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Convergence Control Methods for Markov
Chain Monte Carlo Algorithms

Christian P. Robert

Abstract. Markov chain Monte Carlo methods have been increasingly
popular since their introduction by Gelfand and Smith. However, while
the breadth and variety of Markov chain Monte Carlo applications are
properly astounding, progress in the control of convergence for these
algorithms has been slow, despite its relevance in practical implemen-
tations. We present here different approaches toward this goal based on
functional and mixing theories, while paying particular attention to the
central limit theorem and to the approximation of the limiting variance.
Renewal theory in the spirit of Mykland, Tierney and Yu is presented
as the most promising technique in this regard, and we illustrate its
potential in several examples. In addition, we stress that many strong
convergence properties can be derived from the study of simple sub-
chains which are produced by Markov chain Monte Carlo algorithms,
due to a duality principle obtained in Diebolt and Robert for mixture es-
timation. We show here the generality of this principle which applies, for
instance, to most missing data models. A more empirical stopping rule
for Markov chain Monte Carlo algorithms is related to the simultaneous
convergence of different estimators of the quantity of interest. Besides
the regular ergodic average, we propose the Rao—Blackwellized version
as well as estimates based on importance sampling and trapezoidal ap-
proximations of the integrals.

Key words and phrases: Gibbs sampling, Metropolis algorithm, cen-
tral limit theorem, asymptotic variance, renewal theory, duality prin-
ciple, finite state Markov chains, missing data, ergodic theorem, Rao—

Blackwellization, importance sampling, trapezoidal integration.

1. INTRODUCTION

Since the publication by Tanner and Wong (1987)
and Gelfand and Smith (1990) of two seminal pa-
pers promoting the use of Markov chain Monte
Carlo (MCMC) methods in statistical setups, there
has been considerable interest in these simula-
* tion methods, which were known to physicists
since Metropolis, Rosenbluth, Rosenbluth, Teller
and Teller (1953). While the literature on this
topic has tremendously increased, as shown by
the wide-ranging discussions in Gelman and Ru-
bin (1992), Geyer (1992), Besag and Green (1993),
Gilks et al. (1993), Smith and Roberts (1993), and
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Besag, Green, Higdon and Mengersen (1995), theo-
retical approaches to convergence control for these
methods are comparatively quite limited.

Indeed, MCMC methods allow for the statis-
tical treatment of models previously considered
intractable, such as, for instance, mixture and
classification models (Diebolt and Robert, 1994). Al-
though a direct application of MCMC algorithms is
most often justified, it is still necessary to assess
the validity of these stochastic techniques—such
as, for example, by checking that the posterior
distributions are truly defined—and, more impor-
tantly, to guarantee the convergence of the proposed
estimators to the true limit. The theoretical foun-
dations for the applicability of MCMC techniques
have been well charted in Tierney (1991, 1994),
Geyer (1992), Schervish and Carlin (1992), Smith
and Roberts (1993), Gelfand and Sahu (1994), Liu,
Wong and Kong (1994, 1995), Chib and Greenberg
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(1995), Mykland, Tierney and Yu (1995) and Polson
(1995), among others. They state that irreducibil-
ity and the existence of a posterior probability
distribution corresponding to the conditional distri-
butions used in the algorithm are basically suffi-
cient to ensure ergodicity of the Markov chain thus
produced.

The issue addressed by this paper is another step
in the theoretical study of MCMC methods. We pro-
pose several convergence criteria based on the prop-
erties of the simulated Markov chain in terms of
speed of convergence and of accuracy of the approx-
imation. This question has already been considered
in the literature, either through theoretical proba-
bility and functional analysis or through more em-
pirical measures, such as those used in engineer-
ing simulation. See, for instance, the reviews by
Brooks and Roberts (1995) and Cowles and Carlin
(1995) for the most practical tools. However, it is
necessary to reconsider these approaches because,
while probability theory provides tools quite help-
ful in the study of convergence for MCMC methods,
it does not usually focus on the question of interest
(to us).

Indeed, we are yet again faced with an inverse
perspective quite common in statistics: the existence
of a stationary measure or the ergodicity of the
chain under study is rarely the problem in MCMC
setups, while the global properties of the distribu-
tion of the chain at step n are not directly relevant
for the study of the single string (or path) produced
by an MCMC algorithm. From a probabilistic per-
spective, the study of Markov chains is usually con-
cerned with the behavior of the continuum of possi-
ble chains produced by a Markov kernel, in the same
way iid sampling probability theory describes the
average behavior of a sample x4, ..., x,, generated
from a distribution f. However, in pseudo-random
generation as well as in statistics, we have to use a
single chain/sample to derive convergence/accuracy
properties.

A lieu commun in this area is that convergence -

of a Markov chain to its stationary distribution
and the corresponding convergence of the empiri-
cal moments to the moments of this distribution
can never be truly ascertained. In fact, it is always
possible that the stationary distribution has such
widely separated modes that jumps between these
modes occur quite rarely, and a monitoring of the
chain strongly hints at stationarity, although this
chain is only exploring the neighborhood of a single
mode. Gelman and Rubin (1992) and Besag et al.
(1995), among others, have illustrated such cases.
Nonetheless, it is necessary to produce indicators
of convergence, which, although they are only par-

tially adequate, help to control MCMC methods
more rigorously than presently.

This is why, after a short review of the principal
convergence results relevant for MCMC methods,
Section 2 focuses on the central limit theorem and
its assessment. This result is of major interest for
convergence issues, because it provides a control for
the Markov chain. We also note that the law of the
iterated logarithm is often of marginal use in this
framework. In particular, we discuss in Section 2.3
the relation between the central limit theorem and
the mixing properties of the chain. Section 3 dwells
on renewal theory to improve the range of appli-
cability of the central limit theorem as well as the
estimation of the asymptotic variance, while in-
dicating through examples why this approach is
also delicate to implement in practice, except in the
important case of finite state spaces (Section 3.4).
Section 4 reconsiders the previous methods in the
light of the duality principle of Diebolt and Robert
(1994), which extends the convergence properties of
the simpler subchains involved in the MCMC pro-
cess to the other components. Section 5 proposes
convergence assessments of a more empirical and
graphical nature; they rely on several estimates
based on the Markov chain Monte Carlo sample
and their monitoring until coincidence. In partic-
ular, we propose a benchmark estimate related to
trapezoidal approximations of a given integral, de-
rived from Yakowitz, Krimmel and Szidarovszky
(1978).

2. CENTRAL LIMIT THEOREM AND MIXING
PROPERTIES

2.1 Convergence Criteria

As stressed in the Introduction, we must try to
separate as much as possible functional properties
of the Markov chain and asymptotic properties of
the sample (x4, ...,x,) at hand. The first type of
property is described through the transition prob-
ability of the Markov chain or the distribution of
the chain at step n, both quantities being usually
intractable. On the contrary, the properties of the
chain provided by an MCMC device can be directly
used for assessing convergence.

Consider, thus, a Markov chain (x,) associated
with a transition probability density k(x,|x,_;)
which is usually unavailable in closed form. For
instance, the transition kernel % for data augmen-
tation (Tanner and Wong, 1987) can be decomposed
as

@1 kol ) = [ Fxy(ealy)Frix(vlea1) dy;
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for Gibbs sampling (Gelfand and Smith, 1990), it is

R(xl,. .., xP|xl 4, .. %P )
2.2) = f1(xpl2h_ys s %01)
co fa(aBlog, . 2B,

In all cases of interest, the chain is known to have
a stationary probability distribution 7. This elim-
inates the irrelevant cases where the joint poste-
rior distribution does not exist, although the condi-
tional posterior distributions exist (see Casella and
George, 1992, or Hobert and Casella, 1996), but,
more importantly, it guarantees that the chain is
ergodic when it is irreducible and thus that the
(marginal) distribution of x,, 7"(-|xy), converges to
the distribution 7(-) in the sense of the total varia-
tion norm for almost every xg:

[[7"(:|x0) — 7l1v

= sup |7"(A|xy) — T(A)| = O asn — oo

Aeys

(see Tierney, 1994, for definitions and discussions of
different types of convergence). However, unless one
uses the rather special setup of Tanner and Wong
(1987), where the number of iid simulations from
7"(-|xy) increases with n, the distribution 7"(:|x,)
is only sampled once by the MCMC algorithm and
the corresponding simulation can be described more
accurately by a simulation from 7 (-|x,_;) for condi-
tioning reasons. This implies that precise conver-
gence results like those of Rosenthal (1993) about
the speed of the Metropolis algorithm in finite state
spaces have limited applicability.

Ergodicity also has a corollary which has more
immediate consequences in MCMC setups. In fact,
under ergodicity, a law of large numbers often called
the ergodic theorem applies, since the average

1 N
2.3) N X A

converges to the theoretical mean E7[A(x)] when

h € £ (7) and (2.3) provides a practical access to
the characterization of the stationary probability
measure. Gelfand and Smith (1990), Liu, Wong and
Kong (1994, 1995) and Casella and Robert (1996)
proposed a modification of (2.3) based on the Rao—
Blackwell theorem which is shown to improve upon
(2.3) in special setups. We stress the relevance of
Rao—Blackwellization for convergence diagnoses in
Sections 4 and 5.

Some additional functional properties of this
chain also allow for a more precise description of
the convergence properties of the chain, although
they are often difficult to assess in MCMC setups.
For instance, there may exist a constant 0 < p < 1

such that convergence occurs at speed p", that is,
such that there exists a constant C with

ll7"(-%0) — #()llxv < Cp".

Convergence to the stationary distribution is then
said to be geometric and guarantees a similar speed
for the convergence of the expectations, in the sense
that, for every h € L,(7), there exists C;, such that

24)  |[E™ [~(2)|x0] — ET[A(2)]]| < Chp™.

Meyn and Tweedie (1994) derived some simple ap-
proximations for the rate p, based on the existence
of a potential function V and of a small set R quite
similar to the renewal set introduced in Section 3.
Mengersen and Tweedie (1996) took advantage of
these bounds to derive explicit rates in some partic-
ular Hastings—Metropolis setups; in particular, they
showed that independent Hastings algorithms with
large tails and random walk symmetric Metropolis
algorithms are incompatible with geometric ergod-
icity.

However, note that, apart from the particular case
of finite state chains, where ergodicity is equivalent
to geometric ergodicity, this property can be diffi-
cult to assess. In addition, it is a property of the nth
step distribution 7"(-|x,) rather than of the chain
at hand (x,,). It is therefore difficult to envision this
characteristic as initiating a stopping rule or an-
other convergence diagnosis, although it indicates
the approximate speed of convergence. Nonetheless,
Roberts and Tweedie (1994) and Gelman, Gilks and
Roberts (1994) obtained some applications of geo-
metric ergodicity for the proper acceptance rate of
Metropolis algorithms.

