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Consulting:
Real Outcomes

Real Problems, Real Interactions,

Richard Tweedie (Resources Appendix by Sue Taylor)

Abstract. The Pullman meeting of IMS-WNAR had, as one of its themes,
“Statistical consulting.” In this overview of the case studies presented
there, an attempt is made to draw together some of the lessons of these
papers, showing the diverse role of the statistician in collecting, analyz-
ing and presenting the information contained in the data.
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1. THE PULLMAN SESSIONS

The papers in the Pullman panel discussion were
presented by invitation at the IMS-WNAR meeting
held at Washington State University in June 1996.

I organized this session. I have, over the years,
organized and participated in a number of such
sessions at conferences both in the United States
and in Australia, and it is clearly a perennial topic
for statistical meetings, only perhaps rivalled by
sessions on the gap between “academic” and “prac-
tical” statisticians, or sessions on how to teach
undergraduate service courses in our notoriously
uncharismatic subject.

This time I was asked to organize the session in
order to atone for, or perhaps amplify, some com-
ments I had made on the role of consultants some
years previously. In Tweedie (1992) I wrote that the
comments on consulting of the Committee on New
Researchers (CNR; New Researchers Committee of
the IMS, 1991) were “glib”: in particular, I dis-
agreed rather strongly with the Committee state-
ment that “... unless you need the data analysis
experience your role [as a consultant] is to dispense
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advice. The client should be responsible for the
actual analysis.” This seemed to me to be very
optimistic, or perhaps very pessimistic depending
on one’s viewpoint. In almost any interaction I have
ever been involved with, a statistician, especially a
new researcher, is not usually seen by clients as a
guru on a mountaintop. Statisticians will not go far
if they adopt that role, at least not in a real consult-
ing situation where it is critical to understand a
variety of client—consultant interactions that will
influence the requirements for effective consulta-
tion: see the Appendix for numerous views on the
real complexity of the consulting role.

Moreover, the CNR article advises that “... if
you have put in substantial effort, in terms of time
or developing new techniques, you should ask to be
a co-author” on the paper that is assumed to be the
end-product of consulting. I felt that this also indi-
cated a serious misapprehension about what most
consulting was about, even for those whose role was
to be “new researchers” rather than full-time con-
sulting statisticians. (Of course, one might be justi-
fiably cynical about the reasons for these state-
ments: given the prevailing criteria for promotion
in academia in particular, the CNR may have been
more realistic than one might wish in their advice.)

Even so, in the belief that consulting is valuable
to academic and perhaps more particularly nonaca-
demic statisticians, with Deb Nolan and LuAnn
Johnson (the conference organizers at Pullman) a
double-barrelled session was organized: the first
half would describe some real consulting problems
that might illustrate the range of activities that
consultants face, of interest in their own right as
well as illustrative of the many facets of our profes-
sion beyond mere advising and coauthorship; and
the second part would be a panel discussion, giving
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anecdotes and advice and insights, with (we hoped)
strong audience participation.

This worked out surprisingly well, and the pa-
pers that follow are from the first part of the ses-
sion: regrettably, the insight, experience and wit of
the second part are lost to all but those who were
there, although the bibliography and WWW re-
sources appended will enable interested readers to
delve further into the available literature on this
topic and share at least one of the more tangible
bits of advice from the panel.

2. THE PARTICIPANTS

In what follows you will see four articles from
four rather different perspectives. When inviting
speakers, we looked for a spectrum of statistical
backgrounds: the participants represent the experi-
ences of graduate students, of university faculty
and of statisticians working full time as consultants
in academia, in-house with a government instru-
mentality and in a private sector capacity.

Karl Broman, a Ph.D. student from U.C. Berke-
ley, illustrates the best of the classic “on-campus”
interactions: a good scientific collaboration (even a
potential co-authorship!); some new techniques
needed and developed; and an outcome of academic
value to both parties. This is very much in the mold
of the projects envisioned in the CNR article, but
even here the consultant is doing the analysis, not
just assuming the client will carry it out.

Jennifer Hoeting, a new researcher now at Col-
orado State, describes the role of the academic
statistician as funded advisor—consultant on a proj-
ect. She illustrates the way in which careful inves-
tigation of the data sources is vital for any analysis
to be meaningful (and lack of knowledge of the data
collection, or a limited client understanding of the
data under study, can cause a well-planned analy-
sis to be inappropriate).

Sue Taylor describes the sort of rare project where
the statistician is actually involved early enough to
be able to influence data collection and enhance the
ability to analyze. As a consultant to the Australian
Longitudinal Study of Ageing, she was able to en-
sure (with much work) that analysis would actually
be carried out on reasonably clean and reliable
data, thus saving a large amount of later work in
analysis.

Missing is the paper from Bob O’Brien from Bat-
telle. From the perspective of an in-house consul-
tant, he described a major environmental problem,
and one where much of the consultant’s role lay in
trying to determine what the real goals and con-
straints were, since there were very many stake-

holders in the problem: statistical analysis would
provide the answers if only the questions were
clear. This omission reveals again the priorities of
many consultants: his ongoing duties preclude even
the writing of a sole-authored paper.

Finally, wearing an oldish hat as a private sector
consultant, I describe a situation where modelling
does work, and an appropriate analysis yields a
counterintuitive and effective solution—but yet
again, only after the data are revisited and the
whole context of the problem is understood.

3. CONCLUSIONS

Most statisticians will find something familiar in
these case studies.

We know that understanding our data and the
questions of the client are of paramount impor-
tance: it is reassuring to see an example where the
statistician can control that process (Taylor). We
know that close examination can reveal far more
than the client originally told us (Hoeting). We
know that problems are rarely standard, and that
at its best statistical thinking can come up with
new ways to cope with new problems (Broman), or
perhaps more typically we can see the role of our
assumptions and decide how well the old ways fit
(Tweedie).

However, in the end, these case studies, and
many other war stories that many of us tell or have
heard, all illustrate two things overwhelmingly.

First, no matter what subject areas we enter,
statistics can contribute something that was not
there previously, and we have much to offer to
almost everyone. These examples cover bench re-
search problems, social surveys, management prac-
tices and environmental problems on a local and a
global scale. Without statistical thinking, none of
them would be solvable. Moreover, they show that
it is often the mere fact of such thinking, rather
than the specific technical input, that proves in-
valuable. It is hard to overestimate how powerfully
our discipline trains us to think about complicated
issues in ways that allow us to quickly diagnose
difficulties in esoteric disciplines to which we have
had only several minutes of introduction—a fact
reinforced by these examples and even further by
the referees of this collection.

But second, for that contribution to be truly at its
best, the statistician must enter into the context of
the problem, not just as an “advisor,” but as some-
one prepared to understand the data, analyze the
data, interact with those who really own the ques-
tions being asked and consider the impact of statis-
tics within the real context of the problem. The
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Pullman case studies show many of these at-
tributes, but also illustrate vividly the problems we
have in achieving such an idealistic state.

RESOURCES APPENDIX
Bibliography for Consultants

One of the most useful tools for consultants is a
bibliography of information put together by other
consultants. The papers below do not pretend to be
exhaustive: they represent those that I have found
of most use in my professional practice.

They also contain pointers to other material cov-
ering a wider range if needed. Those references
marked with an asterisk contain an extensive list
of statistical consulting references which are not
duplicated here.

ASA Ap Hoc COMMITTEE ON PROFESSIONAL ETHICS (1983). Ethi-
cal guidelines for statistical practice: report of the Ad Hoc
Committee on Professional Ethics. Amer. Statist. 37 5-20.

*BASKERVILLE, J. C. (1981). A systematic study of the consulting
literature as an integral part of applied training in statis-
tics. Amer. Statist. 35 121-123.

BOEN, J. R. (1972). The teaching of interpersonal relationships
in statistical consulting. Amer. Statist. 26 30-31.

BOEN, J. R. and FryD, D. (1978). Six-state transactional analysis
in statistical consulting. Amer. Statist. 32 58—60.

BOEN, J. R. and ZAHN, D. A. (1982). The Human Side of Statisti-
cal Consulting. Lifetime Learning Publications, CA.

CHATFIELD, C. (1988). Problem Solving: A Statistician’s Guide.
Chapman and Hall, London.

CHATFIELD, C. (1991). Avoiding statistical pitfalls. Statist. Sci. 6
240-268.

ELLENBERG, J. H. (1983). Ethical guidelines for statistical prac-
tice: a historical prospective. Amer. Statist. 37 1-4.

HaND, D. J. and EVERITT, B. S. (1987). The Statistical Consultant
in Action. Cambridge Univ. Press.

HuNTER, W. G. (1981). The practice of statistics: the real world is
an idea whose time has come. Amer. Statist. 35 72-76.
Hyawms, L. (1971). The practical psychology of biostatistical con-

sultation. Biometrics 27 201-211.

*JOINER, B. L. (1961). Consulting, statistical. In Encyclopaedia
of Statistical Sciences 147-155. Wiley, New York.

JOWELL, R. (Chairman) (1986). International Statistical Institute
declaration on professional ethics. International Statistical
Review 54 227-242.

Kirg, R. E. (1991). Statistical consulting in a university: dealing
with people and other challenges. Amer. Statist. 45 28-34.

Rusracr, J. S. and WoLFE, D. A. (1982). Teaching of Statistics
and Statistical Consulting. Academic Press, New York.

SLOAN, J. A. (1992). How to consult with a statistician. The
Statistical Consultant 9 3—-4.

*WooDWARD, W. A. and ScHUCANY, W. R. (1977). Bibliography for
statistical consulting. Biometrics 33 564-565.

ZAHN, D. A. and ISENBERG, D. J. (1980). Non-statistical aspects of
statistical consulting. In Proceedings of the Statistical Edu-
cation Section 67-72. Amer. Statist. Assoc., Washington,
DC.

Electronic Resources

A search of the World Wide Web as of October
1996 revealed a large number of sites relevant to
consultants. The following are just a few of these;
we have found them to be useful entry points,
although they are by no means intended to cover
the growing information resource available on the
World Wide Web:

e The World-Wide Web Virtual Library: Statistics,

http: //www.stat.ufl.edu /vlib /statistics.html

o Statistics on the Web,
http: //www.execpc.com / ~ helberg/
statistics.html

« Statistics Resources on the Web,

http: //www.stats.gla.ac.uk /cti/links stats.html
e A Guide to Statistical Computing Resources on

the Internet,

http: //asa.ugl.lib.umich.edu /chdocs /statistics /

stat_guide_home.html

e An “Essential Book List,” and useful if a year or
two older than desirable,

http: //www.stat.wisc.edu /statistics /consult /
statbook.html

A very useful and up-to-date document, the “List
of Statistics Lists” is also available by sending the
one-line message

send minitab list-of-lists
to

mailbase@mailbase.ac.uk
or by pointing your Web browser at
http://www.mailbase.ac.uk /lists-k-0 /minitab /
files /list-of-lists
This document contains details of all current statis-
tics-related e-mail lists, including subscription in-

formation. These enable consultants to share infor-
mation or conduct discussions on a timely basis.
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Estimation of Antigen-Responsive T Cell

Frequencies in PBMC from Human Subjects

Karl Broman, Terry Speed and Michael Tigges

Abstract. We describe a consulting project in which the statisticians
found that they needed to develop a new method of analysis in order to
reach valid conclusions about the effect of a herpes vaccine on the
immune systems of human subjects. This method estimates the fre-
quency of blood cells responding to a viral antigen at a single, carefully
chosen dilution. The traditional analysis of such data uses a cutoff to
separate experimental sites (“wells”) which contain no responding cells
from wells which contain at least one responding cell, whereas our
method uses the scintillation count to estimate the actual number of
responding cells for each well. We describe the experiment in some
detail, as we found that one of the major challenges facing the statisti-
cians was the need to understand the biology in enough detail to provide
a relevant model.

