure on B.
(2) When s, t,Γ are given, P (s, ·, t,Γ) is a measurable function on (R, B).
(3) P (s,x, s,Γ) = χΓ(x).

Operator-valued Lipschitz functions. A map Q : Ak
sa → Asa is called

Lipschitz (or operator-valued Lipschitz ) with respect to ‖ · ‖2, if there exists
a constant C > 0 such that

(1.1) ‖Q(X1, . . . ,Xk) − Q(Y1, . . . , Yk)‖2 ≤ C

k∑
i=1

‖Xi − Yi‖2,

for all operators X1, Y1, . . . ,Xk, Yk in A,sa. A map Q : Ak
sa → Asa is locally

Lipschitz (or locally operator-valued Lipschitz ) with respect to ‖ · ‖2, if for
all M > 0, there exists a constant CM > 0 such that (1.1) holds for all Xi, Yi

in A,sa with ‖Xi‖2 and ‖Yi‖2 less than M , 1 ≤ i ≤ k. Similar definitions
of (locally) Lipschitz maps with respect to operator norm can be found in
Section 2.3 in [BiS2].

2. Free Markov processes

In this section, we study free Markov processes of (unbounded) random
variables in a W ∗-probability space. We classify the relation between the free
Markov property, the classical Markov property, and the Markov property
defined in [BKS]. Moreover, we show that every free Markov process has
transition functions.

First, let us recall the definition of freeness with amalgamation for two
subalgebras.

Let (M, τ) be a finite von Neumann algebra τ be a faithful normal tra-
cial state on M, B ⊆ M1 ∩ M2 be von Neumann subalgebras of M. Let
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EB : M → B be the trace preserving conditional expectation onto B. We say
that the subalgebras M1 and M2 are free with amalgamation over B, or M1

and M2 are B-free, if
EB(a1a2 · · · an) = 0,

whenever aj ∈ Mij , ij ∈ {1,2}, i1 �= i2 �= · · · �= in, EB(aj) = 0, and n ∈ N (see
Section 5.3 in [V4]).

A classical example of free subalgebras with amalgamation comes from
the analogue concept in group theory. Let H ⊆ G1 ∩ G2 be subgroups of a
group G. We say that G1 and G2 are free with amalgamation over H in
G if g1g2 · · · gn �= e, where e is the unit of group G, whenever gj ∈ Gij − H ,
i1 �= i2 �= · · · �= in. Consider group von Neumann algebras LH , LG1 , LG2 and
LG. Then LG1 and LG2 are free with amalgamation over LH in the finite von
Neumann algebra LG if and only if G1 and G2 are free with amalgamation
over H in G (see Section 5.3 in [V4]).

By [V3] and [V4], we have the following.

Definition 2.1. Let {Xt : t ≥ 0} be a family of (unbounded) operators
in Ã,. Let A,≤t be the von Neumann subalgebra of A generated by {W ∗(Xs),
0 ≤ s ≤ t}, A,≥t be the von Neumann subalgebra generated by {W ∗(Xs), s ≥
t} and A,=t = W ∗(Xt), for t ≥ 0. We say that the random process {Xt : t ≥ 0}
is a free Markov process, if, for t ≥ 0, A,≤t and A,≥t are A,=t-free.

We generalized it to a more general case.

Definition 2.2. Let {Xt = (X1,t, . . . ,Xk,t) ∈ Ãk : t ≥ 0} be a family of
k-tuples of random variables. Let A≤t, A=t, respectively, A ≥t be the von
Neumann subalgebras of A generated by {W ∗(Xi,s) : 0 ≤ s ≤ t, i = 1,2, . . . , k},
{W ∗(Xi,t) : i = 1,2, . . . , k}, respectively, {W ∗(Xi,s), s ≥ t, i = 1,2, . . . , k}. We
say random process {Xt : t ≥ 0} is a free Markov process, if A≤t and A ≥t are
A=t-free.

Voiculescu pointed out in [V4] that every process with free increments is a
free Markov process.

An analogue of the classical Markov property in noncommutative proba-
bility spaces is the following “weak Markov property”.

Definition 2.3. Let (A,, τ) be a W ∗-probability space. Let (Xt)t≥0 be
a family of self-adjoint operators in A,. Let A,≤t = W ∗ {Xs : s ≤ t}, A=t =
W ∗(Xt) and A,≥t = W ∗ {Xs : s ≥ t}. We say {Xt : t ≥ 0} is a weak Markov
process (or it has weak Markov property) in (A,, τ), if

E=t(AB) = E=t(A)E=t(B), ∀A ∈ A,≤t,B ∈ A,≥t,

where E=t : A, → A,=t is the trace preserving conditional expectation onto
A,=t.
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The following two results show the relation between the weak Markov prop-
erty, the classical Markov property, and the free Markov property.

Theorem 2.4. A family {ft ∈ A,as : t ≥ 0} in A, = L∞(Ω, F ,P) is a weak
Markov process if and only if the random process {ft : t ≥ 0} is a Markov
process in classical sense.

Proof. Let f ∈ A, = L∞(Ω, F ,P) be a real valued random variable. Then

W ∗(f) ∼= L∞(σ(f), Bσ(f), df),

where W ∗(f) is the von Neumann subalgebra generated by f , Bσ(f) is the
Borel algebra on σ(f), the image (i.e., the spectrum) of f, df (or μf ) is the
distribution of random variable f , and M ∼= N means that M is ∗-isomorphic
to N , as von Neumann algebras. Let F=t = {f −1

t (B) : B ∈ B }, where B is the
Borel σ-algebra on R. Then F=t is a σ-subalgebra of F . Define

π : L∞(
σ(f), Bσ(f), df

)
→ L∞(Ω, F=t,P)

by the formula π(g) = g ◦ f , for g ∈ L∞(σ(f), Bσ(f), df). It is obvious that
π(g) = g ◦ f ∈ L∞(Ω, F=t,P). Given g1, g2 ∈ L∞(σ(f), Bσ(f), df), x ∈ Ω, and
λ1, λ2 ∈ C, we have

(λ1g1 + λ2g2) ◦ f(x) = λ1g1(f(x)) + λ2g2(f(x)),

and
g1(f(x)) · g2(f(x)) = (g1g2)(f(x)), g1(f(x)) = g(f(x)).

Thus, π is a ∗-homomorphism. Moreover, the image of f (i.e., the spectrum of
f ) is the domain of elements in L∞(σ(f), Bσ(f), df). Hence, π is injective. For
any simple function s =

∑k
i=1 λiχBi ∈ L∞(Ω, F=t, P ), let g =

∑k
i=1 λiχf(Bi).

Then g ∈ L∞(σ(f), Bσ(f), df) and s = g ◦ f . It implies that the image of π is
dense in L∞(Ω, F=t,P). Hence, π is a *-isomorphism. To prove

A,≤t
∼= L∞(Ω, F ≤t, P ), A,≥t = L∞(Ω, F ≥t,P),

we first note that A,≤t is generated, as a von Neumann algebra, by {Xs :
s ≤ t}, and we have proved that W ∗(Xs) is *-isomorphic to L∞(Ω, F=t,P).
Thus, up to *-isomorphisms, we can assume that A,≤t is the von Neumann
algebra generated by elements in L∞(Ω, F=s,P), s ≤ t, and it is enough to
show that L∞(Ω, F ≤t,P) is generated by L∞(Ω, F=s,P), s ≤ t. In fact, given
a sequence t ≥ s1 ≥ s2 ≥ · · · , and B1,B2, . . . ∈ B, we have

χ⋂∞
i=1 f −1

si (Bi)
= lim

n→∞
χf −1

s1 (B1)
· · · χf −1

sn (Bn) ∈ A,≤t.

Moreover, let S1 = f −1
s1

(B1), and

Sj = f −1
sj

(Bj) −
(

j−1⋃
i=1

f −1
si

(Bi)

)
, j = 2,3, . . . ,
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we have

χ⋃∞
i=1 f −1

si (Bi)
= χ⋃∞

i=1 Sj
=

∞∑
i=1

χSi ∈ A,≤t.