Schervish and Carlin (1992) constructed some
advanced theory on the Markov kernels as linear
operators on the space of 7-integrable functions
and derived geometric convergence results under
the Hilbert—Schmidt condition

[ Bl 0) /(0 )7 1)) ity Aty < 00,

which is unfortunately too difficult to check in most
cases. (See Liu, Wong and Kong, 1995, for related
results.)

2.2 Central Limit Theorem

This result is of more direct interest for MCMC
algorithms, since it characterizes the convergence
of the average (2.3) the following way: when the
central limit theorem applies, for every h € Lo(7),
there exists 0 < o}, < 400 such that

1

y @ Z 2
(2.5) ii ngl(h(xn) —E"[h(x)]) > A4 (0, o).
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Therefore, under this result, the variations of the
average (2.3) around the limit E*[A(x)] are asymp-
totically normal. If (2.5) holds, stability rates and
convergence setups can be derived, provided a cor-
rect estimation of ¢y, is available. First, as already
mentioned in Geyer (1992) and shown in Kipnis and
Varadhan (1986), the central limit theorem holds
under irreducibility and reversibility of the Markov
chain when

0 < o = var(h(x,))

+2> cov(h(x,), h(x,.,)) < +00
t>0

with x, ~ 7. While irreducibility and reversibility
are usually easy to assess in Markov chain Monte
Carlo setups, the verification that 0 < o2 < co and
the subsequent estimation of cr,% are quite delicate
steps. This issue is considered in Geweke (1992)
and Geyer (1992), but treatments there are rather
sketchy in our opinion. We relate mixing proper-
ties and finiteness of the asymptotic variance in
Section 2.3, postponing the estimation of o}, until
Section 3.

Note that when the central limit theorem applies,
the law of the iterated logarithm also holds, namely,

lim sup 21 (Gn) “ETAD _
N—o0 \/2N10g10g(N)

(2.6)

and

liming 2act(2(xa) ~ E[A@®)]) _
N—o00 V2N loglog(N)

In other words, the sequence

YN (hx,) — ET[h(x)])
V2N loglog(N)

reaches both extremities of (—oy, 07,). This property
may be of interest in the setup of MCMC exper-
iments since (a) simultaneous stabilization of the
two ratios to the same value (in absolute value) is an
additional indicator of the stationary regime and (b)
it provides an alternative approach for estimating
o2 when the asymptotic variance is finite. However,
concerning (a), the criterion may be too conserva-
tive'to be of practical use. For instance, Figure 1(b)
shows the evolution of (2.7) in the case of iid ob-
servations from a .#(0, 1) distribution, where the
limit sup is 1, but is not attained after 1,000,000 it-
erations. For the same reason, the estimation of oy,
from (2.7) may require too many iterations to be ef-
fective in most setups. Moreover, since E7[A(x)] is
unknown, (2.7) should be replaced by

i {A(xa) = B(3,)}
2/2NToglog(N) '’

—Op.

2.7

where (y,) is a sequence independent from (x,),
and the influence of the starting points x,, y, may
slow down convergence even more. [Note the simi-
larity of (2.7) with Yu and Mykland’s (1994) conver-
gence criterion.]

Suppose the central limit theorem applies and an
estimator &} of oy, is available. Then, for N large
enough,

1 X 5
= x
2N m nzz:l ( n)

should approximately behave like a normal
A (E7[h(x)], 02/N) random variable. A first possi-
ble application of this property is to run 7' parallel
independent chains (x) until the corresponding 2%,
are “sufficiently” normal. (For instance, one could
impose that 95% of the z)’s are within 26, /v N
of the overall mean.) This naive solution is rather
costly, however, while being conservative since it
requires most chains to converge before the stop-
ping rule works. In addition, it does not take
into account the side effects of initial values and
of parallel runs, which are much criticized (see
Geyer, 1992, and Brooks and Roberts, 1995, for in-
stance). More advanced tools of probability, such
as Berry—Esséen bounds (Feller, 1971) or large
deviations (Malinovskii, 1987), are presumably nec-
essary for a strict control of convergence via the
central limit theorem, but these methods unfortu-
nately involve the estimation of quantities similar
to o;,. We will see in Section 3 how renewal theory
makes much more efficient use of the central limit
theorem.

2.3 Mixing Properties

A study of the mixing properties of the Markov
chain, that is, of the long term correlations between
the x,’s, indicates how far from an iid sample (x,)
is while providing more explicit conditions on the

_function A for (2.5) to hold. In fact, some of these

conditions can be checked in practice and this is
why they are presented below.

(a) a-MIXING. This property is defined by the con-
vergence of

a(n) =sup|P(x, € A, xy € B)
A,B
— d(x, € A)iw(xy € B)|

to 0 when n goes to infinity and x, ~ 7. It de-
fines a rather weak measure of asymptotic indepen-
dence. Nonetheless, it may provide a basis for the
applicability of the central limit theorem. As shown
in Davydov (1973), if h is a measurable function
such that E7[|A(x)|?] < 400 with y > 2, a sufficient
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condition for
8, =Y h(x))
i=1

to be asymptotically normal is that
Za(n)(v—Z)/v < 400

n
(see also Doukhan, Massart and Rio, 1994, for sim-
ilar conditions). A more amenable requirement is
that h € Ly(7r) satisfies

limsup o,/E7[|S,|] < v/7/2,

where o2 is the variance of S, (Peligrad, 1986).
Since the law of large numbers theoretically pro-
vides convergent approximations of o, and of
E7[|S,|], it may be argued that this condition can
be checked in practice. However, the practical es-
timation of o, is still an open question for most
MCMC algorithms.

In our setup, a-mixing holds in great general-
ity for the Markov chains induced by these meth-
ods, since every positive recurrent aperiodic Markov
chain is a-mixing (Rosenblatt, 1971).

(b) B-MIXING. A stronger property than a-mixing,
B-mixing is defined through the coefficient

B(n) = sup sup ) |P(x, € A;, xo € B})
i i i

— (x, € A;)7(xg € B})|,

where the supremum is taken over all pairs of par-
titions (A;) and (B;) and x, ~ 7. Under B-mixing,
B(n) converges to 0 as n goes to infinity. The B-
mixing coefficient can also be written as (Davydov,
1973) :

B(n) = [ ll7" (o) ~ llav(x0) dixo,

although this does not really simplify the as-

sessment of B-mixing or the computation of the -

coefficient B(n). While a stronger property than
* a-mixing, B-mixing is not sufficient for the central
limit theorem to apply, as shown by the following
example.

EXAMPLE 2.1. Consider a density g and a function
0 < p < 1 such that

[P @) dx < oo.

The transition

x,,  with probability 1 — p(x,),

(2.8) %y = [y ~ g, with probability p(x,)

is akin to the transition of the Metropolis algorithm
and leads to the stationary distribution defined by

p~(x)8(x)
[pi(w)g(u)du’

For instance, in the particular case when g is a
PBe(a + 1,1) density (¢ < 1) and p(x) = x, the
Markov chain generated from (2.8) converges to
a %e(a, 1) distribution. Moreover, it follows from
Doukhan, Massart and Rio (1994) that the chain
(x,) is B-mixing but that the deduced chain (x.~%)
does not satisfy the central limit theorem and
that

(x) =

N l-a __
lim sup ZM =+
Noowo +/2Nloglog(N)

b

with E*[x1-%] = . This divergence is quite surpris-
ing given that y, = x1~* has finite moments. In fact,
the stationary distribution of (y,) is a %e(a/(1 —
a), 1) distribution.

Figure 1(a) illustrates the behaviour of the se-
quence

Zf:l(x:rlz_a - a)
V2N loglog(N)

for a sample of size 1,000,000 and « = 0.2, and we
contrast it to Figure 1(b), where a similar sequence
is built for an iid sample of .#/(0, 1) random vari-
ables. Note the smoother path in (a) compared with
the erratic behavior of the path in (b). It seems dif-
ficult to discriminate the applicability of the central
limit theorem by considering only such graphs, al-
though Yu and Mykland’s (1994) cusum criterion is
based on a similar evaluation. The incredibly slow
convergence of the chain (x,) is also illustrated by
Figure 3 since it requires more than 1,000,000 it-
erations for the ergodic average to get close to the
correct mean, o = 0.2. [Robert, 1995, details the
convergence properties of (2.8) and, while explain-
ing why the convergence is so slow, proposes this
algorithm as a benchmark for convergence control
methods.]

Recall (see Meyn and Tweedie, 1993, and Tierney,
1994) that a Harris recurrent chain is such that the
probability of an infinite number of returns to an
arbitrary set A is 1 for 7(A) > 0. These chains
are, in addition, B-mixing when the density of the
transition probability with respect to 7 is positive
(Davydov, 1973) and Tierney (1994) shows that, un-
der fairly general conditions, Metropolis and Gibbs
kernels produce Harris recurrent chains. See also
the discussion by Chan and Geyer (1994) for a thor-
ough treatment of Harris recurrence in the setup of
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(a) Beta distribution
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FiG. 1. Law of the iterated logarithm evaluated for (a) a %8e(0.2, 1) distribution simulated according to (2.8); (b) an iid sample from
H(0, 1). The first series is divergent and the second series covers [—1, 1].

MCMC algorithms and for its connections with the
central limit theorem.

(c) ¢-MIXING. This mixing condition is sufficient
to ensure by itself that the central limit theorem
holds. It is defined through the mixing coefficient

¢(n) = sup |7*(x, € A| % € B) — 7(x, € A)|,
A,B

which goes to 0 as n goes to infinity for ¢-mixing
chains. When ¢-mixing holds, for every A in Ly(7)
such that E"[A(X )] = 0, the series

[o¢]
o} = EF[A(X)?] +2 . EF[A(Xo)R(X,)]
k=1
is absolutely convergent and, if o5 > 0, the cen-
tral limit theorem applies to S,, the limiting distri-
bution being .#(0, o2) (Billingsley, 1968). Moreover,
checking ¢-mixing is often straightforward: all finite
and most compact state irreducible Markov chains
are ¢-mixing (Billingsley, 1968). It is also shown in
Davydov (1973) that ¢-mixing for Harris recurrent
Markov chains is equivalent to Ddeblin irreducibil-
ity when the kernel is strictly positive on the sup-
port of 7. (See Meyn and Tweedie, 1993, for the
relationship between Déeblin irreducibility and the
existence of small sets underlying renewal theory.)
These mixing properties of Markov chains are
thus well related with the central limit theorem and
its applicability, but it can still be argued that they

are too theoretical to be used in practical MCMC
setups. We refute this potential criticism in Section
4 by introducing the duality principle, since some
simple chains used in MCMC algorithms satisfy
the above mixing properties. Meanwhile, Section
3 describes another promising approach to the as-
sessment of the central limit theorem and to the
estimation of o7.