Key words and phrases: Antigen-responsive T cell frequency, limiting

dilution assay, EM algorithm.

1. INTRODUCTION

A vaccine to protect against the herpes simplex
virus type 2 has been developed at Chiron Vaccines
in Emeryville, California. In order to determine
immunogenicity of this vaccine (its effect on the
immune system) in human subjects, an assay which
measures a subject’s cellular immune response to
viral antigens was developed, and a statistical anal-
ysis was required to estimate the magnitude of the
immune response.

The process leading to the method described
herein was long, arduous and very stimulating. The
statisticians were asked to become involved in this
project because, though an ad hoc procedure which
more or less worked (in about 80% of cases) was
available, a scientifically acceptable method of
analysis was required.

Initially, our task was to make sense of the bio-
logical context of the problem and to understand
the existing method of analysis, and we describe

Karl Broman was a graduate student and Terry
Speed is Professor, Department of Statistics, Uni-
versity of California, Berkeley, California 94720.
Dr. Broman’s current address is Center for Medical
Genetics, Marshfield Medical Research Foundation,
Marshfield, Wisconsin 54449. Michael Tigges is Se-
nior Scientist, Chiron Corporation, Emeryville, Cal-
ifornia 94608.

these in the next two sections. The existing method,
developed by an intelligent nonstatistician and em-
bodied in a nice computer program that accepted a
number of different data types and gave results in
a form desired by the user, consisted of procedures
which were not analytically supportable, and ulti-
mately we developed a rather different method that
we describe in Section 4.

2. THE ASSAY

Frequent discussions between the statisticians
and the scientist and visits to the laboratory at
Chiron, where we were able to observe the entire
assay procedure and inspect the various instru-
ments that are used, were crucial, as we began to
gain an understanding of the science of the assay.
The lab visits also helped us to judge the sources of
error in the assay procedure.

Essentially, the assay procedure uses the fact
that the human immune response involves the
recognition of an antigen by T cells whose surfaces
contain receptors which are complementary to part
of that specific antigen. The T cells respond by
emitting chemical signals (cytokines), stimulating
other cells to replicate, or replicating themselves.

The assay under study seeks to estimate the
frequency of T cells in a blood sample which re-
spond to each of two test antigens, called gD2 and
gB2. If inoculating a subject with the vaccine re-
sults in an increase in the frequency of respond-
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ing T cells, this may reflect on the efficacy of the
vaccine.

The assay is performed as follows: in each well of
a 96-well (8 X 12) microtiter plate, diluted periph-
eral blood mononuclear cells (PBMC) are combined
with growth medium, antigen and [*H]thymidine
(thymidine which has been radioactively labelled
with tritium). Thymidine is required to form DNA.
Replicating cells must first duplicate their DNA,
and so they must take up thymidine. Providing
tritiated thymidine allows us to measure the extent
of cell replication: we extract the DNA from the
cells and measure the amount of incorporated
& H]thymidine using a scintillation counter. If the
cells respond to the antigen, they will take up
[*H]thymidine, and a higher scintillation count will
be obtained. For a complete description of the assay
methods, see Broman, Speed and Tigges (1996a).

This type of assay is generally performed in one
of two ways. A standard proliferation assay (e.g.,
James, 1991) compares the response from three
wells containing antigen to three wells in which no
antigen was added. The ratio of the average scintil-
lation count for the antigen-containing wells to the
average count for the antigen-free wells, called
the stimulation index, gives a rough indication of
the immune response to the antigen. For a more
precise estimate of immune response, a full limiting
dilution assay (LDA) may be performed, in which a
number of wells are used at each of several dilu-
tions of PBMC.

For our purposes, the stimulation index is too
imprecise, and a full LDA requires far too many

PBMC. Thus, we study a pair of microtiter plates at
a single, well-chosen dilution.

In this design, in each of two 96-well plates, we
have 24 wells which contain cells alone, 24 wells
which contain the test antigen gD2, 24 wells which
contain the test antigen gB2, 22 wells which con-
tain tetanus toxoid (which serves as a positive
control; nearly all subjects should show a strong
response to tetanus), plus two wells containing phy-
tohemagglutinin (PHA; a chemical which stimu-
lates all T cells to replicate, and so serves as a
second positive control). When analyzing these data,
we seek estimates of the frequencies of responding
cells in the four groups of wells: cells alone, gD2,
gB2 and tetanus toxoid. The PHA wells help to
select useable data.

Data for a pair of plates are displayed in Table 1.
These data are for a single dilution of PBMC from a
full LDA consisting of six dilutions of cells from one
subject, collected in order to develop the assay.

3. THE TRADITIONAL METHOD OF ANALYSIS

The traditional method for analyzing such data is
to classify each well as either positive (contains at
least one responding cell) or negative (contains no
responding cells). This is usually done (see, e.g.,
Langhorne and Fischer-Lindahl, 1981) by selecting
a threshold, often the mean plus two or three stan-
dard deviations of the counts for the “cells alone”
wells, and considering a well positive if its count
exceeds this threshold. One then uses a statistical
model, typically a Poisson model, relating the fre-

TABLE 1

Scintillation counts for a pair of plates from subject #713 at density 11,400 cells per well

Cells alone gD2 gB2 Tetox PHA
A 179 249 460 2133 2528 2700 2171 1663 6200 761 9864 12842
B 346 1540 306 8299 1886 3245 1699 2042 3374 183 7748 10331
C 117 249 1568 1174 4293 979 1222 1536 2406 6497 2492 6188
D 184 414 308 2801 2438 1776 2193 3211 1936 2492 5134 927
E 797 233 461 1076 1527 2866 2205 2278 2215 3725 3706 4050
F 305 348 480 3475 902 3654 2046 1285 1187 9899 5891 3646
G 1090 159 89 1472 90 3639 657 2393 1814 3330 4174 2389
H 280 571 329 4448 3643 881 3462 2118 1013 8793 4313 672
1 2 3 4 5 6 7 8 9 10 11 12
A 178 111 630 4699 5546 5182 3982 3104 2496 4275 2831 9727
B 244 593 259 5622 560 1073 1479 2978 4362 5017 5074 10706
C 261 964 167 2991 3390 3986 2321 2157 3278 8216 3579 3538
D 221 544 299 1838 4368 322 1022 1554 2980 2732 6177 5212
E 533 228 615 1938 4046 333 3253 5091 2843 200 1110 5063
F 818 98 160 1032 3269 4918 1778 3810 2372 6355 1869 2695
G 234 472 243 4143 3351 1118 530 1174 1881 3447 4491 2945
H 169 481 478 3237 1565 2211 2460 2715 4793 3029 6225 4679
1 2 3 4 5 6 7 8 9 10 11 12
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quency of positive wells to the frequency of re-
sponding cells in the wells. The frequency of re-
sponding cells per well is then estimated from the
data on wells using maximum likelihood.

For the data shown in Table 1, the mean + 3 SD
of the 48 cells alone wells (24 on each plate) is
1,401. In the cells alone group, 46 wells out of 48
are below this threshold value. In the gD2, gB2 and
tetanus groups, 12/48, 8/48 and 6/44 wells, re-
spectively, are below this value. The maximum like-
lihood estimate of the frequency of responding cells
per well for a group of wells, assuming that the
number of responding cells in a well follows a Pois-
son distribution, is obtained by taking the negative
of the natural log of the proportion of wells below
the cutoff. Thus, the MLE’s of the frequencies of
responding cells per well for the cells alone, gD2,
gB2 and tetanus groups are 0.04, 1.39, 1.79 and
1.99, respectively.

The traditional approach clearly works well much
of the time. However, for our application, determi-
nation of the threshold separating positive and neg-
ative wells was not at all straightforward: a com-
parison of the counts corresponding to wells for
which no responding cells were expected with those
for wells to which antigen was added revealed no
clear cutoff in many cases.

Moreover, in many cases the entire set of wells
for a given antigen would be positive. This arose
whenever the density of cells chosen for the assay
was a poor guess, something that could not always
be avoided. In such cases the standard analysis of
the data does not yield a point estimate of the
frequency of responding cells, but only a lower con-
fidence limit. This causes difficulties later when
such results are to be compared or combined with
other results.

Thus we were faced with a method that involved
several rather mysterious cutoff procedures and an
ad hoc treatment of cases in which no wells or all
wells were above the cutoff (in which case the
upper or lower binomial-based confidence limit was
used as the “mean” estimate). In addition, the choice
of cutoff was not accounted for in the estimated
SE’s, though it was clearly an important source of
variation.

Recognizing these problems, most notably the
difficulty in choosing a cutoff and the sensitivity of
the results to that choice, the scientists sought the
advice of outside statisticians.

4. A NEW METHOD

In our first approach to the problem, we at-
tempted to optimize the choice of cutoff by minimiz-
ing the residual sum of squares. This required a

model using the quantitative response in a well and
eventually led to the model we now describe.

Figure 1 displays a plot of the average scintilla-
tion count against the cell density for each antigen
group in a six-point LDA (of which the data in
Table 1 is one dilution). It can be seen that the
average scintillation count scales approximately
linearly with the density of cells. This indicates
that the scintillation count may contain informa-
tion about the actual number of responding cells in
a well, and not just about whether the well contains
any responding cells.

This figure led us to make direct use of the
scintillation counts in our analysis. As with the
traditional approach, we assume that the number
of responding cells in a well follows a Poisson distri-
bution, but we add an extra relationship connecting
the number of responding cells in a well to the
scintillation count. Specifically, we suppose that
there are plate-specific parameters, a¢, b and o,
and a widely applicable power parameter p such
that the pth power of the scintillation count in a
well containing £ responding cells is approximately
normally distributed with mean a + bk and stan-
dard deviation o. Since there are four groups of
wells on each plate (cells alone, gD2, gB2 and
tetanus), there are 10 parameters in all: the four
frequencies and three additional parameters for
each plate.

Algebraically, our assumptions are as follows. Let
¥;js denote the transformed scintillation count for
well j of class i on plate s, and let k,;, denote the
corresponding number of responding cells. Here i =
¢,d, b, t corresponds to the cells alone, gD2, gB2
and tetanus toxoid classes, respectively. We assume
that the (y;;,, k;;,) are mutually independent, that
k;;s follows a Poisson distribution with mean A,
and that, given k,;, y;;; follows a normal distribu-
tion with mean a, + b,k;;, and standard deviation
0,. The aim of our analysis is to estimate the pa-
rameters A;.

The power parameter was selected by maximum
likelihood (Box and Cox, 1964) from the values 1,
1/2, 1/4 and 0 (corresponding to log). The model
itself was fitted by the method of maximum likeli-
hood, specifically, using a form of the EM algorithm
(Dempster, Laird and Rubin, 1977), although we
also carried out a number of confirmatory analyses
using the fully calculated likelihood. Standard er-
rors for the parameter estimates were computed
using the SEM algorithm (Meng and Rubin, 1991).
A more detailed description of the statistical meth-
ods can be found in Broman, Speed and Tigges
(1996D).

Table 2 displays the results of our analysis of the
data in Table 1. We used the square root of the
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scintillation counts, as indicated by a Box—Cox
analysis. Estimates were obtained by treating each
plate separately, and also for the joint analysis of
the pair of plates, where the frequencies of respond-
ing cells per well were constrained to be equal on
the two plates.