Hence, for S ∈ F≤t, χS ∈ A,≤t. Hence, L∞(Ω, F ≤t, P ) ⊆ A,≤t. Conversely, it
is obvious that A,≤t ⊆ L∞(Ω, F ≤t,P) (up to *-isomorphism). Hence, A,≤t

∼=
L∞(Ω, F ≤t,P). Similarly, A,≥t

∼= L∞(Ω, F ≥t, P ).
Let {ft : t ≥ 0} be a weak Markov process in sense of Definition 2.3. For

all t ≥ 0, A ∈ F ≤t, and B ∈ F ≥t, we have χA ∈ A,≤t, χB ∈ A,≥t. Hence,

P(AB|ft) = E=t(χAχB) = E=t(χA)E=t(χB) = P(A|ft)P(B|ft).

It follows that {ft : t ≥ 0} is a classical Markov process.
Conversely, suppose {ft : t ≥ 0} is a classical Markov process. By the pre-

vious discussion, E=t(PQ) = E=t(P )E=t(Q), ∀t ≥ 0, for projections P and Q
in A,≤t and A,≥t, respectively. Thus, for λi, λ

′
i ∈ C, Pi ∈ A,≤t,Qi ∈ A,≥t, and

xX =
∑n

i=1 λiPi, Y =
∑n

i=1 λ′
iqQi, we have

E=t(XY ) =
n∑

i,j=1

λiλ
′
jE=t(PiQj) = E=t(X)E=t(Y ).

Note that conditional expectation E=t is norm continuous and the linear span
of all projections is norm dense in a von Neumann algebra, so we have

E=t(AB) = E=t(A)E=t(B), ∀A ∈ A,≤t,B ∈ A,≥t.

It follows that {ft : t ≥ 0} is a weak Markov process. �

Theorem 2.5. Let {Xt : t ≥ 0} be a free Markov process of elements in
A,sa. Then {Xt : t ≥ 0} is a weak Markov process in W ∗-probability space
(A,, τ).

Proof. For any t0 ≥ 0, let A,≤t = W ∗ {Xt : t ≤ t0}, A,=t0 = W ∗(Xt0), and
A,≥t0 = W ∗ {Xt : t ≥ t0}. Let Et0 be the trace-preserving conditional expec-
tation on A,=t0 . For A ∈ A,≤t0 and B ∈ A,≥t0 , we have

Et0(AB) = Et0

((
A − Et0(A) + Et0(A)

)(
B − Et0(B) + Et0(B)

))
= Et0

((
A − Et0(A)

)(
B − Et0(B)

))
+

(
Et0(A)Et0

((
B − Et0(B)

))
+ Et0

((
A − Et0(A)

)
Et0(B)

)
+ Et0(A)Et0(B)

=
(
Et0(A)Et0

((
B − Et0(B)

))
+ Et0

((
A − Et0(A)

)
Et0(B)

)
+ Et0(A)Et0(B)

= Et0(A)Et0(B),

where the third equality holds true because of the free Markov property of
{Xt : t ≥ 0}. �
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Let (A,, τ) be a (tracial) probability space, and {Xt : t ≥ 0} of self-adjoint
operators in A, be a stochastic process. Denoted by

A,≤t = W ∗({Xu : u ≤ t}), A,≥t = W ∗({Xu : u ≥ t}), A,=t = W ∗(Xt).

In [BKS], {Xt : t ≥ 0} is called a Markov process if

E≤s(X) ∈ A,=s, ∀X ∈ A,=s, s ≤ t.

The authors of [BKS] pointed out that there is another canonical version for
the Markov property as follows. A stochastic process {Xt : t ≥ 0} has the
Markov property if

(2.1) E≤s(X) ∈ A,=s, ∀X ∈ A,≥s, s ≤ t.

The following result gives some sufficient and necessary conditions for a
process to be a weak Markov process.

Theorem 2.6. Let (A,, τ) be a W ∗-probability space. Let (Xt)t≥0 be a
family of self-adjoint operators in A,. Then the following are equivalent.
(1) The process {Xt : t ≥ 0} is a weak Markov process.
(2) For all t ≥ 0, E≤t(A) = E=t(A), ∀A ∈ A,≥t, where E≤t : A, → A,≤t is the

trace preserving conditional expectation onto A,≤t.
(3) For all t ≥ 0, E≥t(A) = E=t(A), ∀A ∈ A,≤t, where E≥t : A, → A,≥t is the

trace preserving conditional expectation onto A,≥t.
(4) For all 0 ≤ s ≤ t, let A,s,t = W ∗ {Xr : s ≤ r ≤ t} and Es,t : A,≤t → A,≤s

be the trace preserving conditional expectation. Then Es,t(A,s,t) ⊆ A,=s.

Proof. (1) ⇒ (2) Without loss of generality, we can assume that von Neu-
mann algebra A, acts on the Hilbert space L2(A,, τ). Then τ is the vector
state associated to identity element I of A,. Thus, τ is continuous with respect
to WOT (weak operator topology). Note that the linear span L of the set
{Xt1 · · · Xtn : tj ≥ t, j = 1,2, . . . , n,n = 1,2, . . .} is dense in A,≥t with respect
to WOT. If we can prove

(2.2) E≤t(Xt1 · · · Xtn) = E=t(Xt1 · · · Xtn), ∀tj ≥ t, j = 1,2, . . . , n, n ∈ N,

then we have E≤t(X) = E=t(X), ∀X ∈ L. Moreover, for A ∈ A,≥t, there is a
net {Xλ : λ ∈ Λ} in L such that limλ Xλ = A, where the limit is with respect
to WOT. Hence, for B ∈ A,≤t, we have

τ(E=t(A)B) = lim
λ

τ(E=t(Xλ)B) = lim
λ

τ(E≤t(Xλ)B)

= lim
λ

τ(XλB) = τ(E≤t(A)B).

Hence, it is sufficient to show (2.2). For tj ≥ t, j = 1,2, . . . , n and B ∈ A,≤t,
we have

τ(Xt1 · · · XtnB) = τ(E=t(Xt1 · · · XtnB))
= τ(E=t(Xt1 · · · Xtn)E=t(B))
= τ(E=t(Xt1 · · · Xtn)B),
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where the second equality holds because of Definition 2.3. Hence,

E≤t(Xt1 · · · Xtn) = E=t(Xt1 · · · Xtn).

(2) ⇒ (1) For A ∈ A,≤t,B ∈ A,≥t, and C ∈ A,=t, we have

τ(ABC) = τ(CAE≤t(B)) = τ(CAE=t(B))
= τ(AE=t(B)C) = τ(E=t(A)E=t(B)C).

Hence,
E=t(AB) = E=t(A)E=t(B).

The proof of the equivalence of (1) and (3) is the same as that of (1) ⇔ (2).
(4) ⇒ (2) It is enough to show that

E≤t(Xt1 · · · Xtn) ∈ A,=t, ∀tj ≥ t, j = 1,2, . . . , n, n ∈ N.

Let u = max{tj : j = 1,2, . . . , n}. Then Xt1 · · · Xtn ∈ A,t,u. Hence, by (4),

E≤t(Xt1 · · · Xtn) = Es,t(Xt1 · · · Xtn) ∈ A,=s.

(2) ⇒ (4) It is enough to show that Es,t(Xr1 · · · Xrn) ∈ A,=s, for all s ≤ rj ≤ t.
Since Xr1 · · · Xrn ∈ A,≥s ∩ A,≤t,

Es,t(Xr1 · · · Xrn) = E≤s(Xr1 · · · Xrn) ∈ A,=s,

by (2). �
Remark 2.7. The above result shows that the concept of Markov processes

(2.1) defined in [BKS] is the same as that of weak Markov processes, a weak
version of the free Markov property. Combining Theorem 2.4, we see that
the concept of Markov processes in [BKS] is a “classical” Markov property
in noncommutative probability spaces. The concept of free Markov processes
defined in [V3, V4] and our Definitions 2.1 and 2.2 is a free version of the
classical Markov property in free probability.