3. RENEWAL THEORY
3.1 Preliminary Notions

As noted by Mykland, Tierney and Yu (1995), the
renewal properties of the Markov chain under study

. can be used to assess convergence of the chain to

the stationary distribution and to improve the esti-
mation of the parameters of this distribution. The
second aspect is more forcibly stressed by Mykland,
Tierney and Yu (1995), but we want to present both
appealing aspects of renewal theory because the im-
provement mentioned just above can be operated
in a semiautomated manner, with no call to addi-
tional Metropolis steps, and it is particularly rele-
vant when the duality principle can be used. The
main appeal of renewal theory is that, when it ap-
plies, the study of the generic sums

N
SN = Z_:lh(xn)
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can be simplified in a monitoring of iid random vari-
ables and a classical form of the central limit theo-
rem then applies. This transformation to a simpler
setting is actually done by decomposing Sy into a
sum of iid random variables.

The condition for renewal theory to apply is that
there exists a set A, areal 0 < £ < 1 and a proba-
bility measure » such that

(8.1) P(x,41 € B|x,) > ev(B), Vx,€ A, VB.

The set A is called renewal set (Asmussen, 1979)
or small set (Meyn and Tweedie, 1993). When (3.1)
holds for a triplet (A, , v), the transition kernel of
the chain (x,) can be modified without change of
stationary distribution. In fact, since

E(xp111%0)

k —

— SV(xn+1) + (1 _ 8) (xn+1|xn) sv(xn+1)
l1-¢

and since both terms of the mixture are positive

when x, € A, we can generate x,,; according to

y1 ~v(y1), with probability &,

~ k(xn+1|xn) - sv(xn+1)
Yo 1—& ’
with probability 1 — &,

(3.2) xpp1=

when x, € A. The chain is not formally modified
since we are marginally simulating from k(x,|x,)
at each step. However, if we take into account the
uniform random variable u, generated to choose be-
tween y; and y,, the decomposition (3.2) introduces
independent generations from a distribution » when
x, € A and u, < &. We can then define a sequence
of renewal times 7; by

71 =inf{n > 1; x, € A and u, < &}.

The blocks (x, 41, - - - X,,,,) are independent and the
partial sums
Te+l
S;= > h(x,)
n='rt+1

are iid under stationarity. They thus satisfy the
following limit theorem under usual regularity
conditions:

LEMMA 3.1. If E[7;] < o0 and h € L,(7), the par-
tial sums S, satisfy:

T
(i) Z St/('TT+1 —71)
t=1
— E*[h(x)] (a.s.)as T — oo;

(ii) 10/T — Ef[ry — 7] (a.s. as T — 00)

=uy (as as T — o0).

Note that, since most MCMC algorithms produce
Harris recurrent Markov chains, a finite average re-
turn time to A is usually guaranteed in most cases.
Moreover, this renewal decomposition ensures the
applicability of the central limit theorem for the
original sum, under the conditions

Eﬁ[(7t+1 —-7)’] <oo and

(3.3) Eﬁ[ ( i h(xn))2] oo,
n=1

which imply o}, < oo (see Meyn and Tweedie, 1993).
Indeed, if we denote by A, = (7,1 —7;) the excursion
times and by T' the number of renewal events before
N, the normalized sum

1 ¢ h E™[h
ﬁg( (x,) — E"[A(x)])

= «/i‘ﬁ { 2 (h(x,) — E7[h(x)])

T
+ Zi(St — MET[R(x)])
t=

N
+ X (h(xn)—Ef'[h(x)])}

n=rp+1

is (a.s.) equivalent to
1z ;
JN 2-(S; — AET[R(x)])
t=1

under the conditions (3.3) (since the first and the
third terms converge a.s. to 0) and

1 i(s —AEF[A(x)]) S # (0, 52

\/T = t t » YA
by virtue of the usual central limit theorem, the
asymptotic variance being indexed by the renewal
set. Therefore, the central limit theorem truly ap-
plies to the sum of the (k(x,) — E"[h(x)]).

3.2 A Convergence Criterion

We now show how renewal theory provides an im-
plementable estimation procedure for o7 and thus a
convergence criterion for MCMC algorithms. Since
the random variables (S, — A,E7[h(x)]) are indepen-
dent, the renewal variance &% can be estimated by
the usual sum of squares estimator

1z _
T Z(St - )‘tﬂ‘:”[h(i’c)])2
t=1



238 C. P. ROBERT

or, since the expectation E"[h(x)] is unknown, by

) TSl
(3.4) 2 — —Z Si-n Y ) -

=1

We then deduce the following invariance property.

PROPOSITION 3.2. For every small set A such that
(3.3) holds, the ratio

64T
N

converges a.s. (in N) to o2.

(3.5)

PRrROOF. The result follows immediately from the
a.s. convergence of 63 to 55 and of (ii) in Lemma 3.1,
as N/T converges a.s. to u,. Since

- 2 () ~ ETH)

\/ T 1 T

T = 1
converges a.s. to 0 and the second term converges
in distribution to .#(0, 53 /1 4), while the first term

converges to .#(0, a,%) if 03, > 0, the asymptotic in-
variance of the ratio 6,7 /N follows. [J

— ME7[A(x)])

That (8.5) is a convergent estimator of o2 is ob-
viously an interesting feature, since it shows that
renewal theory can lead to the estimation of the
asymptotic variance, just as well as spectral the-
ory or other time-series methods. However, for us
the main incentive for using renewal theory is the
asymptotic invariance of this ratio (3.5), because we
can deduce a convergence criterion: given several
small sets A;, wait until the ratios o3 T;/N have
similar values. '

Although the theoretical basis of this method is
quite sound, we are faced with two implementation
caveats: first, the criterion is conservative, in the
sense that it requires the slowest ratio to converge
for the algorithm to stop. Second, as in other paral-
lel methods, the dependence on the starting values
is crucial, since close A;’s will lead to earlier ter-
minations than far-spaced A;’s, while it is usually
impossible to assess how close “close” is. However,
we will introduce below a general class of models
for which these drawbacks can be overcome.

3.3 Implementation of the Method

A first difficulty with the renewal convergence di-
agnosis is that small sets sets must be easily ex-
hibited. Mykland, Tierney and Yu (1995) proposed
a hybrid algorithm which overcomes this problem

- (3.6)

by adding an additional Metropolis step in the al-
gorithm. This modification is the obvious solution
when the transition kernel is too complex or too
highly multidimensional to be examined in detail,
but we want to point out the degree of general-
ity of the renewal phenomenon to maintain that
a modification of the algorithm is usually super-
fluous in theory, if not in practice. In fact, it fol-
lows from Asmussen (1979) that every v-irreducible
Markov chain allows for renewal. Since the Markov
chains occurring in MCMC setups are generally 7-
irreducible, any probability measure » equivalent to
7 can thus be chosen for a renewal measure. In ad-
dition, a more precise result of Meyn and Tweedie
(1993) states that every set E such that #(E) > 0
contains a small set A associated with 7 and a cor-
responding bound e. Therefore, from a theoretical
point of view, renewal occurs for a wide range of
models, even though the parameters A, ¢ and v are
not provided by the theory. Some settings allow for
the whole space to be a small set, but the corre-
sponding renewal rate may be too small to be of use
in practice (see Robert, 1996, for examples).

In discrete cases, A can be selected as the collec-
tion of the most frequent states of the chain and v
derived as

v(E) = xug; P(x,4; € E|x,)

(see Section 3.4). In general, however, the deriva-
tion of (A, ¢, v) implies a more involved study of the
particular Markov chain produced by the MCMC
algorithm and of the corresponding kernel. Auto-
mated convergence diagnoses based on renewal the-
ory then appear to remain out of reach, although the
duality principle introduced in Section 4 shows why
this conclusion can be attenuated.
Note also that (3.2) requires a simulation from

k(xn41]%5) — £¥(%541)
1-¢ ’
but that % is usually unknown in a closed form. This

can be achieved by simulating from k(-|x, ) until ac-
ceptance.

LEMMA 3.3. Simulation from (3.6) can be done ac-
cording to the following algorithm:

1. Simulate y from k(-|x,);
2. Reject y with probability ev(y)/k(y|x,).

This lemma involves the computation of the ratio
ev(y)/k(y|x,) which can be approximated by regu-
lar Monte Carlo simulations. In fact, if the transi-
tion kernel is as in (2.1), k(z|x,) can be estimated



CONVERGENCE CONTROL METHODS FOR MCMC ALGORITHMS 239

by
1 M
3.7 HEI fxiy(2lym),

where the y,,’s are iid from fyx(y|x,), since (3.7)
converges to k(z|x,) with M. The following example
illustrates this approximation. In Metropolis setups,
the transition kernel involves a Dirac mass, but,
as pointed out by a referee, the lower bound on %
derived from the continuous part of the transition
kernel is sufficient for generation from (3.6).

EXAMPLE 3.1. Consider a normal prior, .#'(0, ?),
on the location parameter 6 of a Cauchy €(6, 1)
distribution, with three observations x;, x5, x3 from
¢(0,1). The posterior distribution on 6 is then

m(0]xy, g, x3)
3.8) o {exp(6?/20°)[1+ (8 — x1)°]
L+ (6= )L+ (8- x)°])
A Gibbs sampler for the simulation from (3.8) is
based on three artificial random variables 7, 15, 73
such that (3.8) appears as the marginal distribution
of
(0, 11, M2, 3|1, X9, X3)
oc exp(—6%/20%) exp(~(1 + (6 — x1)*)1/2)
-exp(—(1+ (8 - 2)*)1/2)
-exp(—(1 + (0 — x3)*)n3/2),

(3.9)

since the conditional distributions derived from (3.9)
are

1+(0—xl)2

"7i|(9’xi)NExp( 5 ), i1=1,2,3,

N1%1 + NaXe + N3X3
m+ne+n3+o2’

(MWWW%%W(

o)
m+ne+n3+o2)

We denote 72 = 7y + n3 + 13 + 02 and omit the
dependence on (7y, 19, 13)-

The posterior distribution (3.8) is sometimes tri-
modal, depending on the values of x;, x, and x3,
as shown by Figure 2. The gaps between the three
peaks are so severe that they could jeopardize the
actual convergence of the MCMC algorithm. How-
ever, a simulation based on 20,000 iterations of
(3.10) shows that this is not the case, since the his-
togram in Figure 2 reproduces the shape of (3.8)
quite accurately.