Figure 2 displays the estimated frequencies of
responding cells per well against cell density for the
six-point LDA, of which the data in Table 1 is a
single dilution.

5. CONCLUSIONS

The aim of the single dilution assay under study
was to be a more sensitive version of the standard
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Mean scintillation counts in relation to cell density for the six-point LDA from subject #713.

proliferation assay, which obtains a stimulation in-
dex as described above, and not a replacement for
the standard dilution assay.

Our method for estimating the frequency of re-
sponding cells in a sample avoids many of the
problems associated with the traditional analysis,
which reduces the well counts to quantal responses
using a cutoff. Assuming that the model we use is
appropriate, our analysis will also be more efficient.

By considering Table 2, and in particular the
values of A,, A;, A, and A,, we see that the new
method does give results that confirm the original
results from the old method and indeed strengthens
them: the two antigens give mean frequencies of
responding cells of around 3—-4, almost as high as

TABLE 2
Maximum likelihood estimates and estimated standard deviations of model parameters for the data in Table 1

A

. Ag Ap N a b -
Joint:
plate 1 0.4 (0.1) 3.5(0.3) 3.3(0.3) 4.7(0.3) 16.4 (0.9) 10.3 (0.3) 3.6(0.5)
plate 2 0.4 (0.1) 3.5(0.3) 3.3(0.3) 4.7(0.3) 14.8(0.8) 9.4 (0.2) 2.9 (0.4)
Separate:
plate 1 0.3(0.1) 3.0(0.4) 2.8(0.4) 4.4 (0.5) 16.7 (0.9) 10.3 (0.3) 3.5(0.4)
plate 2 0.5(0.1 3.9(0.4) 3.9(0.4) 5.0 (0.5) 14.5 (0.7) 9.3(0.2) 2.8(0.3)
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Fic. 2. Six-point LDA for subject #713. Maximum likelihood estimates of frequencies of responding cells per well using two plates at
each dilution: estimates plotted against number of cells per well. Error bars correspond to plus or minus one SD. Dotted line corresponds
to estimated frequency of responding cells per well obtained using all of the data.

for the tetanus groups and significantly above that
for the cells alone group. Note that the old method
gives results which are noticeably lower than those
given by the new method.

In this project, by coming to an understanding of
the underlying biology and developing a model
which described more aspects of the data, we were
able to provide the client with a valid and in fact
more informative method of analysis. Its success
can be judged by the fact that recently we have
been involved in the analysis of a number of further
clinical trials of Chiron’s herpes vaccine. These tri-
als are more complicated in that multiple subjects
receive placebo or various doses of the vaccine and
are assayed at multiple time points. Our analysis
method is used to estimate the immune response
for each subject at each time. These estimated re-

sponses are then combined, in order to estimate the
effect of the vaccine, in increasing immune re-
sponse to the viral antigens. This again involved a
considerable amount of work, as we were not able
to use off-the-shelf methods.

The chief advantage in using our new method, in
the large clinical trials described above, is that it
gives estimated frequencies of responding cells for
all sets of data, whereas the old method suffered
from the problem that if all wells in an antigen
group were above the cutoff, one could not obtain
an estimate of the frequency of responding cells,
but only a lower confidence limit, making the com-
bination of data from several assays very difficult.

A computer program incorporating our approach
has been developed and is now available for general
use.
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Sandbars in the Colorado River:
An Environmental Consulting Project

Jennifer A. Hoeting

Abstract. The National Park Service funded a study to determine the
impact of water released from the Glen Canyon Dam on sandbars
downriver through Grand Canyon National Park. The project involved
considerable amounts of messy and missing data. Some of the chal-
lenges faced and lessons learned during this project are described.

Key words and phrases: Sampling interval, environmental monitoring.

1. WHY SANDBARS?

In 1990 the National Park Service (NPS) funded
a project to measure sandbars in the Colorado River.
The goal was to investigate the impact of water
released from the Glen Canyon Dam on sandbars
downriver from the dam (Figure 1).

When Glen Canyon Dam began operation in 1966,
the annual flood cycle was eliminated as the dam
controlled all water flow. Floods scour the river
bottom, bringing up sediment deposited there. When
flood waters recede, the sediment is left on the
shore of the river in the form of sandbars. Surveys
of the river show that sandbars have decreased in
size and number since the dam opened in 1966
(Kearsley, Schmidt and Warren, 1994).

Measuring sandbar sizes may sound like another
government boondoggle, but sandbars play a key
role in the ecosystem of the Colorado River. For
birds and insects, the sandbars offer a small strip of
riparian habitat in a harsh desert environment.
The sandbars also create eddies where endangered
fish and other fauna feed. Finally, rafters camp on
the sandbars during their trips down the Colorado
River. Not only do fewer sandbars mean reduced
habitat for fish and other wildlife, but reduced
numbers of sandbars force all campers to use the
same sandbars, thereby increasing the user impact
on a fragile environment. For these reasons, the
NPS wanted to investigate how patterns of water
released from Glen Canyon Dam influence sandbar
size.

In this paper we provide some insights on the sci-
entific and statistical issues related to this project.

Jennifer Hoeting is Assistant Professor of Statistics,
Department of Statistics, Colorado State University,
Fort Collins, Colorado 80523 (e-mail: jah@stat.
colostate.edu, hitp;//www.stat.colostate.edu/ ~ jah).

2. THE DATA

From September 1990 to July 1991, 17 helicopter
flights were made above 230 miles of the Colorado
River below the Glen Canyon Dam. On each flight
the same 58 out of the total population of about 600
sandbars along the river were photographed. Each
photograph was digitized to determine the size of
the sandbar (Cluer, 1995b). The helicopter flights
occurred during periods when the water was re-
leased at a constant level from the dam. Between
flights, water was released from the dam in differ-
ent patterns of discharge, called test flows.

The original study design called for flights every
15 days, which would result in a series of equally
spaced observations over time. However, weather
conditions and other difficulties resulted in a vari-
able number of days between flights. On average,
there were 20 days between flights, but flight inter-
vals ranged from 12 to 70 days.

The original study design also specified that each
of the 58 sandbars was to be photographed on every
flight. Out of this sample of 58 sandbars, an aver-
age of 18 and a maximum of 40 sandbars were
missed per flight. The data were missing for vari-
ous reasons, primarily due to blurry photographs.

From the sandbar photographs, four numbers
were recorded for each sandbar: gross area; area of
erosion since the previous flight; area of deposition
since the previous flight; and net change in size,
where net change is the difference between sandbar
size for the current flight and sandbar size for the
previous flight.

In addition to sandbar size measurements, sand-
bar characteristics and hydrological data were
recorded. The individual sandbar characteristics
that were recorded included location in terms of
miles from the dam, left or right river bank and
type of sandbar. Nine hydrological measurements
were used to characterize the test flows, including
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Fic. 1. Geography of the Colorado River in the Grand Canyon. Map created by Brian Cluer, National Park Service.

means and standard deviations of daily discharge
over the flight period. “Upramp” (the increase in
the level of the river at a specified point along the
river) was available as mean daily maximum up-
ramp, the average of the maximum rise in river
level per day at five different gauging stations along
the river. The average amount of sediment per day
entering from the Little Colorado River during each
inter-flight period (sediment supply) was also mea-
sured, as sediment from this tributary of the Col-
orado River could impact sandbar size (Figure 1).

3. PREDICTING SANDBAR SIZES:
CHALLENGES IN CONSULTING

Although these data had been previously ana-
lyzed by the NPS, the NPS was interested in
whether we could extend their findings using sta-
tistical models. Thus, we became involved in the
project only after all the data had been collected.

We addressed several important questions in this
project.

3.1 Does Sediment Supply from Tributaries
Influence the Sandbars?

To address this question we presented an autore-
gressive model to predict net change per flight
averaged over all sandbars below the Little Col-
orado River. The auto-regressive model is of the
form

Y=XB+u

where u = pWu + ¢ and & ~ N(0, 0?) (Upton and
Fingleton, 1985). In this model, Y is the net change
per flight averaged over all sandbars below the
Little Colorado River and X is the matrix of predic-
tors with the elements in the first column equal to
1. The parameter p can be interpreted as a mea-
sure of dependence between observations of the
response. The weights matrix W is described below.
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The auto-regressive model is sometimes called a
spatial error model. The auto-regressive model
takes into account previous observations of the re-
sponse as well as previous observations of the pre-
dictors to improve predictions about the response
for the current flight. One way to interpret this
model is that it takes time for the predictors to
impact the size of the sandbars. For example, re-
sults might indicate that the mean daily discharge
from the previous flight is related to the response
from today’s flight.

In general, W = [w, ;] where w, ; is a nonnega-
tive weight, which is representative of the “degree
of possible interaction” between observation i and j
and w;; = 0. In this application, W was used to
account for the variable number of days between
flights. For example, for a lag 3 model

1/(# of days between flight i and j),
w; ;= if0 <i—j<3,
0, otherwise.

We considered several different lags (the number of
previous flights in the weights matrix) and typi-
cally observed significant lag coefficients, but with
so few observations we were reluctant to make
definitive conclusions with respect to the lag com-
ponent.

The results from the auto-regressive model indi-
cated that mean daily water discharge from the
dam and presence or absence of sand added to the
river from the Little Colorado River were the most
important predictors of net change. The estimated
coefficients in these models were highly variable
because the lag component was estimated using
only 15 observations (2 of the 17 flights had too few
observations to be included in these analyses).

Exploratory plots as well as results from the
auto-regressive model indicated that there is a rela-
tionship between sand supply and changes in sand-
bar size in the Colorado River. One important find-
ing was that increased sediment supply from the
Little Colorado River appears to take longer than
one flight period to impact sandbars. Future stud-
ies of sandbar dynamics should collect data on sedi-
ment supply from important tributaries and inves-
tigate a possible lag between sediment input and
changes in sandbar size.

3.2 Can Dam Release Characteristics Predict
Changes in Sandbar Size?

To answer this question we considered a stan-
dard regression model to predict net change per
flight averaged over all sandbars included in the
study. The regression results indicated that, as
mean daily discharge increased and upramp re-

mained fixed, the sandbars tended to increase in
size on average. As mean daily maximum upramp
increased and mean daily discharge remained fixed,
the sandbars tended to decrease in size on average.
The other dam release characteristics were not sig-
nificant predictors of change in sandbar size.

The results from both the auto-regressive model
and regression model are somewhat suspect due to
the small number of observations used to model a
complex system. We described several limitations
of these results in our final report to the NPS
(Hoeting, Varga and Cluer, 1997). One concern is
that both the response and predictors were aver-
ages, which makes interpretation of the models
difficult. For example, the mean daily discharge
may not be a good measure of the water release
pattern, because two very different water release
patterns could have the same mean daily discharge.

3.2 How Do Dam Release Patterns Impact
Individual Sandbars?

Another goal of the project was to produce a
space/time model to predict sandbar size for each
sandbar based on sandbar characteristics and dam
release measurements. The model was intended to
provide scientists with some guidelines on how dif-
ferent patterns of water released from the dam
impact different types of sandbars. Our analyses
indicated that the large amount of missing data
and, more importantly, the long time intervals be-
tween observations made this goal unattainable.

Recent data show that large time intervals be-
tween sandbar measurements can lead to erro-
neous conclusions. For example, it is common for
large-scale rapid erosion events to occur in a matter
of days or even over several hours. Figure 2 com-
pares daily observations taken via automatic cam-
era to results from 10 samples collected via a more
traditional terrestrial survey for one sandbar in the
Colorado River in 1991. (Note: a different represen-
tation of these data appears in Cluer, 1995a.)