The following result shows that a free Markov process has transition func-
tions, which have very similar properties to those of a classical Markov process.

Theorem 2.8. Let {Xt : t ≥ 0} be a stochastic process in W ∗-probability
space (A,, τ). Then the following statements hold.
(1) If {Xt : t ≥ 0} has the weak Markov property, then there is an operator

Ks,t : L∞(R) → L∞(R),

for 0 ≤ s ≤ t, such that
(a) the map ks,t(x, ·) : Γ → ks,t(x,Γ) = Ks,t(χΓ)(x) is a probability mea-

sure on the Borel σ-algebra Bσ(Xs) over the spectrum σ(Xs) of opera-
tor Xs, for almost all x ∈ σ(Xs) with respect to the spectral distribu-
tion dXs : Γ → τ(Δ(Γ)), where Δ(Γ) is the spectral projection of Xs

corresponding to the Borel set Γ of σ(Xs).
(b) when t = s, we have Ks,s(χΓ) = χΓ, for every Borel set Γ ∈ σ(Xs).
(c) E≤s(ϕ(Xt)) = Ks,t(ϕ)(Xs), ∀ϕ ∈ L∞(R).
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(2) If {Xt : t ≥ 0} is a commutative process of operators in A,sa (i.e., XtXs =
XsXt, for all t, s ≥ 0), and there is an operator

Ks,t : L∞(R) → L∞(R),

for 0 ≤ s ≤ t, satisfies conditions (a), (b), and (c) in (1), then {Xt : t ≥ 0}
is a weak Markov process.

Proof. By (4) in Theorem 2.6, Es,t(A,=t) ⊆ A,=s, for 0 ≤ s < t. Note that
there is a *-isomorphism

πt : A,=t → L∞(σ(Xt), Bσ(Xt), dXt),

where dXt is the (spectral) distribution of Xt with respect to τ . For 0 ≤ s < t,
define

Ks,t(f)(x) = πsEs,t(f(Xt))(x), ∀f ∈ L∞(R), x ∈ R.

Then Ks,t : L∞(R) → L∞(R), and

E≤s(f(Xt)) = π−1
s (Ks,t(f)) = Ks,t(f)(Xs), ∀f ∈ L∞(R).

This shows that Ks,t satisfies condition (c). Now, we show that Ks,t satisfies
the properties (a) and (b). It is obvious that function Ks,t(f)(x) is measurable,
since

Ks,t(f) ∈ L∞(σ(Xs), Bσ(Xs), dXs).

For 0 ≤ s ≤ t, x ∈ R, a Borel set F =
⋃

i≥1 Fi ∈ B, Fi ∩ Fj = ∅, ∀i �= j, i, j =
1,2, . . . , ∀G ∈ Bσ(Xs), and ks,t(x,F ) = Ks,t(χF )(x), we have∫

G

Ks,t(χF )dXs =
∫

σ(Xs)

(Ks,t(χF )χG)dXs = τ(Es,t(χF (Xt))χG(Xs))

= τ(χF (Xt)χG(Xs)) = τ

( ∞∑
i=1

χFi(Xt)χG(Xs)

)

=
∞∑

i=1

τ(χFi(Xt)χG(Xs)) =
∞∑

i=1

∫
G

Ks,t(χFi)dXs

=
∫

G

( ∞∑
i=1

Ks,t(χFi)

)
dXs.

It follows that

ks,t(F,x) =
∞∑

i=1

ks,t(Fi, x),

for almost all x ∈ σ(Xs) with respect to dXs. Moreover,

ks,t(x,σ(Xs)) = Ks,tχσ(Xs)(x) = πsEs,t

(
χσ(Xt)(Xt)

)
(x) = 1.

Hence, ks,t(x, ·) is a probability measure on σ(Xs), for almost all x ∈ σ(Xs).
This completes the proof of (a). Property (b) is obvious.
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Conversely, by property (c) of operator Ks,t, we have Es,t(A,=t) ⊆ A,=s,
for 0 ≤ s < t. Now we show that Es,t(A,s,t) ⊆ A,=s, for 0 ≤ s < t. Since A,s,t

is Abelian, the linear span L of elements in {Xr1 · · · Xrn : s ≤ r1 ≤ · · · ≤ rn ≤
t, n ∈ N} is dense in A,s,t with respect to WOT. Hence, it is sufficient to show
that

τ(Xr1 · · · XrnB) = τ(E=s(Xr1 · · · Xrn)B),
for all B ∈ A,≤s. We shall prove it by induction in n. For n = 1, we have

Es,t(f(Xt1)) ∈ A,=s, ∀f ∈ L∞(R),

since Es,t(A,=t) ⊆ A,=s. Suppose

Es,t(f1(Xt1) · · · fn(Xtn)) ∈ A,=s, ∀f1, . . . , fn ∈ L∞(R), s ≤ t1 ≤ · · · ≤ tn ≤ t.

Now for f1, . . . , fn+1 ∈ L∞(R), s ≤ t1 ≤ · · · ≤ tn+1 ≤ t, and B ∈ A,≤s, we have

τ(f1(Xt1) · · · fn+1(Xtn+1)B)
= τ(f1(Xt1) · · · fn(Xtn)E≤tn(fn+1(Xtn+1))B)
= τ(f1(Xt1) · · · (fn(Xtn)E≤tn(fn+1(Xtn+1)))B)
= τ(E=s(f1(Xt1) · · · (fn(Xtn)E≤tn(fn+1(Xtn+1))))B)
= τ(E=s(f1(Xt1) · · · fn(Xtn)fn+1(Xtn+1))B).

It implies that Es,t(f1(Xt1) · · · fn+1(Xtn+1)) ∈ A,=s. We have proved (4) in
Theorem 2.6. Hence, {Xt : t ≥ 0} is a weak Markov process in W ∗-probability
space (A,, τ). �

3. Free stochastic differential equations

In this section, we study a kind of system of stochastic differential equa-
tions (3.3), and the free Markov property of its solution. Our results gener-
alize Biane and Speicher’s work on free differential equations driven by free
Brownian processes (see [BiS2]) to a more general case of the free stochastic
differential equations driven by free Lévy processes. On the other hand, our
results provide a way to get free Markov processes of random variables with
uncompact supported distributions.

Let (A, τ) be a W ∗-probability space with filtration {At : t ≥ 0}. For
each 1 ≤ i ≤ k, {Si,t : t ≥ 0} is At-free Brownian motion, and {S1,t : t ≥
0}, . . . , {Sk,t : t ≥ 0} are free in (A, τ). In [BiS2], Biane and Speicher proved
the following result.

Theorem 3.1 (Theorem 3.1, Proposition 3.3 in [BiS2]). Let Q1, . . . ,Qk :
Ak

sa → A be k locally operator-valued Lipschitz functions (with respect to op-
erator norm) such that each Qi maps (As)k

sa into (As)sa for all s ≥ 0. If there
exist constants a ∈ R, b > 0 such that

(3.1)
k∑

i=1

(
Qi(X1, . . . ,Xk)Xi + XiQi(X1, . . . ,Xk) + 1

)
≤ a

k∑
i=1

X2
i + b,
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for all X1, . . . ,Xk ∈ Asa. Then, for Xi,0 ∈ A0, i = 1,2, . . . , k, the system

(3.2) dXi,t = Qi(X1,t, . . . ,Xk,t)dt + dSi,t, i = 1, . . . , k, t ≥ 0

has a unique solution X(t) = (X1,t, . . . ,Xk,t) for all t ≥ 0. Furthermore, we
have Xi,t ∈ At for all i = 1, . . . , k, t ≥ 0, the maps t → Xi,t are norm contin-
uous. Moreover, let B ≤t = W ∗ {Xi,0, Si,s : s ≤ t,1 ≤ i ≤ k}, B ≥t = W ∗ {Xi,t,
Si,s − Si,t : s ≥ t,1 ≤ i ≤ k} and B=t = W ∗ {Xi,t : 1 ≤ i ≤ k}, then (B ≤t, B=t,
B ≥t) is a free Markovinian triple (i.e., B ≤t and B ≥t are B=t-free).