If the small set A is chosen of the form [ry, ry]
with x5 € [ry, 73], 21 < r; and x3 > ry (assuming
X1 < X9 < X3), the bounds

P11 =T1— %1 <|0—x1| < prg=ry— x4,
0 < [0 — x5 < pog = max(ry — xq, X3 — T1),

P31 = X3 — Ty <|0—x3] < pgg=2x3—14

h Cauchy-Normal

r T T
-10 -5 o

10 15 20

(20,000 iterations)

FIG. 2. Graph of the density w(8|xy, g, x3) in (3.8) for x; = —8, x3 =8, x3 = 17 and ¢ = 100, and histogram of a Gibbs sample of

size 20,000 for this distribution.
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induce a minorizing probability measure v and a
corresponding constant . Indeed,

/ 2
I_(‘9 — 72(n1%1 + M%; + M3%s3)) }

k(0’|0)z/Ra exp

+

272

1 1+4p% exp {_(1 +pla)m }

T
V2r 2 2

1 1+ p2 1+ p2

S expl- (L+p39)ng | 1+ P51
2 2 2

1+ p2
~eXP[—(———’§'—zl@} dnydngydng

1+pf; 1 1+4p%
- 1+ pfy 1+ py 1+ p3y
where v is the density of the marginal distribution
(in 0) of
(6, 11, M2, M3)
~AN (72(711361 + MgXg + M3X3), 72)

2 2 2
Exp(#)Exp(%)Exp(%)

Therefore, given r; and ry, ¢ and v, a practical
implementation of the renewal perturbation of the
chain is possible. As mentioned earlier, a difficulty
related to the simulation from (3.6) is that the ra-
tio k(6'|0)/v(0') is not available. We use the Monte
Carlo approximation

R(O10) S (00T, nF, n5)
w(0) XM e(oFE, e, )

v(0') = ev(0'),

where
@(0'|n1, M2, m3)
—_ / 2
=7 exp{—(0' — T2(m1x1 + Mexg + M3%x3))" /277

and
1 _ 2
nE”NExp( +(6—x,,) )’
2
1 2
o~ Exp(—+2pm2>, i=1,2,3.

We took M = 50 in our simulations. The n[*’s have
to be generated for each iteration from (3.6) since
they depend on x,,, while the 7/*’s can be simulated
only once when initializing the Gibbs sampler.

As shown by Table 1, which describes the results
of the simulations we conducted, the bound & de-
creases quite slowly to 0 as pyy increases; the num-
ber of renewals in a sequence of Gibbs iterations
is thus likely to be sufficiently high, although both
quantities are not strongly connected. The average

TABLE 1
Renewal parameters when A = [xg — r, x9 + r| and h(x) = x for
x, = -8, x9 =8, x3 =17 and o2 = 100 (based on 1,000,000

simulations); 7 4 is the mean excursion time and &% is the estimate
of (r% based on (3.5)

r 01 021 032 043 054 065 0.76 0.87 0.98 1.09

g4 092 083 0.73 063 0.53 045 0.38 0.31 0.26 0.22
74 253 139 105 96 88 96 98 104 114 127
&% 1135 1138 1162 1159 1162 1195 1199 1149 1109 1109

number of steps between two returns to A goes as
low as 8.8 when A =[xy — r, x9 + r] and r = 0.54.
Note the actual stabilization to o7 =~ 1150 for most
values of r. This large variance factor may be ex-
plained by the Cauchy tails of the posterior distri-
bution as well as the iterative switching from one
mode to another in the Gibbs algorithm.

EXAMPLE 2.1 (Continued). For this very slowly
converging chain, the natural renewal sets are
A, = [&,1] since the transition kernel is bounded
from below by e(a + 1)x* when x, € A,. Moreover,
the simulation from (3.6) is then straightforward
and Table 2 shows the range of the estimates of o}
for h(x) = x'~® when & varies, after 5 x 107 itera-
tions. The criterion thus indicates that convergence
is not yet reached, which is indeed the case.

The simplicity of the derivation of A, ¢ and v in
Examples 2.1 and 3.1 may be misleading in the
sense that A is chosen because of the shape of
the posterior distribution of #, which is not always
available, especially in multidimensional setups.
Mykland, Tierney and Yu (1995) exhibit general
renewal features for Metropolis algorithms, but it
seems quite difficult to envision an automated ver-
sion of renewal control for MCMC algorithms. The
improvement brought by MCMC methods in com-
putation time and in the range of fields accessible
to Bayesian analysis would thus be cancelled by
either an expensive preliminary analysis required
for a proper implementation of these methods or by
a lack of control, which jeopardizes the validity of
their output.

As mentioned above and as shown by Section 3.4,
this negative perspective does not hold when we
consider finite Markov chains. Due to the duality
principle exposed in Section 4, the appeal of this

TABLE 2
Estimates of o,% for different small sets [e,1]

€ 015 025 035 045 055 065 075 0.85
G2 2226 4155 27.41 41.17 3758 31.41 41.97 41.64
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method extends to more elaborate models and ex-
plains why we still reckon this approach to be a very
powerful tool for the control of MCMC methods.

3.4 Renewal Control of Finite Markov Chains

Finite state space Markov chains are ideal set-
tings for the application of the above technique.
Consider a chain (x,) with values in the finite space
Z = {ty,...,ty,} and transition matrix P = (p;;).
The cardinal m is often of the form %7, in particular
in missing data problems (see Section 4). We assume
the chain (x,) to be irreducible and aperiodic. De-
fine 7 = (7, ..., m,) as the stationary distribution
and take 7; as the probability of the most probable
state iy. Then, if A is {i;}, renewal theory applies
with e = 1 and v = (p;1, .-, Pi,m)- The “perturba-
tion” (3.2) is then useless and the ratio £(6'|0)/v(6')
is equal to 1.

The consequences of this simplification are, how-
ever, far from trivial. Indeed, the sums Y.)V_, A(x,,)
can then be decomposed into iid sums

Tj+1

Si= 3 h(xy)
w=rj+1
T,p1—1
= h(t;,) + > h(xy), Jj=1,...,
w=rj+1
where
’Tj = inf{w > 'Tj___l;xw = tio}'

The variance o> of the asymptotically normal ex-
pression

w
W23 ¢h(x,) — E7[A(x)])
i w=1
can therefore be estimated directly by (3.4) and
(3.5). Moreover, a convergence criterion can be de-
rived by considering other probable states i, ..., i,
and checking convergence to the same value of the
corresponding estimators (3.5) of 0.

EXAMPLE 3.2. Consider the special case 2" =
{0,1, 2,3} and (x,) with transition matrix
| 0.26 0.04 0.08 0.62
0.05 0.24 0.03 0.68
0.11 0.10 0.08 0.71
0.08 0.04 0.09 0.79
The stationary distribution is 7 = (0.097, 0.056,
0.085, 0.762) and the corresponding mean is 2.507.
If we use a simulation of this Markov chain, the

four states can be chosen as renewal sets and an es-
timate of o7 can be constructed for each state, based

P =

TABLE 3
Estimates of o',zl for h(x) = x, based on renewal at i,
n/iy 0 1 2 3
5,000 1.19 1.29 1.26 1.21
500,000 1.344 1.335 1.340 1.343

on (3.3) and (3.4). Table 3 provides the different esti-
mates of 02, for 5000 and 500,000 simulations from
P, for h(x) = x. The larger simulation study clearly
shows that convergence is achieved since the four
estimates of o2 are equal up to the second decimal.

In most practical setups, the most probable state
io is unknown beforehand, as are the other proba-
ble states i;,...,i,. We suggest taking advantage
of some “burn-in” initial iterations of the MCMC
algorithm to derive these states or some approxi-
mations since, when the chain is close to stationar-
ity, the most commonly sampled states are the most
probable states for 7. In some setups such as Ising
models, the state space is too large for a single state
to be probable enough, that is, to have a probability
of occurrence larger than 0.01 or 0.005, say. In this
case, the renewal set A can be selected as a union
of states, A = {iy,iy,...,%,}, the renewal measure
v being defined by

(3.11) v(i) « Iﬁl]{l Dji

and the bound ¢ by

(3.12) =) minp;.
im1 JEA

If m is too large for the above distribution to be
computed exactly, note that (3.12) is bounded from
below by a similar sum on the most common states
and that an additional Metropolis step can be used
to simulate from (3.11).

4. THE DUALITY PRINCIPLE

Let us introduce the duality principle through the
example by Diebolt and Robert (1994), which initi-
ated this notion, as it provides a good insight into
the theory.

EXAMPLE 4.1. Consider a two-component normal
mixture distribution
(4.1)  pA#(6y,0%)+ (1~ p)A#(8y, 05),
with the conjugate prior distributions
p~ %e(1/2,1/2),
0; ~ N (&, 02 /ny),  of ~ IL(v;/2, 0} /2),
i=1,2.
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Given a sample x4, ..., x, from (4.1), the posterior
distribution appears as a sum of 2" closed form
terms from exponential families. It thus requires an
MCMC approximation when n is larger than 30 (see
Diebolt and Robert, 1994). The fruitful approach to
the mixture problem is to perceive the model as a
missing data structure, by introducing z, ..., z,, in-
dicators of the components from which the x,’s orig-
inated. The “completed model” stands as

2~ '%(1, p)’ xi'zi ~ '/,/(02—21’ 0'22—-21)’

and the corresponding Gibbs implementation is to
simulate iteratively the missing data and the pa-
rameters. Each simulation of the missing data pro-
vides two subsamples of sizes ¢t and n —t correspond-
ing to each component and related averages m, and
M4, sums of squared errors s? and s2. The two steps
of a Gibbs iteration are then as follows:

1. Simulate
z2;~ @(1, pogexp(—(x; — 01)2/20'12)
: [Pa'z exp(—(x; — 91)2/20'12)

+ (1 - p)oy
exp(—(x; — 62)%/203)] "),
i=1,...,n.
2. Simulate
(1) p~RBe(t+1,n—t+1)
(i) o2~ ./f(”l;t, %(wi +82+ n:“ft

) ‘;Zi(xi —-51)2>);

-t 1
(iii) 0'22~./£<M— (w%+s%

2 2
ny(n — 1)
n1+n—t

: Zi:(l —z)(x; — 52)2));

(v) 6y~ (Tt Y
! ni+t ‘ni+t)
V) By~ ngés + (n — t)my
2 n2+n—t ?
o3
ng+n-—t)

In the general setting of this paper, the impor-
tant aspect of the above algorithm is not the
ergodic convergence to the stationary distribu-
tion 7. It is rather that the parameter of interest

(p, 61, 09, 01, 03) is simulated (as a whole) con-
ditionally on the 2’s, with z = (z,...,2,) and
therefore that the finite state space Markov chain
(2") determines the properties of the MCMC algo-
rithm. (In this case, the state space is of cardinality
2m.)