Three substantial errors would be made if infer-
ences were based on the 10 terrestrial survey data
points. In case A daily observations show a gradual
increase in area from February 2 until April 16
when the sandbar decreased from 130% to 70% of
its original area over a 24-hour period. The two
observations collected via terrestrial survey on
February 2 and April 21 would, on the other hand,
simply show a negative trend in sandbar area over
the 70-day period. In case B the observations col-
lected at 30-day intervals would completely miss a
substantial erosion event and severely underesti-
mate the variation in sandbar size. In case C the
intermittent observations would both overestimate
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the time over which the erosion occurred and miss
out on a portion of the erosion. These data show the
danger inherent in basing inferences on sandbar
data collected at sparse intervals over time. Since
data analyzed in this paper were collected at inter-
vals from 12 to 70 days, we have a very incomplete
picture of what actually happened to the sandbars.
Another challenge is the large amount of missing
data. With up to 40 sandbars out of the original 58
sandbars to be photographed missing for each flight,
the missing data were an important concern. While
we considered using data interpolation methods or
likelihood-based approaches for the analysis of
missing data, the high degree of uncertainty about
sandbar behavior in the intervals between observa-
tions made it inappropriate to use these methods.

3.4 Suggestions for Future Studies

This is the best data set ever obtained for a
sample of Grand Canyon sandbars; indeed, a large
sample of sandbars was monitored over a long pe-
riod of time as compared to previous studies of
sandbar size. Since the data were collected via
aerial photography from an airplane, it was cheaper
to collect more sandbars per flight but to have
fewer flights. In designing these types of studies,
one must consider this tradeoff between the num-
ber of sandbars included in the study and the num-

ber of observations obtained for each sandbar. In
this study there were 58 sandbars, but, with as few
as 9 observations per sandbar collected over a long
period of time, it was difficult to produce a credible
model for individual sandbars. Our results indicate
that future studies should focus on obtaining more
observations of fewer sandbars which will allow
scientists to understand the relationship between
hydrological characteristics and changes in sandbar
size more fully.

Related to this is the issue of sampling interval.
In our final report to the NPS, we argued that not
only will more frequent sampling result in better
understanding of the underlying natural processes,
but more frequent sampling of fewer sandbars can
save money. Traditional sampling techniques use
either aerial photography or land-based surveying.
Flying at low altitude deep in the Grand Canyon is
expensive, dangerous and may be ecologically un-
sound. Land surveying is similarly expensive and
time-consuming, so it is best to budget for few
flights or few surveys where many sandbars are
measured. A better design would be to set up auto-
matic cameras at a few sandbars to take photo-
graphs at specified intervals. Our analyses showed
that, despite the reduction in the number of ob-
served sandbars, more information about the ques-
tions of interest would be gained through our sug-
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gested design. A formal cost model would be a good
way to present these tradeoffs.

4. SOME LESSONS LEARNED

This project reinforces several basic rules for sta-
tistical consultants.

First, always check the data for errors at the
start of the project. These data had been analyzed
previously and thus we assumed that the database
was error free. In fact, there were some serious
problems still remaining. One of the most impor-
tant was errors in the computation of net change,
the response of main interest to our clients. We also
discovered other errors, for example, in computa-
tion of the number of days between flights. Our
experience on this project emphasizes the need for
simple checks of data accuracy before beginning
any analyses.

This project also demonstrates why statistical
consultants should make every effort to obtain the
raw data, if available. The original goal of the study
was to relate the change in sandbar size to charac-
teristics of the test flows for each flight, but only
the summary statistics of the test flows were made
available to us. While statistics such as mean and
standard deviation of daily discharge over the flight
period numerically characterize the test flows, the
raw measurements would have provided us with
further insight into the nature of each test flow.

We were also unable to obtain the raw values for
daily maximum upramp from each of the five gaug-
ing stations along the river. Since we received only
summary statistics averaged over the five stations
and averaged over the flight period, it was impossi-
ble to relate upramp to the distance of each station
from the dam, which is important because upramp
increases with distance from the dam. Without
doubt, increased access to raw data would have
improved our ability to draw useful scientific in-
ferences.

Finally, as consultants we must guard ourselves
against standing on the “statistician’s pedestal”
from which we lecture scientists on the limitations
of their studies. It is easy for a statistician to
criticize a study after the data have been collected.
We should recognize that, just as statisticians make
compromises while doing analyses, investigators are
under considerable constraints when designing
their studies, including financial, time manage-
ment and political constraints. Even with the best
intentions in study design, we recognize that col-
lecting high quality, complete data outside of a

controlled laboratory environment can be an ex-
tremely difficult endeavor.

5. CONCLUSIONS

The NPS gained a considerable amount of useful
information from our efforts. We provided insight
into the relationship between net change in sand-
bar size and mean daily discharge, upramp, pres-
ence or absence of sand added to the river from the
Little Colorado River and improved methods for
collecting and evaluating data on sandbar sizes.
Previous statistical analyses of sandbar size data
have been limited, being based on simple models
that ignore spatial and time correlations (Beus and
Avery, 1992; Cluer, 1995b). Thus our study was a
step in the right direction toward the collection of
additional data and the development of useful mod-
els to predict sandbar sizes. Despite data limita-
tions that prevented the use of highly sophisticated
space—-time models, we were able to identify the
need for such models and the type of data and
analyses that would be most useful for future
studies.

The U.S. Bureau of Reclamation (USBOR), which
operates the dam, faces the continual challenge of
balancing the needs of the ecosystem with the needs
of the power companies. In the past, discharge of
water through Glen Canyon Dam has been con-
trolled to optimize peak load hydropower produc-
tion. In the spring of 1996, USBOR released a large
controlled flood intended to reinvigorate the sand-
bars on the Colorado River. Preliminary observa-
tions show that this goal was at least partially
achieved (Wegner, 1996).

Our analyses, along with analyses of data from
the controlled flood, will help scientists further un-
derstand the relationship between sandbar size and
dam water releases. The need to understand the
impact of dams on ecosystems is continually in-
creasing: it is predicted that by the year 2000 over
60% of the world’s rivers will be regulated (Gore
and Petts, 1989). Statisticians can play a key role
in this research by helping scientists design good
studies and by continuing to develop methodology
to assist in the analyses of these and similar data.
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Setting up Computer-Assisted Personal
Interviewing in the Australian
Longitudinal Study of Ageing

Sue Taylor

Abstract. We discuss the role of a statistical consultant in a large-scale
longitudinal study of an ageing population in South Australia. Particu-
lar emphasis is given to the way in which this collaboration enhanced
the accumulation of relevant data by planning the collection and analy-
sis months before the survey began. Computer-assisted personal inter-
viewing (CAPI) was used, providing a method of obtaining survey data
which avoided expensive data entry and editing. Additional benefits
were apparent in the facilitation of data management and analysis, and
CAPI was also well received by both interviewers and respondents. The
importance of enlisting the services of a statistician in the early stages
of a large study is clear in this project.

Key words and phrases: CAPI, panel surveys, longitudinal data ageing

studies, survey efficiencies.

1. INTRODUCTION

In this note, we describe one contribution of a
statistician consulting on a major longitudinal
study, the Australian Longitudinal Study of Ageing
(ALSA). We first briefly introduce the study, then
indicate the reasons for using computer-assisted
personal interviewing (CAPI). This decision gives
the statistician much more scope than usual to be
useful. We then describe the implementation and
advantages of the CAPI approach and give some
descriptions of ALSA outcomes indicating the ways
in which CAPI was successful.

ALSA is a multidimensional panel survey of the
social, health, behavioral, economic and environ-
mental characteristics of a random sample of peo-
ple aged 70 years and over, who live in Adelaide,
South Australia.

The ALSA project is the most comprehensive pop-
ulation-based study of ageing yet undertaken in
Australia and is supported in part by the U.S.
National Institute on Aging. It is a cross-national
collaboration jointly undertaken by the Centre for

Sue Taylor is with the Department of Preventive
Medicine and Biometrics, University of Colorado
Health Sciences Center, Denver, Colorado 80262
(e-mail: taylor@stat.colostate.edu).

Ageing Studies, Flinders University of South Aus-
tralia and the Center for Demographic Studies,
Duke University, North Carolina.

The general aim of ALSA is to gain increased
understanding of how social, biomedical, behav-
ioral, economic and environmental factors are asso-
ciated with age-related changes in the health and
well-being of older persons. One of the more specific
research aims is to determine the health levels and
functional status of a representative older popula-
tion and to track these characteristics over time.

The ALSA project consists of extensive face-to-
face interviews of participants covering a wide range
of topics and includes over 700 individual items.
The study was conducted in four phases, or “waves,”
at approximately one-year intervals.

Table 1 shows a selection of the interview do-
mains. As can be seen, there was a wide variety of
inputs to the study questionnaire from many di-
verse areas of research interest and consequently
from many different researchers. In the early stages
of questionnaire design, we attempted to restrict
the questions to those which would answer the
specific goals of the study. This was particularly
important in the context of the elderly as the length
of time spent with the interviewer needed to be
kept as short as possible.

Consulting a statistician is invaluable to the pro-
cess of questionnaire design, as typically statisti-
cians have been exposed to many data that have



CONSULTING 15

TABLE 1
Interview domains

Demography Sleep

Self-rated health Morbid conditions
Medication use Health services

Falls and injuries Vision and hearing
Dental Weight

Reproductive history Finances and income
Significant life events Smoking and alcohol
Occupation and education Family /social contacts

been rendered useless due to poor planning, and
are therefore sensitized to the issues involved be-
fore they occur. This turned out to be particularly
the case in the ALSA study, where the statistician
could also play an important role in the choice of
survey instrument.

The decision to use CAPI presented a much
greater opportunity than anticipated to integrate
proposed analyses with the collection procedure.

2. DESCRIPTION AND CHOICE OF CAPI

CAPI was introduced in the 1980s as part of the
revolution in the measurement of public opinion
using computer technology. Not surprisingly, its
popularity increased soon after the price, weight
and quality of portable computers began to improve
significantly.

In CAPI, the interviewer takes the computer,
preloaded with the questionnaire, to the respon-
dents’ homes. There, the interviewer reads the
questions as they appear on the screen and then
types the respondents’ answers immediately into
the computer.

The interview conducted in this way is little dif-
ferent from the traditional paper-and-pencil inter-
view, as far as the respondent is concerned. How-
ever, there are differences between the traditional
methods and CAPI with varying levels of relevance
to overall study quality. Empirical evidence does
not support the suggestion (Couper and Groves,
1989) that the mere presence of the computer may
affect the outcome, at least with respect to refusals
or partial nonresponse, even for sensitive issues.
Major documented differences are that CAPI inter-
views take longer, and that the notes made by
interviewers on the computer are shorter (Couper
and Groves, 1989).

In setting up ALSA, a pilot study was conducted
using conventional paper-and-pencil survey meth-
ods, but an early decision was made to use CAPI in
the main survey. In the United States, most na-
tional surveys are conducted with the use of CAPI
(Saris, 1991), but this is the first time such a
method has been used in a survey of the elderly in

Australia. The decision was based partly on the
works of Groves and Mathiowetz (1984) and Har-
low (1985), who both found that, in telephone sur-
veys, computer-assisted data collection using com-
puter-assisted telephone interviewing (CATI) was
less expensive and yielded better data more quickly
than traditional techniques. There was also some
preliminary evidence that CAPI was likely to show
even greater improvements in quality (Birkett,
1988).