It is obvious that (3.1) is equivalent to

(3.1′)
k∑

i=1

(
Qi(X1, . . . ,Xk)Xi + XiQi(X1, . . . ,Xk)

)
≤ a

k∑
i=1

X2
i + b,

for all X1, . . . ,Xk ∈ Asa and some a, b > 0. In this section, we consider a
system similar to (3.2) as follows.

(3.3) dXi(t) = Qi(X1,t, . . . ,Xk,t)dt + dSi,t, i = 1, . . . , k, t ≥ 0,

where {Si,t : t ≥ 0} (i = 1, . . . , k) are At-free Lévy processes of elements in
Asa (by [1, Lemma 1], the function t → Si,t is continuous in Ln(A,, τ), for all
n ∈ N), and {S1,t : t ≥ 0}, . . . , {Sk,t : t ≥ 0} are free in (A, τ). We shall prove
that under conditions similar to Theorem 3.1, the system (3.3) has a unique
solution Xt = (X1,t, . . . ,Xk,t) ∈ L2(A, τ), and {Xt : t ≥ 0} is a free Markov
process.

Lemma 3.2. For 1 ≤ i ≤ k, let Qi : Ak
sa → Asa be a Lipschitz maps with

respect to ‖ · ‖2, such that Qi : (As)k
sa → (As)sa, for i = 1, . . . , k, s ≥ 0. Then

given arbitrary initial conditions Xi,0 ∈ A0, i = 1,2, . . . , k, ( 3.3) has a unique
solution {Xt = (X1,t, . . . ,Xk,t) : t ≥ 0}. Furthermore, we have Xi,t ∈
L2(At,sa, τ) for all i = 1, . . . , k, t ≥ 0, and t → Xi,t is continuous with respect
to ‖ · ‖2.

Proof. The solution to (3.3) is a process {Xi,t ∈ L2(Asa, τ) : t ≥ 0} such
that

(3.4) Xi,t = Xi,0 +
∫ t

0

Qi(X1,s, . . . ,Xk,s)ds + Si,t, ∀t ≥ 0,1 ≤ i ≤ k.

We use Picard iteration method to get the solution. Since Qi is Lipschitz,
there exists C > 0 such that

‖Qj(X1, . . . ,Xk) − Qj(Y1, . . . , Yk)‖2 ≤ C

k∑
i=1

‖Xi − Yi‖2,

for all Xi, Yi ∈ Asa,1 ≤ i, j ≤ k. Take T > 0 such that kCT < 1. For 0 ≤ t ≤ T ,
let X

(0)
i,t = Xi,0,1 ≤ i ≤ k, and

(3.5) X
(n+1)
i,t = Xi,0 +

∫ t

0

Qi

(
X

(n)
1,s , . . . ,X

(n)
k,s

)
ds + Si,t, n = 1,2, . . . .
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Then X
(0)
i,t ∈ At,sa and the function X

(0)
i,t ∈ At,sa is continuous with respect

to ‖ · ‖2, for 1 ≤ i ≤ k. Assume X
(n)
i,t ∈ L2(At,sa, τ) and t → X

(n)
i,t ∈ L2(Asa, τ)

is continuous with respect to ‖ · ‖2. Then Qi(X
(n)
1,s , . . . ,X

(n)
k,s ) ∈ L2(As,sa, τ)

and s → Qi(X
(n)
1,s , . . . ,X

(n)
k,s ) is continuous with respect to ‖ · ‖2, since

Qi : L2(A, τ)k → L2(A, τ) is continuous. It implies that X
(n+1)
i,t = Xi,0 +∫ t

0
Qi(X

(n)
1,s , . . . ,X

(n)
k,s )ds + Si,t ∈ L2(At,sa, τ) and t → X

(n+1)
i,t ∈ L2(Asa, τ) is

continuous. By induction, X
(n)
i,t ∈ At,sa and t → X

(n)
i,t ∈ L2(Asa, τ) is continu-

ous with respect to ‖ · ‖2.∥∥X
(n+1)
i,t − X

(n)
i,t

∥∥
2

=
∥∥∥∥∫ t

0

(
Qi

(
X

(n)
1,s , . . . ,X

(n)
k,s

)
− Qi

(
X

(n−1)
1,s , . . . ,X

(n−1)
k,s

))
ds

∥∥∥∥
2

≤
∫ t

0

∥∥Qi

(
X

(n)
1,s , . . . ,X

(n)
k,s

)
− Qi

(
X

(n−1)
1,s , . . . ,X

(n−1)
k,s

)∥∥
2
ds

≤ C

∫ t

0

k∑
i=1

∥∥X
(n)
i,s − X

(n−1)
i,s

∥∥
2
ds.

Let Dn = sup0≤t≤T

∑k
i=1 ‖X

(n)
i,t − X

(n−1)
i,t ‖2, we have

Dn ≤ kTCDn−1 ≤ · · · ≤ (KTC)n−1D1.

It follows that {X
(n)
i,t } ∞

n=1 is a Cauchy sequence with respect to ‖ · ‖2, since
0 < kTC < 1. Therefore, there exist Xi,t ∈ L2(At,sa, τ), for 0 ≤ t ≤ T, i =
1,2, . . . , k, such that Xi,t = limn→∞ X

(n)
i,t where the limit is taken in the

topology of norm ‖ · ‖2. Note that Qi : L2(Asa, τ)k → L2(Asa, τ) is con-
tinuous with respect to ‖ · ‖2. Let n approach ∞ in (3.5), we get (3.4).
Hence, Xt = (X1,t, . . . ,Xk,t) is a solution to (3.3), and Xi,t ∈ L2(At,sa, τ), for
0 ≤ t ≤ T . Now we show that t → Xi,t ∈ L2(Asa, τ) is continuous. For 0 ≤ s, t,
we have

‖Xi,s − Xi,t‖2 ≤
∥∥Xi,s − X

(n)
i,s

∥∥
2
+

∥∥X
(n)
i,s − X

(n)
i,t

∥∥
2
+

∥∥Xi,t − X
(n)
i,t

∥∥
2

= lim
m→∞

∥∥X
(m)
i,s − X

(m)
i,s

∥∥
2
+

∥∥X
(n)
i,s − X

(n)
i,t

∥∥
2

+ lim
m→∞

∥∥X
(m)
i,t − X

(n)
i,t

∥∥
2

≤ 2
∞∑

m=n

(kCT )m(KTC)n−1D1 +
∥∥X

(n)
i,s − X

(n)
i,t

∥∥
2
.

Since limm→∞
∑∞

m=n(kCT )m(KTC)n−1D1 = 0, for ε > 0, there exists n
such that

∞∑
m=n

(kCT )m(KTC)n−1D1 < ε/4.
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Note also that t �→ X
(n)
i,t is continuous, for the above ε > 0, and t ∈ [0, T ], there

exists δ > 0 such that ‖X
(n)
i,s − X

(n)
i,t ‖2 < ε/2, whenever, |t − s| < δ. Hence, we

have
‖Xi,s − Xi,t‖2 ≤ ε,

whenever |t − s| < δ. It follows that t → Xi,t ∈ L2(Asa, τ) is continuous. For
T < t ≤ 2T , (3.4) can be rewritten as

Xi,t = Xi,T +
∫ t

T

Qi(X1,s, . . . ,Xk,s)ds + Si,t − Si,T .

Let X
(0)
i,t = Xi,T and

X
(n+1)
i,t = Xi,T +

∫ t

T

Qi

(
X

(n)
1,s , . . . ,X

(n)
k,s

)
ds + Si,t − Si,T , n = 1,2, . . . .