Note that this property does not hold for alter-
native implementations of the Gibbs sampler. For
instance, consider Mengersen and Robert’s (1995)
reparameterization

p./f/(,u,, 72) + (1 - p)'/,/(:u' + 76, 720'2)’
with

m(p,u,7)=7"1, o~ %p,1; and .6~ (0, 2.

This equivalent representation of (4.1) expresses
the parameters of the second component as a local
perturbation of an overall location—scale parameter
(u, 7) and is mainly of interest in noninformative
settings since it allows for improper priors on (u, 7).
However, although it provides a higher efficiency
in the Gibbs sampler, this perspective requires full
conditional distributions and the parameter is not
generated conditionally on z. In fact, step 2 is then:

2. Simulate

(i) p~%e(@+1l,n—t+1)

(i) o7 ~ ./f(——t er 2
£y — 01)% + 5T+ (6, — el)zfz)
2
: H[oz,oo)(a'l)§
(iii) 032 ~ Jf(———n _2t -2
(n —t)(my — 65)* + 3%)
2
To,0,1(02);
. tml + 5_202 U'i?' .
(v) 6 JV( t+72 ty¢2)
V) Oy~ ./I/((n — )y + {20103 /07
: =

ol )

n—t+{2/0?)’
when expressed in the parameterization of (4.1) (see
also Robert and Titterington, 1996). Therefore, due
to the dependence on the previous value of the pa-

rameter, it is not possible to use the finite state
space chain (z,) to create renewal sets. Moreover,
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the subchain (z,) cannot be considered indepen-
dently from the parameter subchain since it is not
a Markov chain.

In many MCMC setups similar to Example 4.1,
the algorithm produces several chains in parallel.
This is particularly true of data augmentation (Tan-
ner and Wong, 1987), of interleaving Markov chains
(Liu, Wong and Kong, 1994) and of general Gibbs
sampling. In some cases, the chains of interest are
not necessarily Markov chains, but the result be-
low shows why this is not really a concern. Surpris-
ingly enough, it says that it is not always appropri-
ate to study directly the chain of of interest. More
precisely, the duality principle leading to Theorems
4.1, 4.2 and 4.3 states that in cases where the chain
(60,) is derived from a second chain (z,) by simu-
lation from 7(6|z), the properties of the chain (6,),
whether it is a Markov chain or not, can be gath-
ered from those of the chain (z,). In this setup, z,
is simulated according to f(z|0,_1, 2,_1)-

THEOREM 4.1. If the chain (z,) is ergodic with
stationary distribution [ (respectively geometri-
cally ergodic with rate @), the chain (6,) derived
by 6, ~ w(6|z,) is ergodic (geometrically ergodic)
for every conditional distribution w(-|z) and its
stationary distribution is

#(0) = ] 7(6|2)f(2)dz.

Moreover, if (z,) is ¢-mixing, (0,) is also .@o-mixing.

PROOF. The transition kernel associated to the
chain (z,) is

k(Z|2) = [ w(8|2)f (210, z) db.
If ™ is the marginal density of z,, at step n, 7"(0) =

[m(0|12)f"(z)dz is the marginal density of 6, at
step n and

7" — ||y
42 =1 /9 01" (2) = f(2)) dzdo
<If" = fllry-

Therefore, (0,) converges to 7 for every possible
starting point and the chain is ergodic when (z,)
is ergodic. The same transfer applies for geometric
ergodicity. Note that the inequalities

17 = Fllay = 1" = llay < 17" = Fllay

imply that the same geometric rate o applies to both
chains.

Moreover, if ¢-mixing holds for the chain (z,),
there exists a finite measure u such that

IF"(2) - F(2)] < e(r)u(z)
and
|7(6) — #(6)] < [ m(ol2)If"(2) - f(2)] dz
2

< o(n) /g) 7(60]2)u(2) dz = ¢(n)i(0).
The measure g is finite since

f@ﬁ(e)da - fg},u(z)dz < 0. O

In the special case when (6,) is a Markov chain,
for example, when z, ~ f(z,|0,_1), which cor-
responds to data augmentation, a-mixing and
B-mixing properties also transfer from (z,) to (6,).

THEOREM 4.2. If the chain (z,) is a-mixing (re-
spectively B-mixing), the chain (6,) is also a-mixing
(B-mixing).

PRrROOF. Consider the following representation of
the a-mixing coefficients

ay(n)

= sup ]@ ] [@ R(6)(7"(88,) — 7(6)) d6| 7(6,) d .

Then

ag(n) < sup f
|Allo<17®

[9 f@ h(9)m(6|2)do

- (f"(2100) — f(2)) dz|7(8o) A6y

< n—1 _F

< s [ f l [ @ elzn) - F)dz
- f(21160) dz17(6y) dbyo

= sup [ ) [ £ elen) - F@) dz

|&lle< g
-f(z1)dz
=a,(n —1).

Similarly, since (Davydov, 1973)

Bo(m) = [ [ 1" (0160) — #(6)] d6 7(8o) dbo,
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we get

Bon) = [ [ 177(2100) = F(2)] dz (05) d

Sfef / |f*(2l21) - f(2)| dz
2’2
- F(21106)7(6) d6,
= [ [ 1" (zl20) - F(2)] dz fi(z0) dzq
272
= B.(n—1)

and these inequalities complete the proof of Theo-
rem 4.2. [J

This correspondence between mixing properties of
both chains is obviously of interest, considering the
developments of Section 2, since it allows for the
assessment of the central limit theorem at little ex-
pense. In fact, the sufficient conditions described in
Section 2.3 have only to be checked for the chain
(z,,) for the central limit theorem to apply to the
chain (6,). Since (z,,) is usually a finite state space
Markov chain, such checking is often straightfor-
ward. For instance, when the state space of (z,,) is
finite, it follows from Billingsley (1968) that (z,,) is
geometrically ergodic and even ¢-mixing, under ir-
reducibility and aperiodicity of the kernel.

Note also that this straightforward verification of
the central limit theorem conditions is particularly
compelling because of the Rao—Blackwell theorem.
In fact, as suggested by Gelfand and Smith (1990),
it is sometimes preferable to consider the expected
sums

) LA 1 XN
(4.3) i Y ET[h(6)|z,] = N HZZIh(zn),

n=1

rather than the direct average Z,ILI h(6,)/N, since
the integration leading to (4.3) reduces the variance
of the estimate. [Liu, Wong and Kong (1994) give
some sufficient conditions for this improvement to
hold for every convex loss function.] Therefore, when
Rao-Blackwellization is justified theoretically and
when £ can be written explicitly, the convergence of
(4.3) to the expected value E*[A(6)] can be directly
controlled by the central limit theorem because the
estimates (4.3) only depend on the chain (z,).

When Rao-Blackwellization does not apply, usual
averages can still be directed by the chain (z,), as
shown by the following result:

THEOREM 4.3. If (z,) is geometrically convergent
with compact state space and rate o, for every h
Ly(77), there exists C,, such that

|E™ [A(6)] — E7[A(6)] 5 < Cpo".

ProOF. Without loss of generality, consider the
case when 4 is a real-valued function. Then

(E™"[A(6)] — E7[1(6)])"
2
= ([ no)(="(6) - 7(6)) db)

= ([ [ moym(0l2) docf™(2) - F(2)) dz)2
< max (E"[a(0)|2]%) ||f" - FIIf < Cho™. O

This result can be related to those of Liu, Wong
and Kong (1994), who showed that an interleav-
ing property of the MCMC chains, corresponding
basically to data augmentation setups, allows for
the application of Rao-Blackwell theorem, but
also for monotone decrease to 0 of the covariances
cov(h(6,), h(0,,,)) (in m) and for geometric con-
vergence of the empirical moments. Our approach
is more general in the sense that it puts no restric-
tion on the way (z,) is generated, but conversely
it does require a preliminary study of this chain to
certify that the central limit theorem applies.

Renewal theory can take advantage of the duality
principle as well since, when (z,) has a finite sup-
port, the renewal set A can be reduced to a single
point (atom), at least theoretically (see Section 3.4
for extensions to cases when no atom has a high
enough probability of return). For instance, the set
A for Example 4.1 can be constructed by allocating
each observation x; to its most probable component,
that is, in practice, to the mode of the values taken
by z; in the “burn-in” sequence. When the excursion
times 7, are too large, it makes sense to remove the
unstable observations from the-definition of A, al-
though this really complicates the derivation of ».

Example 4.1 was instrumental in the derivation of
the duality principle, but it is far from being the only
setup where the duality principle applies with prac-
tical consequences. For instance, grouping (or data
coarsening as in Heitjan and Rubin, 1991) is an-

* other type of missing data structure where the dual-

ity principle can strengthen the convergence study.

ExXaMPLE 4.2. Consider the multinomial grouped
model of Tanner and Wong (1987) and Gelfand and
Smith (1990):

x ~ /5(01P- + by, agu + by, agn + bs, agm + by,
c(1—p—n)),
with

4
O§a1+a2=a3+a4=1—2bi=c§1,
i=1

O<um,m=<1,
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and the a;’s and b,’s are known. This model is actu-
ally a grouping of

y~ "/9((11”” bl’ Qg b, b27 asmn, b3a asn, b4a

co(1—p—n))
into
X1=Y1+Y2, Xo=Y3+Y4, X3=Y5+Ys
Xy =Y7+Yyg X5=Yg.

When #(u, 1) is the Dirichlet 2(1/2, 1/2, 1/2) dis-
tribution, the posterior distribution is not available
in closed form, but only through a Gibbs algorithm
completing the data as follows:

1. Simulate z = (21, 23, 23, 24) = (¥1, ¥3> Y5> ¥7)

by
a;u .
; ~ B > — s = 17 2,
i (x, ail’»'*‘bi) '
a;m .
~ B x;, —— ), =3,4.
& (x, ai77+bi) '
2. Simulate

(M) ~9(1/2+421+29,1/24253+24, 1/24x5).

The chain (z,) is then generated on a finite state
space of cardinal x; X x5 X x3 X x4, Which should be
of size moderate enough to allow for the selection
of a single atom as renewal set A. The finiteness
of the state space also guarantees that the central
limit theorem applies for both chains.