The anticipated advantages of the CAPI method
were similar to those that have been demonstrated
previously for the CATI technique (Nicholls, 1988).
These include the following:

1. the integration of several survey steps into a
single activity that includes editing, coding, data
entry, checking and cleaning;

2. immediate detection and resolution of errors
made by interviewers and respondents;

3. reduced costs;

4. the capability to design more complex question-
naire instruments and skip patterns.

Expensive data entry and editing can be avoided,
so the overall cost when compared with conven-
tional paper questionnaire use is lower. Additional
benefits are those associated with the facilitation of
data management and analysis through an inter-
face provision with statistical software, such as
SPSS. Development of a data file, complete with
variable information needed for immediate analy-
sis, could typically take up to a week without this
facility. In an ideal situation, this task is under-
taken by the statistician who will analyze the data.
Using CAPI, this task becomes part of the question-
naire construction, and generation of the data file
occurs immediately after the last piece of data is
entered.

In the context of a longitudinal study, this tech-
nique proves invaluable in that data from previous
waves can be recalled and utilized in the subse-
quent interview. As an example, it is a useful way
of avoiding redundant questions such as “How many
natural teeth do you have left?” when it has been
established previously that the respondent has
none! Also it allows tailored questioning such as
“Two years ago you told us that you had shingles.
Do you still suffer from this condition?”

3. THE ALSA SAMPLE

The main study sample was randomly selected
from within the Adelaide Statistical Division (ASD),
which is essentially the greater metropolitan area
of Adelaide. The sample, stratified by age and sex
in five-year age groups to 85 years and older, was
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TABLE 2
Population characteristics of Australia and South Australia

Australia South Australia
Total population 17.7 1.5
(millions of people)
% living in urban areas 85.3 73.0
Median age 32.7 33.9
% aged 65 or older 11.7 134

obtained from the State Electoral Database. In Aus-
tralia, compulsory voting ensures that this is a
virtually complete listing of all adults 18 years and
over. This gave the potential group of primary re-
spondents. Spouses of this group (aged 65 and over)
as well as other household members aged 70 years
or older were also invited to participate. Table 2
gives some of the relevant characteristics of the
Australian and South Australian populations.

The sample selection was carried out by the Aus-
tralian Bureau of Statistics, using charts describing
the structure of households where elderly people
live. Since males in these age groups have a higher
mortality rate than females over a five-year period,
they were deliberately oversampled to allow suffi-
cient numbers for longitudinal tracking. One of the
unique features of the sampling plan was the provi-
sion for interviewing elderly couples and 565 cou-
ples were recruited to the study at baseline, in-
creasing the efficiency of sampling resources.

The breakdown of the baseline sample is given in
Table 3.

The study consisted of four waves, with Wave 1
being the baseline survey. Waves 1 and 3 used
CAPI to interview eligible persons in their normal
place of residence, and Waves 2 and 4 were short
telephone interviews (approximately 15 minutes). A
separate proxy instrument was developed and used
very successfully for those respondents too ill or
frail to respond personally.

Table 4 shows the response rates for Waves 2 and
3 (results of Wave 4 are not available at this time).
The baseline data were collected from a total of
2,087 respondents (see Table 3); 1,477 of these were

TABLE 3
Participants in the baseline sample by age and sex

Age Males % Females %
65-69 17 1.6 123 11.9
70-74 279 26.4 283 274
75-T79 283 26.8 241 23.3
80-84 235 22.3 194 18.8

85+ 242 22.9 190 184
Total 1,056 1,031

TABLE 4
Response rates for Waves 2 and 3

Wave 2 Wave 3

n % n %
Deceased 112 5.4 241 11.5
Moved from ASD 13 0.6 33 1.6
Unable to contact 13 0.6 9 0.4
Refusal 170 8.1 125 6.0
Responders 1,779 85.2 1,679 80.5
Total 2,087 2,087

primary respondents, 597 were spouses or sec-
ondary respondents and 13 were other household
members who agreed to take part.

Excellent retention of the cohort was achieved in
Waves 2 and 3 with more than 90% of the surviv-
ing respondents remaining in the study. This was
largely due to the dedication of the team involved
in the study who worked hard to involve the partic-
ipants and maintain their interest.

4. IMPLEMENTING CAPI IN ALSA

To support the CAPI approach in this survey, we
chose an integrated package for survey manage-
ment known as BLAISE, which was developed by
the Netherlands Central Bureau of Statistics (Beth-
lehem et al., 1989). The programming language is
essentially a modified version of the PASCAL lan-
guage.

The BLAISE system makes provision for CAPI
and includes questionnaire design and adminis-
tration, checking, data editing, tabulation and
analysis.

The generation of a BLAISE program proceeds in
a number of defined steps:

1. The questionnaire is specified using a text edi-
tor. The routing specification is then applied to
provide for skips and subquestionnaires. Range
checks and consistency checks are then included
and can be differentiated as “hard” or “soft”
errors. Hard errors, specified in terms of rela-
tional expressions, must be satisfied before the
response is accepted as valid, and require correc-
tion before an interview can proceed. On the
other hand, soft errors result in a warning mes-
sage that can be overridden by the interviewer.

2. Raw BLAISE statements are turned into an exe-
cutable program which is copied to the inter-
viewer’s laptop computer ready for use.

3. The data are collected into files which may then
be converted into standard ASCII files or other
formats, including SPSS system files with ac-
companying syntax files to describe the data.



CONSULTING 17

The use of CAPI made it theoretically viable to
start data analysis as soon as the last piece of data
was collected. Essentially no data cleaning was nec-
essary and all relevant data transformation pro-
grams could be written beforehand and executed
immediately. Of course, this all relies on the fact
that the questionnaire items are correctly specified
in the initial stages and require little manipulation
after collation. One of the critical benefits of early
involvement of a statistician is in ensuring that
this specification is indeed accurate.

There were a number of specific tools which were
found to be of great value. These included:

1. electronic notepad to allow notes written by the
interviewer during the course of the interview to
be stored on a separate but related file;

2. interrupt facility to allow the storage of incom-
plete interviews and subsequent return to the
incomplete record—this was particularly impor-
tant in the context of the elderly and especially
since (despite our best efforts to shorten inter-
view times) the average length of interview was
132 minutes(!);

3. a “ditto” facility which copied the response from
the previous questionnaire for the corresponding
question; this was very useful as we were inter-
viewing elderly couples in the same household
and responses to certain questions were often
identical;

4. a built-in clock facility, which allowed timing of
the interview length for later analysis;

5. provision for the generation of a paper version of
the questionnaire.

Data were returned on a weekly basis on floppy
disks, although it is also possible to download data
to a central computer with the use of modems. A
program was written to backup these data so that
at least two copies of all data were available at all
times.

5. WHY THE STATISTICIAN WAS VALUABLE

Automatic coding of categorical variables is done
by the CAPI program, rather than by the interview-
ers or respondents. In order for this facility to be
fully utilized, it proved invaluable to have the
statistician devise the coding scheme in the plan-
ning stages to allow for later statistical analysis.
This was especially important since techniques such
as regression were intended, and the statistical
packages used required the data in a specific, non-
intuitive format.

In this study, the longitudinal nature of the data
made it absolutely necessary for an experienced

statistician to be involved who had worked previ-
ously with data of this type. Specification of the
correct data structure was an integral part of solv-
ing the data storage problem alone, as there were
many megabytes of data generated by the design
we used. Apart from this potential difficulty, it was
also imperative to consider the inevitable missing
data problems and how best to flag these with
respect to future analyses. The statistician is able
to design possible imputation procedures, if appro-
priate, or at the very least ensure that the occur-
rence of missing data does not render that entire
record useless.

The inclusion of a statistician on the research
team also proved invaluable during the “covariate
brainstorming” sessions. Not only do statisticians
realize the importance of collecting data on all po-
tential covariates, but they also know the type of
data to collect. We managed to persuade the collab-
orators to elicit covariate data as continuous mea-
surements wherever possible, with subsequent cat-
egorization, rather than risk the loss of information
by collapsing variables at the collection stage. Un-
like paper questionnaires, this would result in a
total loss of potentially useful data, since the com-
puter may only store one realization of a variable,
with the other lost forever.

Overall, statistical thinking at the outset helped
shape the whole procedure, and it was rewarding
for both the statistician and the researchers to
begin the collaboration at a point where the impact
was greatest.

6. CONCLUSIONS

In ALSA, it was notable that CAPI was well
received by interviewers and respondents alike, and
the high response rates in Table 4 reflect this.
Some interviewers, initially hesitant about the use
of computers in the interview process, became posi-
tively excited about their use and many of the older
people in the survey showed a genuine interest in
the technology.

In this study, the time spent in the initial stages
was definitely worthwhile, especially that spent on
defining range and consistency checks. Range
checks are of course only the first step in the data
cleaning process, as they simply allow a broad check
on the data value for one particular variable. Al-
though they were not completely infallible in the
multivariate sense, and we still saw a few incon-
gruous combinations of data values, we found that
in addition to the consistency checks, a large per-
centage of the errors which typically occur in data
of these types were eliminated in the ALSA imple-
mentation.
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One of the most important features of CAPI is
the validation facility, a task which an interviewer
typically does not have the time to carry out during
the interview. Data can be checked against other
information to assess its quality, a critical feature
particularly in a panel survey. If there are discrep-
ancies, the respondent can be asked for immediate
clarification, so that the data are cleaned while the
respondent is still available. This is a clear advan-
tage of CAPI since traditional methods may force
the incorrect answer to a missing value. In general,
if the questionnaire is well constructed at the out-
set, data can be considered optimal and later vali-
dation omitted.

In our experience, CAPI proved to be an efficient,
accurate, cost-effective and acceptable method for
collecting data from older people in a community

survey. Data analysis was also made less of a chore
by the absence of the many hours which would
normally be spent on tedious and time-consuming
data cleaning.

The added features of the system described in the
previous section enhanced acceptability markedly.
The future in this area will certainly see enhance-
ments in the software, and hardware improvements
including acceptance of voice and handwritten en-
try, which will make this mode of data collection an
even more attractive option.

Data collection in such a large study can be
daunting. However, with a modest investment of
time in the planning stages, jointly between the
statistical consultant and the rest of the research
team, the rewards can be great.

Queueing at the Tax Office

Richard Tweedie and Nell Hall

Abstract. This paper discusses a consulting project where, by focussing
on the basic parameters of a probabilistic model, advice was given that
could result in real improvement in the service at an Australian tax
office, without raising the costs of the operation. The results are not
intuitive and illustrate that nonlinear behavior in models can be hard
for nonmathematicians to follow or even believe.

Key words and phrases: Waiting times, server numbers, M /M /c queues,

delays, loss of customers.

1. THE PROBLEM

Applied probability problems are often of a scale
that does not lend itself to “consulting.” There are
of course many outstanding examples of the use of
applied probability techniques in major collabora-
tive efforts, in, for example, teletraffic and network-
ing, epidemiology, spatial pattern recognition and
the like, and these often result in the type of collab-
oration that is commended in the advice given by
the New Researchers Committee of the IMS (1991;
hereafter CNR), but they rarely look like the sort of
consulting that most clients arrive with, as noted in

Richard Tweedie is with the Department of Statis-
tics, Colorado State University, Fort Collins, Col-
orado 80523 (e-mail: tweedie@stat.colostate.edu).
Nell Hall is with the New South Wales Department
of Health, North Sydney NSW 2060, Australia.