As the above proof, we can prove that (3.3) has solution Xt = (X1,t, . . . ,Xk,t),
for T < t ≤ 2T . Generally, for t > 0, there exists n ∈ N such that nT < t ≤
(n + 1)T . Thus, after doing the above process n times, we get a solution
of (3.3). Hence, by the construction of Xt = (X1,t, . . . ,Xk,t), (X1,t, . . . ,Xk,t) ∈
L2(At,sa, τ) and t → Xi,t is continuous with respect to ‖ · ‖2.

Uniqueness, if (3.3) has two solutions Xi,t and Yi,t in L2(Asa, τ), for 1 ≤
i ≤ k, then we have

(3.5′) sup
0≤s≤t

k∑
i=1

‖Xi,s − Yi,s‖2 ≤ kCt sup
0≤s≤t

k∑
i=1

‖Xi,s − Yi,s‖2.

Let f(t) :=
∑k

i=1 ‖Xi,s − Yi,s‖2. Then f(t) is a continuous nonnegative func-
tion on [0, ∞) such that

sup
0≤s≤t

f(s) ≤ kCt sup
0≤s≤t

f(s), ∀t ≥ 0.

Hence, let t0 be 1
kC , we have f(t) = 0, for t ∈ [0, t0]. That is, Xi,s = Yi,s, for

1 ≤ i ≤ k, and 0 ≤ s ≤ t0. When t > t0, we have

Xi,t = Xi,t0 +
∫ t

t0

Q(X1,s, . . . ,Xk,s)ds + Si,t − Si,t0 ,

Yi,t = Yi,t0 +
∫ t

t0

Q(Y1,s, . . . , Yk,s)ds + Si,t − Si,t0 .

Thus, we get an equation similar to (3.5′)

sup
t0≤s≤t

k∑
i=1

‖Xi,s − Yi,s‖2 ≤ kC(t − t0) sup
t0≤s≤t

k∑
i=1

‖Xi,s − Yi,s‖2.

It implies that Xi,t = Yi,t, for t ∈ [t0,2t0]. Finally, we get that Xi,t = Yi,t, for
all t ≥ 0, and i = 1,2, . . . , k. �
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Lemma 3.3. Let Q : Ak
sa → Asa be a locally operator-valued Lipschitz func-

tion, and h : [0, ∞) → [0,1] be a continuous function with the following prop-
erty: there is a R > 0 such that h|[0,R] = 1, h|[2R,∞) = 0 and there is a C > 0
such that |h(t) − h(s)| ≤ C|t − s|, ∀t, s ≥ 0. Let

f(X1, . . . ,Xk) = Q(X1, . . . ,Xk)h

(
k∑

i=1

‖Xi‖2

)
, ∀X1, . . . ,Xk ∈ L2(Asa, τ).

Then f is Lipschitz.

Proof. The proof is the same as that of Lemma 3.2 in [BiS2]. �

We need the following well-known result.

Lemma 3.4. Let A ∈ L2(A,sa, τ) ⊆ Ãsa. Then A2 ∈ L1(A,sa, τ) and ‖A‖2 =
τ(A2)1/2.

To prove the existence of the solution to (3.3), we need the following lemma.
First, we introduce some notions (see [A] for details).

Let A,op be the opposite algebra of A, (i.e., the von Neumann algebra
obtained by defining A · B = BA, for A,B ∈ A, and preserving all other oper-
ations in A,). Given 0 ≤ t1 ≤ · · · ≤ tn+1 < ∞ and A1,B1, . . . ,An, Bn ∈ A,, the
function U(t) =

∑n
i=1 Ai ⊗ Biχ[ti,ti+1) is called a simple biprocess. A simple

biprocess U(t) is adapted with a filtration { A,t : t ≥ 0}, if U(t) ∈ A,t ⊗ A,op
t ,

for all t ≥ 0. The space of all A,t-adapted simple biprocesses is denoted by B.
For U(t) =

∑n
i=1 Ai ⊗ Biχ[ti,ti+1) ∈ B, we can define∫ ∞

0

U(s)
 dSs :=
n∑

i=1

Ai(Sti+1 − Sti)Bi.

Denoted by m the multiplication map A, ⊗ A,op → A,. Then m(U(t)) = AiBi,
if U(t) =

∑n
j=1 Aj ⊗ Bjχ[tj ,tj+1)(t) and ti ≤ t < ti+1. Given a > 0, we can

define the norm

‖U ‖ ′
2,a =

(∫ ∞

0

‖U(s)‖2
2 ds

)1/2

+ a

∥∥∥∥∫ ∞

0

m(U(s))ds

∥∥∥∥
2

,

for U ∈ B. The completion of B with respect to ‖ · ‖′
2,a is denoted by B2,a

2 .

Lemma 3.5. Let t → Xt be a continuous function in L2(A,, τ), {St : t ≥ 0}
be a A,t-free Lévy process of elements in A,sa, and r1 = |τ(S1)|. Then

max
{∥∥∥∥∫ t

0

Xs dSs

∥∥∥∥
2

,

∥∥∥∥∫ t

0

dSsXs

∥∥∥∥
2

}
≤

∥∥X·χ[0,t](·)
∥∥′

2,r1
.

Proof. By Proposition 6 in [A], for Xt ∈ B2,r1
2 , ‖

∫ ∞
0

Xs
 dSs‖2 ≤ ‖X‖′
2,r1

.
Thus, it is enough to show that Xsχ[0,t](s) ∈ B2,r1

2 , for all t > 0. In fact, for
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n ∈ N, let Un,s =
∑n

i=1 X i
n tχ[ (i−1)t

n , it
n )

(s). Then Un ∈ B. Moreover,∥∥X·χ[0,t] − Un

∥∥′
2,r1

=

(
n∑

i=1

∫ it
n

(i−1)t
n

‖Xs − X it
n

‖2
2 ds

)1/2

+

∥∥∥∥∥
n∑

i=1

∫ it
n

(i−1)t
n

(Xs − X it
n
)ds

∥∥∥∥∥
2

≤
n∑

i=1

(
sup

(i−1)t
n ≤s≤ it

n

‖Xs − X it
n

‖2
2

t

n

)1/2

+
n∑

i=1

sup
(i−1)t

n ≤s≤ it
n

‖Xs − X it
n

‖2
t

n

≤
n∑

i=1

sup
0≤s,s′ ≤t,|s−s′ |≤ t

n

‖Xs − Xs′ ‖2(t1/2 + t)

→ 0,

as n → ∞, where we have used the fact that s → Xs is uniformly continuous
as a function from [0, t] into L2(A,, τ). Hence, X·χ[0,t](·) ∈ B2,r1

2 . �

Theorem 3.6. Let Qi : Ak
sa → Asa, (i = 1, . . . , k) be k local Lipschitz maps

with respect to ‖ · ‖2 such that Qi : Ak
s,sa → As,sa, for i = 1, . . . , k, s ≥ 0,

and there exist constants a, b > 0 such that (3.1′) holds. Then for initial
conditions Xi,0 ∈ A0 (i = 1,2, . . . , k), the system (3.3) has a unique solution
Xt = (X1,t, . . . ,Xk,t) for t ≥ 0. Furthermore, we have Xi,t ∈ L2(At,sa, τ) for
i = 1, . . . , k, t ≥ 0, and t → Xi,t is continuous with respect to ‖ · ‖2.

Proof. For R > 0, take a function hR as that in Lemma 3.3, and let

fi(X1, . . . ,Xk) = Qi(X1, . . . ,Xk)hR

(
k∑

i=1

‖Xi‖2

)
,

for all X1, . . . ,Xk ∈ L2(Asa, τ) and 1 ≤ i ≤ k. By Lemmas 3.2 and 3.3, the
following system

Xi,t = Xi,0 +
∫ t

0

fi(X1,s, . . . ,Xk,s)ds + Si,t, 1 ≤ i ≤ k

has a unique solution XR
t = (XR

1,t, . . . ,X
R
k,t). Note that if

∑k
i=1 ‖Xi,t‖2 ≤

R, we have fi = Qi,1 ≤ i ≤ k. So, XR
t is a solution to (3.3). Let TR =

inf{t :
∑k

i=1 ‖XR
i,t‖2 > R}, then XR

t is a solution to (3.3), if t < TR. Hence,
we shall be done if we can prove that

lim
R→∞

TR = ∞.