For instance, take a = (0.1,0.14,0.7,0.9), b =
(0.17,0.24,0.19,0.20) and x; = 4, xy = 15, x5 =
12, x, = 7, x5 = 4. The simulation according to
steps 1 and 2 then gives (0, 1, 0, 0) as the most likely
state for (z;, ..., 24) and the average excursion time
is 27.1. The second most likely state is (0, 2, 0, 0)
with an average excursion time 28.1. To compare
the performances of the variance estimators with
a less frequent state, we also consider (1, 1,0, 0),
'which has an average excursion tine of 49.2. Table 4
provides the Gibbs and variance estimates for three

TABLE 4
Gibbs estimates of posterior expectations and asymptotic vari-
ances for three functions of interest, based on three renewal sets
for the multinomial grouped model (50,000 iterations)

i E"[h;(u, m)lx] 62 (1) 67(2) 67(3)
7 0.0005 0.758 0.720 0.789
ko 0.496 1.24 1.21 1.25
ks 0.739 1.45 141 1.67

functions of interest,

ho(p, ) = Lymn,
_r
l-p—nm
and for 50,000 iterations. The Gibbs estimate of
h3(u, m) is based on a Rao—Blackwellized version

hi(u,n) =p—m,

h(p, n) =

1 Y0542 42,

44 N= x5-05 "’

due to substantial gains of stability in both the es-
timate and the corresponding variance. Note the in-
fluence of the less frequent state on the estimation
of o2.

EXAMPLE 4.3. Consider p random variables
Y1,---»¥p ~ Exp(6) which are grouped into
classes according to binary random variables
8i ~ B(L, P(y1 — 12;)) as

L [yi/a]7
%= [yisbl,

where a, b, vy, and vy, are known, and & is the nor-
mal cdf. Heitjan and Rubin (1991) provide a justi-
fication for this model through round-up errors in
surveys. The observations x; can be completed by
the missing data (y;, g;) and

f(yi7 gilxi’ 0)
o 06 [Ty aw+1))(¥i)lg,—ol1 — P(v1 — Y2:)]
ey, b+ (Vi) g1 D(v1 = y230)}-

If the prior distribution on 6 is a £(«, B) distri-
bution, a Gibbs algorithm for the simulation of the
posterior distribution of 6 is to consider the Markov
chain (z,, 6,) with the following transition steps:

ifgl =O7

ifgl=1, lflfpa

1. Simulate z, = (y?, &7, ..., ¥y, 8p) by

gl ~ B, Oy — 72y},
yi&l ~ 0,_1exp(—0,_1y)
ANiax,, ax 11 (Y1) gr=o
+ Tips,, b+ 01 (i) Lgr—1 )
1<i<p.
2. Simulate
bn ’“'ﬁ’(a+l’,ﬁ+iyi).
i=1

In this case, the missing data (y;, 8;) (1 <i < p)
have a compact support and the chain z, is ¢-
mixing. Therefore, the central limit theorem also
applies.
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This example shows that the duality principle
applies in a wider context than just data augmenta-
tion, that is, when z, ~ f(z|6,_;) and 6, ~ 7(6|z,).
In fact, in Example 4.3, z, is generated from a
distribution of the form f(z|6,, z,_,), because the
joint distribution of (y;, g;) is decomposed into two
full conditional distributions for simulation rea-
sons. A similar example is given in Robert, Celeux
and Diebolt (1993) for hidden Markov chains. This
model encompasses mixture models, but allows for
a possible Markov dependence between the obser-
vations, x;,..., Xy, which can be described at the
missing data level. The simulation of this missing
data then gets too time-consuming to be oper-
ated directly and this imposes the following Gibbs
decomposition:

[11] Simulate 21n|22(n_1), ey zT(n—l)’ On_l;

[IT] Simulate zTn|zln, ey Z(T—l)n’ 0n_1.

This type of decomposition implies that (6,) is not
a Markov chain, but the finiteness of the state
space of z = (2q,...,2y) and the irreducibility of
the Markov chain (z,) ensure that the central limit
theorem holds in this setup. Other examples of a
similar nature can be found in capture-recapture
(George and Robert, 1992; Dupuis, 1995) and in
image analysis and spatial statistics (Besag and
Green, 1993); this variety of examples shows that
the duality principle extends further than missing
data structures. Another important application of
the duality principle is the setting of deconvolution
problems, where complex expressions involving re-
current sums can be simplified to usual densities by
a call to artificial indicator variables. (See Robert,
1994, Example 1.16, for an illustration in the case
of a nonparametric mixture of geometric random
variables.)

5. CONVERGENCE MONITORING VIA MULTIPLE
USES OF THE GIBBS SAMPLE

The previous developments focus on the central
limit theorem, both in terms of assessment—which
is simplified when some duality principle applies—
and of estimation of the asymptotic variance—which
can be brought back to an iid setup if some renewal
features of the chain can be exhibited. Although rel-
atively straightforward, these assessments still re-
quire a minute examination of the MCMC algorithm
and of the resulting chain. Moreover, they do not al-
ways hold, as shown by Example 3.1. This section
considers the convergence assessment from an al-

ternative perspective, by proposing a rudimentary
and informal stopping rule which operates in more
general settings, but can be embedded in the previ-
ous machinery whenever it operates.

Given a MCMC sample 6y, ..., 6 and a function
of interest A, it is usually possible to compare the
average (2.3) with other estimates of E"[A(6)]. For
instance, if there exists a dual chain z4, ..., zy and
if the conditional expectation E7[A(0)|z] can be com-
puted, the Rao-Blackwellized average (4.3) also con-
verges to E7[A(6)]. In other cases, for example, for
the Metropolis algorithm, it is possible to condition
on the previous value of the chain, 6,,_;, that is, to
replace A(9,) in (2.3) by E[A(6,)|0,_1]- Note that
Rao—Blackwellization is not limited to exponential
families and natural parameters since Casella and
Robert (1996) have shown that it is always possible
to compute a Rao—Blackwellized version of (2.3) for
a Metropolis algorithm by integrating out the uni-
form random variables simulated at each step. A
second alternative to (2.3) is to use classical Monte
Carlo estimates based on 64, ..., 6y. Gelfand and
Sahu (1994) suggested accept-reject algorithms, but
this approach requires discarding some of the 6,’s,
while computing a maximum density ratio; we con-
sider the standard technique based on importance
sampling. In fact, as already mentioned in the liter-
ature (Rubin, 1987; Gelfand and Smith, 1990), this
classical Monte Carlo method may improve upon the
estimate (2.3). If the density 7 is known up to a con-
stant, the weighted sum

N . #(0,)
5.1) Y w,h(6,) with On O ZBS

n=1

also converges to E7[h(0)] when the 6,’s are sim-
ulated according to #*, which may depend on the
previous 6, or z,. Note in particular that the terms
in (5.1) are uncorrelated since

E™ [0, h(0,)w,,h(0,,)]
- / R(6,)7(8,)(0,,)7(0,,) 6, db,,

= E7[1(6,)E7[1(6,,)]
= ]EW* [wnh( on)]]ETr* [wnh( om)]’

whatever the correlation induced by #*. In Gibbs
setups, 7* is given by (2.2), while 7 is known up
to a normalizing constant, from the Hammersley-
Clifford theorem (see Besag, 1974, 1994). When the
normalizing constant is unknown, the weights can
be normalized by }°, w, = 1. Due to the strong law
of large numbers, (5.1) converges to E"[A(0)] even
when the variance is infinite. However, we will see
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below that importance sampling does not perform
well and should not be used as a convergence crite-
rion in the latter case.

The third alternative we consider in this section
is based on the trapezoidal approximation to

/ h(6)7(0) db;
that is,
N-1
Y- (Bar1y = Omy))(0(n) )7 (O(ny)
n=1

where 6, denotes the ith order statistic of the sam-
ple 64,...,0y. This alternative is called weighted
Monte Carlo integration in Yakowitz, Krimmel and
Szidarovszky (1978). When the normalizing factor
of 7 is missing, a manageable version is to use

LN Oms1y = 0 r(0(n)) (0 ()
YN 01y — 0n)) T(0n)

(5.2)

b

which converge to E*[h(6)] when N goes to infinity
(Philippe, 1996). Note that this option only applies
in one dimension, because multidimensional exten-
sions do not perform well (see Example 4.2).

These different approaches provide four possible
estimates of E"[h(6)] denoted by 8., 6,4, 6;s and
8, for ergodic, Rao-Blackwell, importance sampling
and weighted Monte Carlo, respectively. A straight-
forward stopping rule is then to monitor the simul-
taneous convergence of the four estimates to the
same quantity. This naive implementation is quite
conservative since these estimates may be converg-
ing to E"[h(0)] at very different speeds. Nonethe-
less, a theoretical comparison between them often
depends on the setting [existence of a manageable
Rao-Blackwellized version, finiteness of the vari-
ance factor E"[h2(0)7(0)/7*(0)], behavior of the ex-
treme order statistics (6(1)—6(0)) and (8xy—O(n_1))
etc.]. Given that we are looking for general and ro-
bust stopping rules, it seems relevant to monitor
the ' different convergence paths and wait until si-
multaneous convergence of 8, and &, for instance.
Obviously, this rule is not foolproof since two esti-
mates can stabilize while the algorithm is still in
the neighborhood of a mode of the posterior distri-
bution. The same criticism applies to most stopping
rules, though, and it is important to realize that al-
ternatives to the usual empirical mean are usually
available and sometimes perform better. We now ex-
amine through a few examples how this rudimen-
tary comparison performs.

ExAMPLE 2.1 (Continued). Since x, is generated
according to

(5.3) x,.1 = Xns with probability 1 — x,,,
®) Il =)y~ Be(a+1,1),  otherwise,

we have

E[x13¢]%,] = (1 — x,)xh ™ + %, E[y' 7]

n
1
=(1—x,)%* + x,(a+ 1)/0 ylte dy
=(1—x,)xp "+ x,(a+1)/2,

which leads to the following Rao-Blackwellized es-
timate of E"[x1¢]:

N
8 = (1/N) Y {(1— x,)x0 + x,(a + 1)/2} .

n=1

If we assume that the y’s in (5.3) are generated
at each iteration, the importance sampling es-
timate is based on a sample yi,...,yy of iid
e(a + 1,1) observations, instead of the original
sample xq, ..., xy. In this case,

N N 1
ais = Z y;a/ Z Yn
n=1 n=1

since the weight (5.1) satisfies w, o y2~1/y% = y;1.
Note that 8,, can be constructed on either the x,’s
sample or the y,’s sample. We select the second ap-
proach, with

N-1 N-1 )
8w =2 Yty = Ym) [/ 2o Ynr1) = Y)Y ()
n=1 n=1

N-1
=W = 30) /] X Vs = I)Vm >
n=1

because the Metropolis sample leads to inefficiency,
given that it induces null terms (x(,41) — *(n)) in

 (5.2). (Note that the convergence of 8, to the true

value does not require the y,’s to be generated ac-
cording to the correct distribution.) Figure 3 gives
an illustration of the convergence paths of 8., &,
8;s and 8.