Tweedie (1986). That is, they are usually harder or
deeper, and do not have the type of constraints,
benefits and rewards that one might expect if com-
ing from a nonacademic environment.

This paper describes an anomaly in this pattern:
an applied probability problem that really is pure
consulting, with no new methodological research,
but with the rewards and problems of difficult data,
of client interactions, of approximations to reality
and of time and funding constraints, and with a
happier than often ending, since valuable advice
could actually be provided and implemented within
the client’s budget.

The problem is simple to describe and will strike
a chord with all who have been put on hold in
automated telephone enquiry lines everywhere.

In the mid-1980s, both of us were working in a
medium-sized private sector consultancy, SIRO-
MATH Pty Ltd, in Australia. We were consulted by
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TABLE 1
Effectiveness of the calling system

Measure of effectiveness Site A Site B Site C

Average time on hold (sec) 140 200 753
Percentage ;; waiting > 3min 30% 45% 92%

an officer of the Australian Tax Office who was
concerned that the behaviors of the “dial-in” en-
quiry lines at different offices were inexplicably
different. The tax office had recently installed man-
agement software to track characteristics of their
enquiry system and had looked at several measures
of effectiveness, including the following:

1. the average length of time @ waiting on hold
before questions were addressed;

2. the percentage of customers p, who waited
longer than three minutes before being an-
swered.

In particular, the client was concerned that one
office seemed to have remarkably poor behavior
compared with others. Table 1 captures most of the
critical material: we have (for reasons of confiden-
tiality) labelled three of the offices we studied as
Sites A, B and C, with Site C clearly being the one
in distress. One can only admire the patience of
those calling to clarify their tax return status and
queries: note that at Site C nearly every caller
waited more than three minutes and the average
call was on hold for over 12 minutes!

Although there were some other, well posed,
questions about the possibility of networking the
system, like many consultancies this one had a
regrettably inexplicit main question: it was of the
order of “what is going on here and can we do
anything about it?” We will see that there are some
options, at least, for using standard queueing the-
ory to address this satisfactorily, but that such an
application requires (as do so many consultancies)
particular care in acquiring appropriate data before
carrying out the analysis.

2. THE QUEUEING MODEL

In this project we had three skills to offer: the
first was indeed the ability to advise on the types of
models that might fit the situation, as discussed in
CNR, but in contrast to CNR, the second was to
help the client identify real data that might enable
the model to be assessed and the third was to carry
out the analysis for him since this was rather out-
side his capabilities.

As in all statistics applications, the modelling
should come first, or we do not know what data will

be relevant. In this case we turned to the simplest
queueing model: a multiserver queue with ¢ servers
(the staff in the enquiry room of the tax office), the
customers arriving in a Poisson process (a rela-
tively standard assumption, and one which implies
we needed to know only the average rate A of calls
per minute) and with the time to serve customers
taken as ii.d. random variables with exponential
service times of mean length 1/ .

This last was, as we will describe, a rather rough
assumption in this case: but with it we are able to
use simple known results to assess the type of
effectiveness measures being proposed. [For a good
if rather old-fashioned description of how this might
work, see Lee (1968), who still has sound advice on
how to live in a real world with the distributional
assumptions involved.]

These exponential assumptions are not always
appropriate. One of the truly beautiful results of
queueing theory is, however, the “critical threshold”
result that says that the system will, regardless of
such distributional assumptions, have stability or
instability properties according as the traffic inten-
sity

p=Alcu

is less than 1 or otherwise. In the stable situation
the queue will not get too lengthy, and in the
unstable situation it will grow beyond bounds. From
Table 1, Sites A and B look stable and Site C is
rather like an unstable situation, and so we first
sought to see what the values of p in our system
might be. For these we only need the mean interar-
rival and service times A, w and the number of
servers c. The data we were given are in Table 2: as
described in the next section, the system really is
close to or above critical, especially when c¢ is
smaller than it is reputed to be, and this does help
explain some of the longer waiting times observed.

We can then use the exponential distributional
assumptions to enable us to consider the effective-

TABLE 2
Input data

Parameter Site A Site B Site C

Input rate per minute (A) 4.18 2.27 1.60

Mean call length (sec) 180 187 200

Wrap-up time (%) 10% 18% 40%

Mean service time including 198 221 280
wrap-up (1/u)

Minimum number of servers c,;,, 10 8 6

Average number of servers c,, 13 12 8

Maximum number of servers c¢,, 15 14 9
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ness parameters and predict their values, at least
in the stable situation. We find, in particular, that
the analytic forms are given by Lee (1968),

(cp)

3(A—cp)
o ¢ ’

P3 =Dy

_ (C‘P)c Do
C! C/"L(l — p)2 ’

where the probability of an empty queue is

w

-1

<<l(cp)” (ep)’ 1
Po= EO r! ¢! (1-p)

In this case the key question was not to predict
these (or other similar quantities) with great accu-
racy, but rather to decide why the input parameter
combinations might be leading to the particular
combinations that were being observed. Note again
that only A, u and ¢ are relevant to these results,
and so we did not need more information than this
on the system.

3. DATA COLLECTION

Our initial set of data was provided from the
then-new computerized telephone system. Table 2
shows that the average rate of calls at the biggest
of the sites was around 4-5 per minute: this ap-
peared relatively stable over the day, with the ex-
ception of the first hour when, not surprisingly, the
rate was usually closer to the maximum of 5 per
minute. The rates at the other sites seemed accept-
ably constant over the whole of the day.

The system also provided average call lengths.
These were relatively constant across all sites. Re-
grettably the system did not collect the actual dis-
tribution of calls: in principle this might have been
possible but the resources to reconfigure the system
for better data were not available from the client.
Thus we were not able to verify if an exponential
distribution was reasonable.

The most difficult information to collect was the
number of servers. Internal staffing sheets showed
the number of servers on an hourly basis, and these
varied widely within the day. In particular the
maximum number (which was possibly the number
the client felt to be available) was actually 150% of
the number often really working. Given the role
of ¢ in p or in the waiting times, this is of very
considerable concern.

Note that the number of servers actually as-
signed to each site appears in principle to be in line
with the observed input rate: indeed, if anything
Sites B and C seem to have pro-rata more servers
than they should have in comparison to Site A, if

we judge by the input rate. This helps illustrate the
client’s understandable concerns about the poor be-
havior at Site C, since in principle the model says
that this should be well under control.

Following the initial data collection, in this proj-
ect we had the very real benefit of supplementing
the paper data with one site visit, to Site A. There
we learned rather more, as one so often does, and
in particular we discovered two extra pieces of in-
formation:

1. On every call there was a “wrap-up” period after
the call, when the server made notes, shifted
files and so on. Once we learned of this, we found
that data existed to estimate the extent of wrap-
up activities in each office, and although these
probably had at least some minimum length, we
modelled them as a percentage of the service
time and added them to the observed service
time; this is used in Table 2 to give the u we
used, and then in Table 3 to give the predicted
values of w and p,. Note in particular that at
Site C this wrap-up time adds much more to the
actual call length than at the other sites.

2. There was also a period of “idle time” for each
server, some of which was time absent from the
room and which might of course be reflected in
the server counts, but some of which was at the
desk and in principle should be added to the
service time; in Table 4 we take account of this.

These extra service times would not have been
picked up without the detailed information col-
lected on site. Some clients are insistent that statis-
ticians visit the scene of their operations, and this
can be time consuming for the statistician: others of
course prefer to keep the statistician as far from
the facts as possible! But whatever the attitude of
the client, in order to give sensible advice within
context, it is a step that one should always try to
take, as this case study illustrates.

TABLE 3
Predicted behavior excluding idle time

Parameter Site A Site B Site C

Minimum traffic rate 1.38 1.04 1.24
Pmin = )‘/Cmin 1

Average traffic rate 1.06 0.69 0.93
Pa =A/Cq b

Maximum traffic rate 0.92 0.59 0.82
Pmax = A/Cmax 4

Assumed c for prediction 15 9 8

Predicted (observed) mean 110 (140) 262 (200) 423 (753)
wait W

Predicted (observed) pg 22(30) 45(45)  57(92)
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TABLE 4
Predicted behavior including idle time

Parameter Site A Site B Site C

Idle time (%) 8% 8% 14%

Mean service time including 213 238 319
wrap-up and idle
time 1/u*

Minimum traffic rate 1.48 1.12 1.41
Pmin = )‘/Cmin ,LL*

Average traffic rate 1.14 0.75 1.06
Pa = )‘/Ca Mx

Maximum traffic rate 0.99 0.64 0.94
Pmax = /\/Cmax [L*

Assumed c for prediction 15 10 9

Predicted (observed) mean 1259 (140) 162 (200) 537 (753)

wait w

Predicted (observed) pq 90 (30) 31(45) 63 (92)

4. RECOMMENDATIONS

Tables 3 and 4 show that the observed behavior
of Sites A and B is reasonably consistent with the
model predictions, especially if we assume Site A
is using all servers effectively, and if (in contrast)
Site B is using rather close to its minimum num-
ber of servers. Site A is also very close to critical
(p =1) even when the full complement of servers
is present.

If we do not incorporate the wrap-up time in Site
C then in fact that site is far from critical: even
with the minimum observed of 6 servers, they still
have p = 0.89 and a predicted mean waiting time of

just 180 seconds. However, the poor behavior can
be far better explained if we take into account the
40% increase to service time following the addition
of the wrap-up time. Indeed, their behavior is even
more consistent with the model where we also add
in some percentage of the idle time as well.

In no cases were the fits of the data perfect for
the model, of course. In particular, if we assume the
value 5.4 minutes for the mean service time for Site
C, then we get a value of around 750 seconds for
the mean waiting time (consistent with reality), but
we find that we only have p; = 75%; conversely we
get close to the observed value of p; = 92% by
assuming a mean service time of just 5.57 minutes,
but the expected waiting time is at a (noticeably
theoretical!) 62 hours or so. This might perhaps be
explained by a distribution of service times with a
“lump” of probability near the origin, corresponding
perhaps to part of the wrap-up times being of fairly
fixed length, but we were not in a position to look
further at this. Nonetheless, the general operation
seemed well described by this simple model, and it
was possible to give some rational advice based
on it.

In Figure 1 we illustrate the prime recommenda-
tions we gave to the client:

1. At Site C the average predicted waiting time (w
on Fig. 1) could be reduced to around 1.5 min-
utes (from the current 12.5 minutes) by adding
just one extra server (to have an effective group

Values of W for different server numbers

500 +

400 +

300 +

200 +

Expected Waiting Time in Seconds

100 +

Number of Servers

Fic. 1. Changes in waiting time as number of servers varies at site C: W is predicted waiting time, W* is waiting time with reduced

wrap-up time.
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of 9), and indeed w could be virtually halved
merely by ensuring that all eight current servers
were constantly available.

2. even more usefully, training should be instituted
at Site C to reduce the percentage of time spent
on wrap-up to at most 15% of the length of the
call, as was achievable at all other sites; the
resulting waiting time, given as w* on Figure 1,
is less than three minutes even with only seven
servers. It is well under a minute if all eight are
working. Considerable further reductions are
achieved if wrap-up is only 10%, as at Site A.

One of the effects that the client found hardest to
believe was that, as just illustrated, the whole sys-
tem was so sensitive to very minor improvements
in the parameters when close to critical. It is not
intuitive that just one extra server, or, more dra-
matically, just saving some seconds in mean service
times, could have such a powerful effect.