FREE MARKOV PROCESSES 171

By [A, Corollary 12]

(Si,t)2 =
∫ t

0

dSi,sSi,s +
∫ t

0

Si,s dSi,s + Δi,2(t),

where Δi,2(t) = limN →∞
∑N

j=1(Si, j
N t − Si, j−1

N t)
2, where the limit is taken in

the topology of the operator norm (see Definition 3 in [A]). By Lemma 2
in [A], {Δi,k(t) : t ≥ 0} is an A,t-free Lévy process. Hence,

d(S2
i,t) = dSi,tSi,t + Si,t dSi,t + dΔi,2(t).

Let XR
t = (XR

1,t, . . . ,X
R
k,t), we have

d((XR
i,t)

2) = d

(
X2

i,0 + Xi,0

∫ t

0

Qi(XR
s )ds

)
+ Xi,0Si,t

+
∫ t

0

Q(Xs)dsXi,0 +
(∫ t

0

Q(Xs)ds

)2

+
∫ t

0

Q(Xs)dsSi,t

+ Si,tXi,0 + Si,t

∫ t

0

Q(Xs)ds + (Si,t)2

= Xi,0 dXR
i,t + Q(XR

t )dtXR
i,t +

∫ t

0

Q(X − s)dsdXR
i,t

+ dSi,tXi,0 + dSi,t

∫ t

0

Q(Xs)ds + Si,tQ(XR
t )dt + d(S2

i,t)

= XR
i,t dXR

i,t + dXR
i,tX

R
i,t + dΔi,2(t).

Let Zt = (
∑k

i=1(X
R
i,t)

2)1/2. Then

d(e−atZ2
t ) = −ae−at

(
k∑

i=1

(XR
i,t)

2

)

+ e−at
k∑

i=1

(
dXR

i,t · XR
i,t + XR

i,t · dXR
i,t + (dΔi,2(t))

)
= −ae−at

(
k∑

i=1

(XR
i,t)

2

)
+ e−at

k∑
i=1

(
fi(XR

1,t, . . . ,X
R
k,t)X

R
i,t

+ XR
i,tfi(XR

1,t, . . . ,X
R
k,t)

)
+ e−at

k∑
i=1

(dSi,tX
R
i,t + XR

i,tdSi,t)

+ e−at
k∑

i=1

(dΔi,2(t)).

By Lemma 3.2, t → XR
i,t is continuous with respect to ‖ · ‖2. Therefore, TR > 0,

if R is big enough. Moreover, {t :
∑k

i=1 ‖XR
i,t‖2 > R} is open. So, for t ≤ TR,
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we have XR
t is a solution to (3.3). Hence, we have

Z2
t = eat

(
Z2

0 − a

∫ t

0

e−au
k∑

i=1

(XR
i,u)2 du

+
∫ t

0

e−au

(
k∑

i=1

fi(XR
1,u, . . . ,XR

k,u)XR
i,u + XR

i,ufi(XR
1,u, . . . ,XR

k,u)

)
du

+
∫ t

0

e−au
k∑

i=1

(dSi,uXR
i,u + XR

i,udSi,u)du

)
+ eat

∫ t

0

e−au
k∑

i=1

dΔi,2(u)

≤ eatZ2
0 + eat

∫ t

0

be−au du + eat

∫ t

0

e−au
k∑

i=1

dΔi,2(u)

+ eat

∫ t

0

e−au
k∑

i=0

(dSi,uXR
i,u + XR

i,u dSi,u),

where the inequality holds because of (3.1′). Let

r = max{ |τ(Si,1| : 1 ≤ i ≤ k},

we have

τ(Z2
t ) ≤ eat‖Z0‖2

2 +
b

a
(eat − 1) + eatτ

(∫ t

0

e−au
k∑

i=1

dΔi,2(u)

)

+ eat
k∑

i=1

∣∣∣∣τ(∫ t

0

e−au(dSi,uXR
i,u + XR

i,u dSi,u)
)∣∣∣∣

≤ eat‖Z0‖2
2 +

b

a
(eat − 1) + eatτ

(∫ t

0

e−au
k∑

i=1

dΔi,2(u)

)

+ eat
k∑

i=1

∥∥∥∥∫ t

0

e−au dSi,uXR
i,u

∥∥∥∥
2

+ eat
k∑

i=1

∥∥∥∥∫ t

0

e−auXR
i,u dSi,u

∥∥∥∥
2

≤ eat‖Z0‖2
2 +

b

a
(eat − 1) + eatτ

(∫ t

0

e−au
k∑

i=1

dΔi,2(u)

)

+ 2eat
k∑

i=1

(∫ t

0

‖XR
i,u‖2

2e
−2au du

) 1
2

+ 2reat
k∑

i=1

∥∥∥∥∫ t

0

e−auXR
i,u du

∥∥∥∥
2

≤ eat‖Z0‖2
2 +

b

a
(eat − 1) + eatτ

(∫ t

0

e−au
k∑

i=1

dΔi(u)

)

+ 2eat sup
0≤u≤t

k∑
i=1

‖XR
i,u‖2

((∫ t

0

e−2au du

) 1
2

+ r

∫ t

0

e−au du

)
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≤ eat‖Z0‖2
2 +

b

a
(eat − 1) + eatτ

(∫ t

0

e−au
k∑

i=1

dΔi,2(u)

)

+ 2keat sup
0≤u≤t

(
k∑

i=1

‖XR
i,u‖2

2

) 1
2 ((∫ t

0

e−2au du

) 1
2

+ r

∫ t

0

e−au du

)
,

where the third inequality holds by Lemma 3.5. Let

ϕ(t) = sup{τ(Z2
u) : 0 ≤ u ≤ t} = sup

0≤u≤t

k∑
i=1

‖XR
i,u‖2

2,

we have

ϕ(t) ≤ eatϕ(0) +
b

a
(eat − 1) + eatτ

(∫ t

0

e−au
k∑

i=1

dΔi,2(u)

)

+ 2k

[(
e2at − 1

2a

) 1
2

+
r(eat − 1)

a

]
ϕ(t)

1
2 .

Note that
∑k

i=1 ‖XR
i,TR

‖2 = R, so max1≤i≤k ‖XR
i,TR

‖2 ≥ R/k. It follows that

ϕ(TR)1/2 =

(
sup

0≤u≤TR

k∑
i=1

‖XR
i,u‖2

2

)1/2

≥ R/k.

It implies that

R2/k2 ≤ ϕ(TR)

≤ eaTRϕ(0) +
b

a
(eaTR − 1) + eaTRτ

(∫ TR

0

e−au
k∑

i=1

dΔi,2(u)

)

+ 2k

[(
e2aTR − 1

2a

) 1
2

+
r(eaTR − 1)

a

]
ϕ(TR)

1
2 .

Moreover,

ϕ(TR) = sup
0≤u≤TR

∑
1≤i≤k

‖XR
i,u‖2

2 ≤ sup
0≤u≤TR

( ∑
1≤i≤k

‖XR
i,u‖2

)2

≤ R2.