Given the artificial aspect of this example, the
various estimates §,,, §;; and §,, are somehow con-
trived, but the comparison allowed by Figure 3 is
still interesting. Two usual features are that the two
estimates 8, and 8, are quite similar almost from
the start and that they are more unstable than the
weighted Monte Carlo estimate 8. In general, §,,
provide a benchmark whenever available. In addi-
tion, when comparing with the two examples below
(see Figures 4 and 5), the graph associated with
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FI1G. 3. Convergence paths for different estimators of ]Eﬁ[xl“"]: 8, (dots), 8, (dashes), 8;; (long dashes) and 8, (plain). In this graph,

8, and 8y, are indistinguishable from the start.

8., shows a singular lack of stability and thus indi-
cates that convergence is not yet achieved. In this
regard, the criterion is successful since all three es-
timates fail to provide a proper approximation of
the true value, o = 0.2 after one million iterations.
The importance sampling estimate §;; gets closer
to 0.2, although it exhibits some important jumps
due to huge values of the weights w, which are of
such magnitude that the shape of the cumulated
curve for §,, implies that convergence is not yet at-
tained for this estimate. While one should keep in
mind this example was chosen for its pathological
features (Robert, 1995, shows that 250 million iter-
ations are necessary to achieve a correct evaluation
of a by 6,), its setting is rather favorable to impor-
tance sampling since the y,’s are simulated inde-
pendently.

EXAMPLE 3.1 (Continued). In the more realistic
" setup of (3.7), the Rao—Blackwellized estimator of
exp(—0/0) is

1

N
> exp {72 [—(m1%1 + naxg + M3x3) + 1/2]}
N

n=1

6rb =

as shown by (3.9). Similarly, the importance sam-
pling estimate is )

M=

6is =

W, exp(—On/o),

n=1

with
w,  7[exp{—6%/20?
+ (0, — T2(m1%1 + M2%2 + M3x3))2/27%}]

-[ﬁyr+uf—mﬁﬂ_i

while the weighted Monte Carlo estimate is

N-1
Oy = [ Y (Ons1y — O(ny) €XP(—0(ny/ T — 63,)/207)

n=1

3
T+ (3= 0T

i=1

N-1
. [ Z (0(n+l) — O(n))exp(—O(zn)/Zoz)

n=1
3

-1
T+ G = 0T

i=1

Figure 4 leads to different conclusions than the
previous example, although 6, and &6, are again
quite indistinguishable. They both converge to the
value obtained via 8, which is stable almost from
the start, while §; is not converging to this quantity
at the same speed, for reasons related to the lack of
variance of the weights w,. It may well be that a
phenomenon similar to Example 2.1 occurs in this
case, namely, that §,, 8, and 8, all fall far from the
mark, while §;; indicates the exact value, but the
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F1G. 4. Convergence paths for different estimators of ]Ei'[exp(—()/a)]: 8¢ (dots), 8, (dashes), 8is, (long dashes) and &, (plain). In this

graph, the estimates 8, and 8., cannot be distinguished.

similarity of the three estimates over a large num-
ber of iterations and the stability of their conver-
gence path are quite reassuring factors to argue that
the Bayes estimate of exp(—6/0) should be close to
0.845.

ExXaMPLE 4.2 (Continued). In this case, the func-
tion of interest is the odds ratio Ag(u, n) = u/(1 —
w—m). While 84 is given by (4.4), the weights in §;¢
are

w, & [(a1p, + b)) (agm, + by)*2(azn, + b3)™
(@4 +bg) (1 — iy — 1)
[uanl21 - p, — n,) Y 2uptal2
LIt — )R 2]
= [(a1p, + b1) (agp, + by)™.
-(agm, + b3)*(agm, + by)™] - [I’«fz‘_)rzzniﬁz‘]_l-

The weighted Monte Carlo estimate cannot be con-
structed as above since we are in a bidimensional
setup. A first solution is to extend (5.2) by con-
sidering trapezoidal approximations on squares
[/"L(n)? /“L(n+1)] X [n(m)’ 7’(m+1)]7 but YakOWitZ7 Krim-
mel and Szidarovszky (1978) have shown that the
multidimensional versions of (5.2) are less efficient.
In our case, it is actually possible to derive the
marginal distribution of £ = hg(u, 1) by integrating

out

(p, M) o w20, 2 (@ g + b1) " (agp, + bg)™
(agm, +bs)"*(agm, +bg)™
R

Indeed,

1Mé(1—n) 2 -1/2 §(1—m) x,
[ 1+¢ ] n (al 1+¢ +b1)

1- &

-(agm, +bg)*(agm, + bs)™
(1_7’)365—1/2 1__1’
A2=1 1 _dq
1+ ¢ 1+ ¢)2

~1/2 1 1— xy
- ——(1f: e fo V2 (al———g(l - g”) +bl) ,

1- %2

(agm, +bg)**(agm, +by)™

“(L=m)™dn

(&) o [

0
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and this density can be expressed as a polynomial
in £/(1+ £), namely,

X1+x9 §j~1/2
(5.4) Z ]W

with
g X1 i1bx1*i1 X9 j—ilbx2—j—i1
LIS . ]aro; .. Jaz Dy
i=0vj—x, \!1 J—h
X3+Xy4
k-1/2 j
X / V(1 — ) sdy

kAx
Za X3 t3bx3 i3 X4 k tabx4 k— 13
l3 k— l

i3=0vk—x4

Since

fnk V21— pyissgy = D LD + x5+ 1)

(j+xs+k+3/2) °

the weights @; in (5.4) are proportional to

= GGG
i1 =0V j—x, il bl j_il b2

LTk +1/2)T(j + 25 +1)

65 - Y

o1 T +x5+k+3/2)

LG GG
iy=Ovh—z, \i3/ \b3/) \k—i3/ \by
Figure 5 illustrates a possible behavior of §;
when the weights have infinite variance. Although
unbiased, as shown by the few intersections with
the other paths, §;; fluctuates too widely to be of
any use in a convergence diagnosis or even in the
estimation of E"[w/(1 — w — 7)]. Its erratic path and
the huge discrepancies with the three other paths
are enough to identify its lack of relevance on the
spot, that is, during the simulation. The three other
estimates converge to the true value, 0.747, which
can be computed analytically from the weights
(5.5). Note again the higher efficiency of §,, which
converges to the true value much faster than the
two other estimates. This efficiency is obviously re-

Multinomial

o 1000 2000

3000 4000

Fi1G. 5.  Convergence paths for different estimators of ]Eﬁ[ n/(1—p—mn)]: 8. (dots), 8., (dashes), 8;s, (dots and dashes) and 8, (plain). Both
8. and &y, follow a similar path around the almost constant 8,, while 8;; does not fit in the scale of the graph after 24,000 iterations.

The curves are based on 50,000 iterations.
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lated to the extensive use of 7, which is not always
available.

6. CONCLUSION

This paper covers several topics pertaining to the
improvement of Markov chain Monte Carlo tech-
niques in terms of convergence control. The develop-
ments around the mixing properties of the chain are
instrumental in assessing that the central limit the-
orem actually applies, but more advanced tools are
necessary to approximate the limiting variance fac-
tor. For instance, renewal theory seems quite appro-
priate in this regard, since it allows for a classical iid
setup and for regular estimators of the asymptotic
variance. Further developments along this line are
still necessary since the determination of the factors
involved in the renewal process is quite problem de-
pendent. Mykland, Tierney and Yu (1995) overcame
that drawback by modifying the original kernel, but
it may be possible to produce automated renewal
versions for the original algorithms.

The duality principle appears as an important
step toward a necessary automation, since finite
state space and other simple Markov chains provide
manageable settings for the derivation of renewal
sets, while the dual structure motivating the prin-
ciple occurs in a wide range of settings. Unfortu-
nately, although it applies to a much more general
setup than just data augmentation, there is no im-
mediate extension of this principle to hierarchical
simulation structures such as those appearing for
Gibbs sampling, since every sub-chain generated
by the algorithm is not a Markov chain per se. It
goes without saying-that a technique should not
be recommended only because theoretical results
are at our disposal. However, strongly correlated
structures such as those appearing in highly di-
mensional Gibbs algorithms are usually slower to
converge than faster mixing techniques like some
alternative Metropolis algorithms where the du-
ality principle may apply (Geyer, 1992; Besag et
al., 1995) and theoretical evaluations are urgently
needed to back up this intuition. -

When renewal theory applies in an MCMC setup,
the central limit theorem or even the law of the
iterated logarithm are some tools available to con-
trol convergence. Further investigation should not
be dismissed, however, because the applicability
of these results is not always guaranteed and also
because they assume that stationarity is already
attained. While this assumption has little bearing
in low-dimensional problems, it seems more diffi-
cult to retain it in large dimensions, and the future
direction for research should be the incorporation

in the convergence diagnosis of the study of multi-
ple Markov chains generated from the same MCMC
algorithm. As splitting is the technique behind re-
newal theory, coupling (see Lindvall, 1992, and
Meyn and Tweedie, 1993) should presumably be
used for the control of multiple run MCMC meth-
ods because the interchange of the various chains
running in parallel should drastically increase the
mixing of the chains, that is, the lack of dependence
on the starting points of the chain. However, cou-
pling is usually associated with the existence of a
small set A, where the coupling process occurs (see
Asmussen, 1979, and Meyn and Tweedie, 1993) and
should thus be preceded by a determination of A,
as in renewal theory. See Johnson (1994) and Propp
and Wilson (1995) for some steps in this direction,
where discrete models are again easier to manage.
The last section, although more empirical and less
theoretical than the previous ones, also has some
possible bearing on the control of MCMC methods.
In its current version, the method is mainly graphi-
cal and does not allow for easy extensions to multi-
dimensional setups. Moreover, the stopping rule is
subjective, given that some estimates like 8;; are of-
ten eliminated for erratic behavior. The main lesson
in our examples is thus that weighted Monte Carlo
estimates should be used as a benchmark whenever
the distribution 7 is available in closed form, since
they are more stable and accurate than the ergodic
or Rao—Blackwellized averages, while these two
estimates are too similar to control convergence.
On the contrary, importance sampling estimates
have shown a strong propensity to err far away
from the true value of the posterior expectation
and one should exercise great caution when using
them. Some developments are nonetheless possible
toward a stabilization of the importance sampling
estimates (mixed proposal distributions, trimming,
accept-reject, ...) as well as a generalization of
weighted Monte Carlo estimates to more general
setting (estimated Rao-Blackwellization, iterative

" marginalization, . ..), and these topics currently un-

der study should obviously benefit the control of
MCMC methods and therefore their dissemination
to more complex settings.