Various other recommendations were made, es-
pecially as the client was seriously investigating
the possibility of routing calls between the sites, so
the effective server pool would suddenly become
around 35-50. We were able to predict that such an
action would reduce the average waiting time to
well under a minute and ensure no more than
10-15% of customers would be waiting for a 3-
minute period: this would give far better service
than at any other single site we discussed with the
client.

Did this consultancy improve the service to the
taxpayers? Sadly, I have no idea. And this is the
last of the lessons in this article for the new consul-
tant: do not always expect to make a great differ-
ence and be grateful if you get any level of recogni-
tion. This project led to no paper (except, a decade
later, this one), even though it involved much time,
so there was no reward in an academic sense; it
potentially helped many people at almost no cost to
the client, since it clearly identified simple manage-
ment changes that would give the desired result;
but as so often is the case, the client did not feel the
statistical consultant was relevant to implementing
these, and we heard no more of it.

So why bother with such consulting? For many
reasons: first, and not to be overlooked, we were in
this instance being paid to be professionals, and,
like lawyers and doctors and other professionals,
we should provide our skills and not necessarily
expect to be further involved and not on center
stage; second, statistics is designed to solve real
problems, and here we did just that, and this can be
its own reward; and third, the project did achieve
one of the values noted in CNR, namely, it was

fascinating and gave (at least to us) a real knowl-
edge of yet another area in which statisticians can
play a part that cannot be played by anyone else.
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Comment

Michael W. Trosset

Richard Tweedie and his collaborators are to be
congratulated for providing an interesting and en-
lightening forum on an exciting part of our profes-
sion—one that too many academic statisticians (are
encouraged to) neglect. I will organize my contribu-
tion to this forum by elaborating on two of Tweedie’s
conclusions, with both of which I enthusiastically
concur.

1. “It is often the mere fact of such thinking, rather
than the specific technical input, that proves
invaluable. It is hard to overestimate how power-
fully our discipline trains us to think about com-
plicated issues in ways that allow us to quickly
diagnose difficulties in esoteric disciplines to
which we have had only several minutes of intro-
duction.”

Statisticians who have not done much consulting
may take for granted what I regard as the most
important of the services that we offer. Of course
we are sometimes asked to develop original meth-
ods for novel situations and of course we are often
asked to ensure that standard methods are used
appropriately in standard situations. Yet when I
began consulting, I was struck by how often I pro-
vided a service without doing anything that an
academic researcher would recognize as statistics.
Time and again I was thanked (and paid) for asking
questions and suggesting perspectives that seemed
to me to be little more than common sense. This
highly developed common sense is an easily over-
looked, but extraordinarily valuable commodity.
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Several weeks into the consulting seminar that I
taught in the fall of 1995, one frustrated student
observed that none of our clients seemed to know
exactly what they wanted. This, I believe, is the
rule rather than the exception, and in such circum-
stances the fundamental contribution of the statis-
tician is to help the client formulate appropriate
questions. Statisticians know what kinds of ques-
tions can be answered and they excel at abstracting
the essential features of an investigation without
becoming distracted by the (often fascinating) de-
tails of the particular application. In my experience,
despite their limited knowledge of the application,
they often discover confounding factors and suggest
alternative causal explanations that had not oc-
curred to the investigator(s)—not because statisti-
cians are more clever than scientists, but because
statisticians are trained to look for such things.

Perhaps it is not surprising that statisticians
take for granted the general character of statistical
reasoning and tend to emphasize the technical pro-
cedures that they study and employ. Unfortunately,
one consequence of this emphasis is the correspond-
ing perception by clients that this is all that statis-
ticians have to offer. Many—if not most—of my
consultations begin with the client asking technical
questions about the procedures that he or she has
been using or contemplating. I invariably respond
by asking the client to tell me a little about the
application. Because the answer is usually too eso-
teric for me to understand, I follow up by asking
the client to explain the project to me as though he
or she was explaining it to his or her parents. (A
former colleague with considerable consulting expe-
rience substitutes “grandparents” for “parents.”)
Not only have I found this to be a necessary prelude
to more sophisticated discourse, it is really quite
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remarkable how much progress can be made at this
very unsophisticated level.

The fact that so much of what statistics has to
offer resides in its way of thinking rather than in
its technical input has important implications for
how statistics should be taught, especially in ser-
vice courses. Perhaps inevitably, most statistics
courses are organized by procedure. Procedures are
illustrated by sanitized examples that carefully
avoid the complications and ambiguities that com-
promise their use in the real world. This practice
makes it easier for students to learn the proce-
dures, but it is apt to mislead them into identifying
statistics as a collection of mathematical recipes. In
fact, it is to resolve the messy issues that are
carefully hidden in the typical service course that
the judgment of a statistician is most needed.

I was a self-employed statistical consultant from
1989 through 1992. When I returned to academia in
1993, I found that my consulting experiences had
affected my pedagogical priorities. For example, I
regularly teach an introductory statistics course for
graduate students from other departments who will
require statistical guidance in their dissertation
research. Because no one becomes statistically self-
sufficient after one semester of study, I try to pre-
pare students to become intelligent consumers of
the assistance that they will inevitably seek. Ser-
vice courses train future clients, not future statis-
ticians.

2. “The statistician must enter into the context of
the problem, not just as an “advisor,” but as
someone prepared to understand the data, ana-
lyze the data, interact with those who really own
the questions being asked and consider the im-
pact of statistics within the real context of the
problem.”

I have always advised my students (and anyone
else who inquired) that, in selecting a statistician
with whom to work, one should seek an individual
who wants to learn about the application and avoid
individuals who merely want to be handed a data
set and to return an answer. In virtually every
application, there is a gap (often a vast gulf) be-
tween the details of the application and standard
statistical theory. For various reasons, it seems to
me that this gap is more easily bridged by the
statistician than by the client.

First, the mathematical theory of statistics is
likely to seem far more esoteric to the client than is
the client’s discipline to the statistician. Second, the
statistician will usually have a good sense of what
he or she needs to understand about the client’s
discipline and can ask pointed questions toward
that end, whereas the client will often not know

what statistical issues are relevant to the problem.
Third, and most important, gaps between applica-
tion and theory require that compromises be made.
Nature does not compromise—if natural phenom-
ena are to be studied, then it is incumbent on the
statistician either to devise relevant theory or to
make informed judgments about the propriety of
using standard procedures in situations not ad-
dressed by extant theory.

There are other reasons for statisticians to be-
come aggressively involved in their consultations.
Jennifer Hoeting emphasized that “statistical con-
sultants should make every effort to obtain the raw
data, if available.” I definitely agree, but I submit
that they should also make every effort to observe
(some of) the data collection. Not only can this be
enormously interesting and entertaining (as the
statistical consultant to a U.S. Bureau of Reclama-
tion study of the effect of fluctuating flows from
Glen Canyon Dam on riparian bird nesting, I spent
18 days rafting the Colorado River!), but it is often
essential for proper analysis and interpretation of
the data.

For example, I was the statistical consultant to
several longitudinal studies of the effects of Alz-
heimer’s and Parkinson’s diseases on memory and
language. In one study, we administered a comput-
erized serial reaction time task. The task comprised
6 sequences of 8 blocks of 10 items. It was well
known that, within each sequence, the block mean
reaction time decreased as subjects acquired greater
proficiency in responding. Our data exhibited this
pattern for the first five blocks and for the last
three blocks, but there was a discontinuity between
them. Indeed, the mean reaction time for the sixth
block was dramatically greater than for the fifth
block. The scientists were baffled, so I did my own
detective work and asked one of the staff to admin-
ister the test to me. It turned out that the computer
program attempted to store a sequence of responses
in active memory, but we were using a computer
with insufficient memory to store the entire se-
quence. In the midst of the sixth block, there was a
“hiccough” as the computer wrote the contents of
active memory to disk. The hiccough did not last
long—the interviewers had not noticed it—but it
was more than enough to break a subject’s rhythm
and invalidate the experiment.

In conclusion, these articles evoked fond recollec-
tions of my own consulting experiences and caused
me to reflect upon their role in my professional
development. Had they been available, I would have
asked the students in my consulting seminar to
read them. I hope that they will encourage other
statisticians to broaden the scope of their profes-
sional activities.
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Comment

Karen Kafadar and Max D. Morris

These articles provide further evidence of the role
that statistics can play in science, as has been
noted previously by eminent statisticians. We re-
view some of these earlier references to consulting
in the literature and emphasize that applications
and the advancement of theory, both scientific and
statistical, go hand in hand, and thus that consult-
ing should be actively encouraged in graduate pro-
grams and valued by university faculties.

“Statistics depends for its raison d’étre and con-
tinuing vitality on continued contact with substan-
tive disciplines that actually generate data and
make inferences in the face of uncertainty” (Moore,
1990, p. 268). This collection of papers provides
evidence for Moore’s assertion; in fact, some of
them even confirm his later statement that “the
direction of statistical research is affected by real
problems, and the resulting new methods are used
by practitioners.” It is a pleasure to read a series of
articles such as these, particularly when they lead
to new approaches to analyzing data and new in-
sights about the processes that generated them.
The authors of these articles join other statisticians
who have previously outlined important principles
of statistical consulting and demonstrate the impor-
tant role that statistics can play in advancing both
the science of the application and the research in
our own field. Curiously, despite statistics’s depen-
dence on such consultancies for its survival and
continued growth, consulting problems as the basis
for motivating the methodology are not fashionable
in some circles, perhaps because consulting and
applied statistics in general is sometimes regarded
as a required function rather than as a vehicle for
advancing research. This series of articles reminds
us that useful research comes from useful problems
and that, even in those instances where no new
methodology was developed, the statistician none-
theless contributed insight into the problem.

Early exposure to consulting problems can foster
an appreciation for their role in useful research.

Karen Kafadar is Professor, Department of Mathe-
matics, University of Colorado, Denver, Colorado
80217-3364. Max D. Morris is Senior Research Staff
Member with the Mathematical Sciences Section,
Oak Ridge National Laboratory, Oak Ridge, Ten-
nessee 37831-6367.

Many graduate programs in applied statistics en-
courage participation in consulting. One example
known to us is the Stanford biostatistics workshop,
a weekly two-hour seminar attended by both medi-
cal scientists and statisticians. Generally, the floor
is given in the first hour to the client, who describes
the problem and then relinquishes the floor in the
second hour to the consulting statistician. The in-
teraction is very stimulating, and often the prob-
lems have led to advancements in statistical prac-
tice, such as those later published by Mosteller and
Parunak (1985), Efron and Feldman (1991) and
Bacchetti (1990). Besides generating enthusiasm,
respect for consulting and opportunities for applied
research, these types of interactions can provide
important motivation and guidance for basic re-
search in statistics (but, as Tweedie mentions, the
demanding pace of jobs—be they in government,
industry, or academe—sometimes prevents one
from following through).