Hence, let r′
1 = max τ(Δi,2(1)) : 1 ≤ i ≤ k, we have

R/k2 ≤ ϕ(0)
R

eaTR +
b(eaTR − 1)

aR

+ eaTR
1
R

∣∣∣∣∣τ
∫ TR

0

k∑
i=1

e−au(dΔi,2(u))

∣∣∣∣∣
+ 2k

((
e2aTR − 1

2a

) 1
2

+
r(eaTR − 1)

a

)
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≤ ϕ(0)
R

eaTR +
b(eaTR − 1)

aR
+ eaTR

1
R

k∑
i=1

∥∥∥∥∫ TR

0

e−au dΔi,2(u)
∥∥∥∥

2

+ 2k

((
e2aTR − 1

2a

) 1
2

+
r(eaTR − 1)

a

)
≤ ϕ(0)

R
eaTR +

b(eaTR − 1)
aR

+ eaTR
1
R

k∑
i=1

((∫ TR

0

e−2au du

)1/2

+ r′
1

∫ TR

0

e−au du

)
+ 2k

((
e2aTR − 1

2a

) 1
2

+
r(eaTR − 1)

a

)
≤ ϕ(0)

R
eaTR +

b(eaTR − 1)
aR

+ eaTR
k

R

((
1
2a

)1/2

+ r′
1a

−1

)
+ 2k

((
e2aTR − 1

2a

) 1
2

+
r(eaTR − 1)

a

)
.

It is obvious that map R → TR is increasing. Thus, if limR→∞ TR �= ∞, the
right-hand side of the inequality above is upper bounded. On the other hand,
the left-hand side is upper unbounded as R → ∞. This gives rise of a con-
tradiction. Hence, limR→∞ TR = ∞. We finish the proof of the existence of
solution to (3.3). Moreover, for t ≥ 0, we can take R > 0 such that t ≤ TR, so,
Xi,t = XR

i,t. Hence, Xi,t ∈ L2(At,sa, τ) and t → Xi,t is continuous with respect
to ‖ · ‖2, by Lemma 3.2.

Uniqueness. This result follows from the uniqueness of solutions to (3.4)
(Lemma 3.2). �

We shall show that the solution {Xt : t ≥ 0} to (3.3) is a free Markov
process in L2(A,, τ).

Theorem 3.7. Under the hypotheses of Theorem 3.6, and the condition
that Q : Ak

sa → A is polynomial of k noncommutative unknown variables.
Then the solution {Xt : t ≥ 0} is a free Markov process.

Proof. Let

B ≤t = W ∗ {Xi,0, Si,s : s ≤ t,1 ≤ i ≤ k},

B ≥t = W ∗ {Xi,t, Si,s − Si,t : s ≥ t,1 ≤ i ≤ k},

C≤t = W ∗ {Xi,s : s ≤ t,1 ≤ i ≤ k}, C≥t = W ∗ {Xi,s : s ≥ t,1 ≤ i ≤ k},

and
C=t = W ∗ {Xi,t : 1 ≤ i ≤ k}.

We want to show that

C ≤t ⊆ B ≤t, C≥t ⊆ B ≥t.(3.6)
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By the proofs of Lemma 3.2 and Theorem 3.6,

lim
n→∞

∥∥Xi,t − X
(n)
i,t

∥∥
2
= 0, 1 ≤ i ≤ k,

where X
(0)
i,t = Xi,0 ∈ A0, and X

(n)
i,t (n ≥ 1) are defined by (3.5). Let H≤t =

L2(B ≤t, τ). Then X0,t ∈ H≤t. Let fi = Qih (see Lemma 3.3 for the de-
finition of function h). Assume X

(n)
i,s ∈ B ≤t,1 ≤ i ≤ k, s ≤ t. Let X

(n)
i,s =

limm→∞ X
(m,n)
i,s in norm ‖ · ‖2, where X

(m,n)
i,s ∈ (B ≤t)sa,1 ≤ i ≤ k. Then

fi(X
(m,n)
1,s (s), . . . ,X(m,n)

k,s ) ∈ B ≤t, since Qi is a polynomial. Note that Qi :
A,ksa → A,sa is continuous with respect to ‖ · ‖2. It implies that the ‖ · ‖2 limit
fi(X

(n)
1,s , . . . ,X

(n)
k,s ) of fi(X

(m,n)
1,s , . . . ,X

(m,n)
k,s ) is in H≤t, for s ≤ t,1 ≤ i ≤ k.

Hence,

X
(n+1)
i,t = Xi,0 +

∫ t

0

fi

(
X

(n)
1,s , . . . ,X

(n)
k,s

)
ds + Si,t ∈ H≤t.

By induction, X
(n)
i,t ∈ H≤t. Hence, Xi,t = limn→∞(X(n)

i,t ) ∈ H≤t. It follows
that C≤t ⊆ B ≤t. For s ≥ t,

Xi,s = Xi,t +
∫ s

t

fi(X1,u, . . . ,Xk,u)du + Ss − St.

By the above proof and the uniqueness of the solutions to (3.3), C≥t ⊆ B ≥t.
Now we show that B ≤t and B ≥t are C=t-free. Note that W ∗ {X0, Ss : s ≤ t}
and W ∗ {Su − St : u ≥ t} are free in (A, τ), and C=t ⊆ W ∗ {X0, Ss : s ≤ t}.
By Lemma 2.1 in [BiS2], B ≤t and B ≥t are C=t-free. Therefore, C≤t and
C≥t are C=t-free. By Definition 2.1, {Xt : t ≥ 0} is a free Markov process in
L2(A,, τ) ⊆ Ã,. �

For k = 1, we can get more general condition on Q so that the solution is
a free Markov process.

Theorem 3.8. Under the hypotheses of Theorem 3.6, and the conditions
that k = 1 and Q : R → R is Borel measurable, the solution {Xt : t ≥ 0} is
a free Markov process.

Proof. We use the same notation (with k = 1) as that in Theorem 3.7.
Assume Xn,s ∈ H≤t, then f(Xn,s) ∈ B ≤t, since f = Qh is bounded measurable
function. Hence,

Xn+1,t = X0 +
∫ t

0

f(Xn,s)ds + St ∈ H≤t.

The rest of the proof is the same as that of Theorem 3.7. �
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4. Free Ornstein–Uhlenbeck process

In this section, we consider a special case of (3.3). Let k = 1, Q(X) = −λX ,
λ > 0, and {St : t ≥ 0} be At-free Lévy process of operators in Asa. We
consider the following equation

Xt = X0 − λ

∫ t

0

Xs ds + St, t ≥ 0,(4.1)

where self-adjoint operator X0 ∈ A0. We call

Xt = e−λtX0 +
∫ t

0

e−λ(t−u) dSu, t ≥ 0

a free OU process, where
∫ t

0
e−λ(t−u) dSu is defined by Theorem 6.1 in [BT2]

(Generally, we can define a free OU process {Xt : t ≥ 0} by the formula above
in the case that {St : t ≥ 0} is a free Lévy process of self-adjoint operators
in Ã,, and X0 is affiliated with A,0). We show that the free OU process is
the unique solution to (4.1) and the limit distribution of Xt, as t → ∞, is free
self-decomposable.

Lemma 4.1. Let f : [a, b] → R be a continuous function. For n ∈ N,
and a = tn,0 < tn,1 < · · · < tn,kn = b a partition of [a, b], let fn(t) =∑kn

i=1 an,iχ[tn,i−1,tn,i)(t), fn(b) = f(b) be a step function such that fn(t) ⇒ f(t)
for t ∈ [a, b]. Then

lim
n→∞

∥∥∥∥∫ b

a

(
f(t) − fn(t)

)
dSt

∥∥∥∥
2

= 0.

Proof. By Lemma 3.5, f − fn ∈ B2,a
2 . Hence,

‖fn − f ‖2 ≤ ‖fn − f ‖L2([a,b]) + |τ(S1)| · ‖fn − f ‖L1([a,b])

≤ ‖fn − f ‖L∞([a,b])(b − a)
(
1 + |τ(S1)|

)
→ 0,

as n → ∞, since fn ⇒ f on [a, b]. �
The following lemma gives some kind of Fibini theorem. We omit the proof

of the lemma, because it is very similar to that of Proposition 35 in [RS].

Lemma 4.2. Let f and g be continuous functions on [a, b],

X =
∫ b

a

g(s)
∫ s

a

f(u)dSu ds, Y =
∫ b

a

f(u)
∫ b

u

g(s)dsdSu.