ACKNOWLEDGMENTS

The author is grateful to M. Broniatowski, F.
Charlot and J. Diebolt for helpful discussions and
to K. Mengersen and R. Tweedie for discussions
as well as for their hospitality in Fort Collins, Col-
orado, in July 1993. Comments from an Editor
and a referee were instrumental in clarifying style,
exposition and focus.



252 C. P. ROBERT

REFERENCES

ASMUSSEN, S. (1979). Applied Probability and Queues. Wiley,
New York.

BESAG, J. (1974). Spatial interaction and the statistical analysis
of lattice systems. J. Roy. Statist. Soc. Ser. B 36 192—-326.

BESAG, J. (1994). Discussion of “Markov chains for exploring pos-
terior distributions” by L. Tierney Ann. Statist. 22 1734—
1741.

BESAG, J. and GREEN, P. J. (1993). Spatial statistics and
Bayesian computation. J. Roy. Statist. Soc. Ser. B 55 25-38.

BESAG, J., GREEN, P. J., HIGDON, D. and MENGERSEN, K. L. M.
(1995). Bayesian computation and stochastic systems, (with
discussion). Statist. Sci. 10 3-66.

BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wi-
ley, New York.

BROOKS, S. and ROBERTS, G. O. (1995). Diagnosing convergence
of Markov chain Monte-Carlo algorithms. Technical Report
95-12, Statistical Laboratory, Univ. Cambridge.

CASELLA, G. and GEORGE, E. 1. (1992). An introduction to Gibbs
sampling. Amer. Statist. 46 167-174.

CASELLA, G. and ROBERT, C. P. (1996). Rao-Blackwellisation of
sampling schemes. Biometrika 83. To appear.

CHAN, K. S. and GEYER, C. J. (1994). Discussion of “Markov
chains for exploring posterior distributions” by L. Tierney
Ann. Statist. 22 1747-1758.

CHiB, S. and GREENBERG, E. (1995). Understanding the
Metropolis—Hastings algorithm. Amer. Statist. 49 327-335.

COWLES, M. K. and CARLIN, B. P. (1995). Markov chain Monte-
Carlo convergence diagnostics: a comparative study. Techni-
cal Report, Univ. Minnesota.

Davypov, Y. A. (1973). Mixing conditions for Markov chains.
Theory Probab. Appl. 28 312-328.

DIEBOLT, J. and ROBERT, C. P. (1994). Estimation of finite mix-
ture distributions by Bayesian sampling. J. Roy. Statist. Soc.
Ser. B 56 363-375.

DOUKHAN, P., MASSART, P. and RioO, E. (1994). The functional
central limit theorem for strongly mixing processes. Ann.
Inst. H. Poincaré Probab. Statist. 30 63-82.

Duruis, J. A. (1995). Bayesian estimation of movement prob-
abilities in open populations using hidden Markov chains.
Biometrika 82 761-772.

FELLER, W. (1971). An Introduction to Probability Theory and Its
Applications 2. Wiley, New York. ’

GELFAND, A. E. and SAHU, S. K. (1994). On Markov chain Monte-
Carlo acceleration. Journal of Computational and Graphical
Statistics 3 261-276.

GELFAND, A. E. and SMITH, A. F. M. (1990). Sampling based ap-
proaches to calculating marginal densities. J. Amer. Statist.
Assoc. 85 398-409.

GELMAN, A., GILKS, W. R. and ROBERTS, G. O. (1994). Efficient

’ Metropolis jumping rules. Research Report 94-10, Statistics

+ Laboratory, Univ. Cambridge.

GELMAN, A. and RUBIN, D. B. (1992). Inference from itera-
tive simulation using multiple sequences (with discussion).
Statist. Sci. 7 457-511.

GEORGE, E. I. and ROBERT, C. P. (1992). Calculating Bayes esti-
mates for capture-recapture models. Biometrika 79 677-683.

GEWEKE, J. (1992). Evaluating the accuracy of sampling-based
approaches to the calculation of posterior moments. In
Bayesian Statistics 4 (J. O.'Berger, J. M. Bernardo, A. P.
Dawid and A. F. M. Smith, eds.) 169—-194. Oxford Univ. Press.

GEYER, C. J. (1992). Practical Markov chain Monte-Carlo (with
discussion). Statist. Sci. 7 473-511.

GILKS, W., CLAYTON, D. G., SPIEGELHALTER, D. 1., BEsT, N. G,
SHARPLES, L. D. and KIRBY, A. J. (1993). Modelling complex-
ity: applications of Gibbs sampling in medicine (with discus-
sion). J. Roy. Statist. Soc. Ser. B 55 39-52.

HEITJAN, D. F. and RUBIN, D. B. (1991). Ignorability and coarse
data. Ann. Statist. 19 2244-2253.

HOBERT, J. P. and CASELLA, G. (1996). Gibbs sampling with im-
proper distributions. J. Amer. Statist. Assoc. To appear.
JOHNSON, V. E. (1994). Studying convergence of Markov chain
Monte Carlo algorithms using coupled sample paths. ISDS

Working Paper 94-07, Duke Univ.

KIPNIS, C. and VARADHAN, S. R. (1986). Central limit theorem
for additive functionals of reversible Markov processes and
applications to simple exclusions. Comm. Math. Phys. 104
1-19.

LiNDvALL, T. (1992). Lectures on Coupling Theory. Wiley, New
York.

Liu, J. S., WoNG, W. H. and KONG, A. (1994). Covariance struc-
ture of the Gibbs sampler with applications to the compar-
isons of estimators and sampling schemes. Biometrika 81
27-40.

Liu, J. S., WoNG, W. H. and KONG, A. (1995). Correlation struc-
ture and convergence rate of the Gibbs sampler with various
scans. J. Roy. Statist. Soc. Ser. B 57 157-169.

MaLiNoVsKIL, V. K. (1987). Limit theorems for Harris Markov
chains. Theory Probab. Appl. 31 269-285.

MENGERSEN, K. L. and ROBERT, C. P. (1995). Testing for mix-
tures: a Bayesian entropic approach (with discussion). In
Bayesian Statistics 5 (J. M. Bernardo, J. O. Berger, A. P.
Dawid and A. F. M. Smith, eds.) 255-276. Oxford Univ. Press.

MENGERSEN, K. L. and TWEEDIE, R. (1996). Rates of convergence
of the Hastings and Metropolis algorithms. Ann. Statist. 24
101-121.

METROPOLIS, N., ROSENBLUTH, A. W., ROSENBLUTH, M. N.,
TELLER, A. H. and TELLER, E. (1953). Equations of state cal-
culations by fast computing machines. J. Chem. Phys. 21
1087-1092.

MEYN, S. P. and TWEEDIE, R. L. (1993). Markov Chains and
Stochastic Stability. Springer, New York.

MEYN, S. P. and TWEEDIE, R. L. (1994). Computable bounds for
convergence rates of Markov chains. Ann. Appl. Probab. 4
124-148.

MYKLAND, P., TIERNEY, L. and YU, B. (1995). Regeneration in
Markov chain samplers. J. Amer. Statist. Assoc. 90 233-241.

PELIGRAD, M. (1986). Recent advances in the central limit the-
orem and its weak invariance principle for mixing se-
quences of random variables. In Dependence in Probability
and Statistics (E. Ebberlein and M. Taqqu, eds.) 192-223.
Birkhauser, Boston.

PHILIPPE, A. (1996). Processing simulation output by Riemann
sums. Technical Report, 96—02, Univ. Rouen.

PoOLSON, N. G. (1995). Convergence of Markov chain Monte-Carlo
algorithms. In Bayesian Statistics 5 (J. M. Bernardo, J. O.
Berger, A. P. Dawid and A. F. M. Smith, eds.) Oxford Univ.
Press.

PROPP and WILSON (1995). Exact sampling with coupled Markov
chains and applications to statistical mechanics. Technical
Report, Dept. Mathematics, MIT.

ROBERT, C. P. (1994). The Bayesian Choice: A Decision-Theoretic
Motivation. Springer, New York.

ROBERT, C. P. (1995). A pathological MCMC algorithm and its
use as a benchmark for convergence assessment techniques.
Doctoral work, CREST, INSEE, Paris.

ROBERT, C. P. (1996). Méthodes de Simulation en Statistique:
Une Introduction aux Méthodes de Monte-Carlo par Chaines



CONVERGENCE CONTROL METHODS FOR MCMC ALGORITHMS 253

de Markov. Economica, Paris. To appear.

ROBERT, C. P., CELEUX, G. and DIEBOLT, dJ. (1993). Bayesian es-
timation of hidden Markov chains: a stochastic implementa-
tion. Statist. Probab. Lett. 16 77-83.

ROBERT, C. P. and TITTERINGTON, M. (1996). Reparametrising
schemes for hidden Markov models and their application
for maximum likelihood estimation. Technical Report, Dept.
Statistics, Univ. Glasgow.

ROBERTS, G. O. and TWEEDIE, R. L. (1994) Geometric convergence
and central limit theorems for multidimensional Hastings
and Metropolis algorithms. Research Report 94-9, Statistics
Laboratory, Cambridge Univ.

ROSENBLATT, M. (1971). Markov Processes. Structure and Asymp-
totic Behavior. Springer, New York.

ROSENTHAL, J. S. (1993). Rates of convergence for data augmen-
tation on finite sample spaces. Ann. Appl. Probab. 3 819-839.

RUBIN, D. B. (1987). Multiple Imputation for Nonresponse in Sur-
veys. Wiley, New York.

SCHERVISH, M. J. and CARLIN, B. (1992). On the convergence of
successive substitution sampling. Journal of Computational
and Graphical Statistics 2 111-122.

SMiITH, A. F. M. and ROBERTS, G. O. (1993). Bayesian computa-
tion via Gibbs and related Markov Chain Monte Carlo meth-
ods. J. Roy. Statist. Soc. Ser. B 55 3-24.

TANNER, M. and WONG, W. (1987). The calculation of posterior
distributions (with discussion). J. Amer. Statist. Assoc. 82
528-550.

TIERNEY, L. (1991). Markov chains for exploring posterior dis-
tributions. In Computing Science and Statistics: Proceedings
of the 23rd Symposium on the Interface (E. Kerimidas, ed.)
563-570. Interface Foundation of North America, Fairfax
Station, VA.

TIERNEY, L. (1994). Markov chains for exploring posterior distri-
butions (with discussion). Ann. Statist. 22 1701-1762.

YAKOWITZ, S., KRIMMEL, J. E. and SZIDAROVSZKY, F. (1978).
Weighted Monte Carlo integration. SIAM J. Numer. Anal.
15 1289-1300.

Yu, B. and MYKLAND, P. (1994). Looking at Markov sam-
plers through cusum path plots: a simple diagnostic idea.
Technical Report 9413, Dept. Statistics, Univ. California,
Berkeley.