Then X = Y .

Theorem 4.3. Let Xt = e−λtX0 +
∫ t

0
e−λ(t−u) dSu. Then t → Xt is contin-

uous with respect to ‖ · ‖2, and {Xt : t ≥ 0} is the unique continuous solution
to (4.1).
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Proof. It is obvious that t → Xt is continuous. Moreover,

−λ

∫ t

0

Xu du = e−λtX0 − X0 − λ

∫ t

0

e−λs

∫ s

0

eλu dSu ds

= e−λtX0 − X0 − λ

∫ t

0

eλu

∫ t

u

e−λs dsdSu

= e−λtX0 − X0 +
∫ t

0

e−λ(t−u) dSu − St

= Xt − X0 − St,

where the second equality holds because of Lemma 4.2.
Uniqueness. Since (4.1) is a special case of (3.3), by Lemma 3.2, equation

(4.1) has a unique solution. �
Now we study the limit distribution of the process {Xt : t ≥ 0}. Let

{St : t ≥ 0} be a free Lévy process of (unbounded) operators. Then μ(S1)
is �-infinitely divisible. By 2.7 and 2.8 in [BT2], there are a real number
γ and finite measure σ on R such that the Voiculescu transform φμS(1) (see
[BT2] for Voiculescu transform) can be given by

φμS1
(z) = γ +

∫
R

1 + tz

z − t
σ(dt).

(γ,σ) is called the free generating pair of μ(S1).

Theorem 4.4. If the measure σ in the free generating pair (γ,σ) of μ(S1)
in the Lévy process {St ∈ Ã,sa : t ≥ 0} satisfies∫

|t|≥1

log(1 + |t|)σ(dt) < ∞,(4.2)

then the limit distribution of Xt, as t → ∞, is �-self-decomposable.
Conversely, if μ0 is a �-self-decomposable distribution on R, there is a free

OU process {Xt|t ≥ 0} such that the limit distribution of Xt is μ0.

Proof. Since Xt = e−λtX0 +
∫ t

0
e−λ(t−u) dSu, it is enough to show that the

limit distribution of
∫ t

0
e−λ(t−u) dSu is � self-decomposable. Let

tn,j = jt/n, j = 0,1, . . . , n, Tn =
n∑

j=1

e−λ(t−tn,j)(Stn,j − Stn,j−1).

Then Tn
p→

∫ t

0
e−λ(t−u) dSu, by Theorem 6.1 in [BT2]. On the other hand,

Tn =
n∑

j=1

e−λ(t−tj)
(
St−(t−tn,j) − St−(t−tn,j−1)

)
=

n∑
j=1

e−λrn,n−j (St−rn,n−j − St−rn,n−j+1)
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d=
n∑

j=1

e−λrn,n−j (Srn,n−j+1 − Srn,n−j ) =
n∑

i=1

e−λrn,i−1(Srn,i − Srn,i−1)

p→
∫ t

0

e−λu dSu.

Hence, we have∫ t

0

e−λ(t−u) dSu
d=

∫ t

0

e−λu dSu =
∫ tλ

0

e−u dSu/λ.

Let S̃t = St/λ, ∀t ≥ 0. It is obvious that S̃t is a At-free Lévy process. Let
φμ1(z) be the Voiculescu transform of μ(S1). By [BT2], φμ(St)(t) = tφμ1(z).
Let (γ,σ) be the free generating pair of μ1. Then (tγ, tσ) is the free generating
pair of μ(S(t)). Hence, μ(S̃1) = μ(S( 1

λ )) has free generating pair ( 1
λγ, 1

λσ). It
follows that the finite measure 1

λσ in ( 1
λγ, 1

λσ) satisfies (4.3). By Theorem 6.5
in [BT2], there is a self adjoint operator X ∈ Ã such that∫ t

0

e−λ(t−u) dSu
d=

∫ tλ

0

e−u dSu/λ
d→ X,

as t → ∞, and X has a � self-decomposable distribution.
Suppose μ0 is a free self-decomposable distribution on R. By Theorem 6.5

in [BT2], there is free Lévy process St satisfying (4.2) and μ(
∫ ∞
0

e−t dSt) = μ0.
Let

Xt = e−t

∫ t

0

es dSs, t ≥ 0.

By the proof above, the limit distribution of Xt, as t → ∞, is μ0. �

Acknowledgment. The author would like to thank his advisor, Professor
Liming Ge, for his many helpful suggestions on this paper and long-term
academic support.

References
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icana, México, 2003. MR 2042245

[RX] E. Ricard and Q. Xu, Khintchine type inequalities for reduced free products and
applications, J. Reine Angew. Math. 599 (2006), 27–59. MR 2279097

[S] R. Speicher, A new example of “Independence” and “White noise”, Probab. Theory

Related Fields 84 (1990), 141–159. MR 1030725

[V1] D. Voiculescu, Symmetries of Some Reduced Free Product C*-Algebras, Lecture

Notes in Math., vol. 1132, Springer-Verlag, New York, 1985, 566–588. MR 0799593

[V2] D. Voiculescu, The analogues of entropy and Fisher’s information measure in free
probability III. The absence of Cartan subalgebras, Geom. Funct. Anal. 6 (1994),

172–199. MR 1371236

[V3] D. Voiculescu, The Analogues of Entropy and Fisher’s Information Measure in Free

Probability VI. Liberation and Mutual Free Information, Adv. Math. 146 (1999),
101–166. MR 1711843

[V4] D. Voiculescu, Lectures on Free Probability, Lecture Notes in Math., vol. 1738,

Springer, Berlin/Heidelberge, 2000, pp. 283–346.

[VDN] D. Voiculescu, K. Dykema and A. Nica, Free Random Variables, CRM Monograph

Series, vol. 1, AMS, Providence, RI, 1992. MR 1217253

http://www.ams.org/mathscinet-getitem?mr=1605393
http://www.ams.org/mathscinet-getitem?mr=1462754
http://www.ams.org/mathscinet-getitem?mr=1660906
http://www.ams.org/mathscinet-getitem?mr=1851716
http://www.ams.org/mathscinet-getitem?mr=1811255
http://www.ams.org/mathscinet-getitem?mr=1463036
http://www.ams.org/mathscinet-getitem?mr=1388006
http://www.ams.org/mathscinet-getitem?mr=0326405
http://www.ams.org/mathscinet-getitem?mr=2238157
http://www.ams.org/mathscinet-getitem?mr=1911186
http://www.ams.org/mathscinet-getitem?mr=1468229
http://www.ams.org/mathscinet-getitem?mr=1503275
http://www.ams.org/mathscinet-getitem?mr=0355628
http://www.ams.org/mathscinet-getitem?mr=2042245
http://www.ams.org/mathscinet-getitem?mr=2279097
http://www.ams.org/mathscinet-getitem?mr=1030725
http://www.ams.org/mathscinet-getitem?mr=0799593
http://www.ams.org/mathscinet-getitem?mr=1371236
http://www.ams.org/mathscinet-getitem?mr=1711843
http://www.ams.org/mathscinet-getitem?mr=1217253


180 M. GAO

[W] A. D. Wentzell, A Course in the Theory of Stochastic Processes, McGraw-Hill Inc.,
New York, 1981. MR 0781738

Mingchu Gao, Department of Mathematics, Louisiana College, Pineville,

LA 71359, USA

E-mail address: gao@lacollege.edu

http://www.ams.org/mathscinet-getitem?mr=0781738
mailto:gao@lacollege.edu

	Introduction
	Preliminaries
	Free Brownian motion (BiS1, BiS2)
	Unbounded operators and convergence in distribution
	Free Lévy processes
	Classical Markov processes
	Operator-valued Lipschitz functions

	Free Markov processes
	Free stochastic differential equations
	Free Ornstein-Uhlenbeck process
	Acknowledgment
	References
	Author's Addresses