The case studies here add to the many illustra-
tions of the valuable and unique role that statis-
tical thinking can provide and how much a statis-
tician can contribute despite relatively cursory
knowledge of the problem. As Tweedie says, “It is
hard to overestimate how powerfully our discipline
trains us to think about complicated issues in ways
that allow us to quickly diagnose difficulties in
esoteric disciplines to which we have had only sev-
eral minutes of introduction.” Examples of the
statistician’s potential contributions to the problem
include the many essays in Tanur et al. (1989), as
well as the missed opportunity in connection with
the Challenger Space Shuttle described by Hoadley
and Kettenring (1990). Many of our collective early
consulting experiences had little to do with statis-
tical analysis per se, but involved broader consid-
erations which nonetheless required statistical
reasoning and guidance. We, like other young in-
vestigators, learned at this stage that a statistical
consultation is not the conversion of a “real-world
problem” into a statistical exercise, but a true col-
laborative experience in which the statistician
brings one of the critical components. Technical
expertise and creative ability are, of course, ex-
tremely important here, but of equal importance is
the ability and willingness to see major problems
from a broader perspective. Our early consulting
experiences at Hewlett Packard (HP) and the Uni-
versity of Texas Health Sciences Center—San Anto-
nio (UTHSCSA), respectively, were in environ-
ments where the number of statisticians was small
relative to other research staff, but where opportu-
nities to contribute to the planning and execution of
important research programs were many and var-
ied. One of the research and development labora-
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tory directors at HP once spoke to the company’s 50
or so statisticians and started out by joking that
he’d never known a field that based its entire exis-
tence on admitting what they dorn’t know—but
then expressed his admiration by saying, “I don’t
think there has ever been a group of professionals
at HP who has had such a major impact on the
company in such a short period of time.”

At the other extreme, some of these articles re-
mind us how much more a statistician can con-
tribute with deeper knowledge of the problem, par-
ticularly the article by Broman, Speed and Tigges.
David Byar once told his Biometry Branch that, for
every statistical methodology article, one needs to
read about 10 substantive ones related to the sub-
ject matter in the field. Wangen (1990) warns,
“When we become remote from those who need our
help, we cannot maximize the contributions of our
professionals.” Gnanadesikan is quoted as saying,
“Most statisticians do not seem to become involved
deeply enough in subject matter areas to under-
stand the scientific problems in their contexts”
(Hoadley and Kettenring, 1990, p. 245). Tweedie
and Hall indirectly touch on one of the central
reasons why sufficient background knowledge is
important: “As in all statistics applications, the
modelling should come first....” Of course, a truly
appropriate model and set of assumptions can be
determined only after at least some, and usually
considerable, understanding of the reality being
modeled. The eventual value of any consultancy
depends upon the statistician’s ability to identify a
model appropriate to the situation and a corre-
spondingly appropriate analysis, neither of which is
possible without substantial understanding. A valu-
able step in acquiring that understanding is a visit
to the site where the data were or will be collected.
Most of us have stories similar to Tweedie and Hall
and to Broman, Speed and Tigges about visiting a
laboratory or office and discovering a key aspect of
the problem that either answered the client’s ques-
tion of interest or else revealed particular aspects
that needed to be taken into account in any statisti-
cal recommendation or advice.

The open discussion at the WNAR meeting in
Pullman highlighted further essential ingredients
for successful consulting. Taylor demonstrates the
value of nailing down the objectives of the study
right from the start so that the study can be de-
signed to achieve them as efficiently as possible.
Some experienced investigators arrive at the statis-
tician’s office with carefully thought out, detailed
questions and study goals in mind—but many
do not, like the tax office clients of Tweedie and
Hall. William G. Hunter taught generations of stat-
istical consultants at the University of Wisconsin—

Madison the importance of asking the right ques-
tions: “At the outset the most important question
for the statistician to ask is: What is the objective of
this investigation?” He went on to describe a ses-
sion with two investigators who spent 45 minutes
discussing this question, and, “when it ended, they
agreed on what it was they were about. They there-
upon said that I had been most helpful, and we said
goodbye” (Hunter, 1981, p. 73).

Similarly, collecting the right data is important,
as Taylor describes in her article, to answer the
main questions of interest. As a related point about
data, David Byar once said, “Better an imprecise
measure of something important than a precise
measure of something unimportant.” Often, a stat-
istician’s primary contribution is to bring clients to
recognize that their elaborate measurements were
only tangentially related to the question of interest,
and they might be better off investing a little time
in collecting the relevant data. Hoeting acknowl-
edges the possibility of this problem in her study:
“The mean daily discharge may not be a good
measure of the water release pattern, because two
very different water release patterns could have the
same mean daily discharge.” The first sentence in
Tukey’s Exploratory Data Analysis is “It is impor-
tant to understand what you CAN DO before you
learn to measure how WELL you seem to have
DONE it” (Tukey, 1977, p. 6). The reality of what
you really CAN DO within the context of available
data can occasionally frustrate the investigator, es-
pecially when the data have been expensive or
difficult to collect. Hoeting’s clients had generated
“the best data set ever obtained,” but it could not
provide a complete answer. Even here (or perhaps
especially), the statistician can play a critical role,
by explaining why this is so, participating in plan-
ning activities and helping the investigator avoid
the strong temptation to claim more than can be
objectively justified based on the limited data in
hand. Even when the data are more complete with
respect to the questions being asked, this last point
is often operative. One principal investigator of a
large study at UTHSCSA insisted that the consult-
ing statistician had to function as the “scientist’s
conscience” when it was time to report the results
of a study, because good scientists must continually
think about potential interpretations of their data
which are well beyond what can be honestly called
“current results.”

One of Hoeting’s “basic rules for statistical con-
sultants,” namely, “[A]lways check the data for er-
rors at the start of the project,” is well known. Jim
Filliben at the National Institute of Standards and
Technology analyzed data from the Department of
Transportation’s Daylight Savings Time Study of
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the number of traffic and pedestrian accidents dur-
ing Nixon’s extended daylight savings time edict
aimed at saving energy in 1973. The congression-
ally mandated study resulted in data with so many
errors that conclusive evidence concerning changes
in the number of accidents could not be confirmed.
Again, quoting Tukey (1977, p. 10): “One thing we
regretfully learn about work with numbers is the
need for checking. Late-caught errors make for
painful repetition of steps we thought finished.
Checking is inevitable; yet, if too extensive, we
spend all our time getting the errors out of the
checks. Our need is for enough checks but not too
many.”

Other consultants have also noted before Hoeting
that “we must guard ourselves against standing on
the ‘statistician’s pedestal’ from which we lecture
scientists on the limitations of their studies. ... We
should recognize that, just as statisticians make
compromises while doing analyses, investigators are
under considerable constraints when designing
their studies.” Many years ago, Lincoln Moses told
the students in his experimental design course,
“Now, it is always nice to have a balanced design.
But if your experiment isn’t balanced, don’t throw
up your hands and go home! There are ways to
analyze it. And I'm going to show you how.” As a
client of statisticians, Wangen (1990, p. 273) sug-
gests, ‘[Statisticians] should do what they can to
help, regardless of personal opinions about what
could have been done, and refrain from comment-
ing negatively on aspects of the work performed
before their involvement unless invited to do so.
Good statisticians can nearly always provide useful
assistance at any stage of a project.” Compare
Tweedie’s comment: “Statistics can contribute
something that was not there previously, and we
have much to offer to almost everyone.”

Another important principle for successful con-
sulting is the statistician’s use of the client’s lan-
guage, as do Broman, Speed and Tigges, rather
than the other way around: “To be successful, we
must learn to serve. That, of course, requires statis-
ticians to get to know the language and problems of
[the clients]” (Hunter, 1990, p. 261). (As a graduate
student, during a spring picnic, I (Kafadar) once
asked John Tukey a philosophical question about
statistical practice. The statistical concepts in his
courses used to challenge both students and profes-
sors alike, so the simplicity of the reply made a real
impression on me: he once had a client who was a
medical doctor at Sloan Kettering, and he told me,
“It was nearly a year after our first meeting that I
even came so close as to mentioning a #-test to
him.”) But probably the most important lesson for
statisticians is to avoid the proverbial “error of the

third kind,” that is, providing the right answer to
the wrong question: “Far better an approximate
answer to the right question, which is often vague,
than an exact answer to the wrong question, which
can always be made precise” (Tukey, 1962, pp.
13-14).

The primary benefit to statisticians of serious
creative participation in consulting, in addition to
the sense of satisfaction by contributing a solution
to a real problem, is the potential for advancing
statistical research. This potential has been recog-
nized by many, including past ASA President
Jerome Cornfield: “Application requires under-
standing, and the search for understanding often
leads to, and cannot be distinguished from, re-
search. The true joy is to see the breadth of applica-
tion and the breadth of understanding grow to-
gether, with the unplanned fallout—the pure gravy,
so to speak—being the new research finding”
(Cornfield, 1975, p. 11). Box (1984) lists several
important interactions between practice and theory
where practical problems stimulated theoretical de-
velopment of whole new areas: small samples —
Student’s ¢ (Gosset); rainfall data at Rothamstead
— distributed lag models and orthogonal polynomi-
als (Fisher); agriculture experiments — factorial
designs and confounding (Yates); balancing several
factors at once —» Youden squares (Youden); large
data sets on telephone usage — exploratory data
analysis (Tukey). Of course, major new statistical
ideas and methodologies such as these are often not
born of one or a few consulting problems, but gener-
ally develop gradually in response to experience
gained by repeatedly thinking about applications in
a statistical context. For example, computerized
data collection systems such as the one Taylor de-
scribes have revolutionized the kind and quantity
of data available in many applications areas, and
consulting on such problems can stimulate research
in the critically important area of analysis of large
and complex data structures. The connection be-
tween important improvements in methodology and
participation in applications is clear and is docu-
mented by, for example, the IMS Panel on Cross-
Disciplinary Research in the Statistical Sciences,
which identified many areas where “statisticians
have achieved signal advances in theory and meth-
ods as they worked on applications in many fields,
and, in turn, statistical thinking and methodology
have greatly influenced the development of virtu-
ally all areas of science” (IMS Panel, 1990, p. 121),
including agriculture, health, military operations
and transportation and communication systems (pp.
137-138). They identify “Type A” (rather routine
consultancies) and “Type B” (full-fledged collobora-
tions) interactions, with the hope that Type A ones
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evolve into Type B ones, with the help of needed
resources and increased supporting infrastructure
(such as the development of the National Institute
for Statistical Sciences that followed the publica-
tion of this Panel Report).

Despite this opportunity for advancing research
through consulting, many academic programs do
not actively encourage it. Tribus noted years ago,
with probably little change since then, “students
believe that professional statisticians are presented
with well-formulated problems, which appear over
the transom and for which they are to provide
clever solutions that are exchanged for tokens of
appreciation that have great value in the market-
place. They have been brought up on a diet of ‘given
this, find that'—usually with the understanding
that the method to be used is the one taught in the
last class. Unfortunately, the world does not ‘give’
problems—you have to go and get them” (Tribus,
1990, p. 271). Hogg (1991) also notes that “We do
not encourage enough teamwork, with students
working on projects” (p. 342); “How often do our
Ph.D. students understand the importance of these
ideas and develop their communication skills so as
to be effective in the classroom or in consulting?”
(p. 343). In an earlier article, Tweedie (1992) like-
wise lamented that the report of the New Re-
searchers Committee of the IMS (1991) did little to
direct new researchers into important areas, advis-
ing instead that “‘unless you need the data analy-
sis experience, your role is to dispense advice’ in a
consulting context” (Tweedie, 1992, p. 264). Even as
recently as August 1996, several statisticians at a
meeting in Halifax admitted that, while collabora-
tion and joint authorship can be enormously benefi-
cial to science, they as faculty members would dis-
courage untenured faculty from anything other than
independent, sole-authored papers in prestigious
statistics journals. Fortunately, the Editors of this
journal have chosen to encourage statistical con-
sulting by publishing this set of articles that serve
to illustrate the important role that statistics can
play both in advancing the science in the field of
application, as well as providing background and
motivation for future statistical research.

This discouragement of collaboration might be
reduced if journals were to publish more articles
demonstrating creative methodology motivated by
challenging consulting problems. A few journals
already emphasize applications in their editorial
policies: for example, Technometrics (“adequate
justification of the application of the technique,
preferably by means of an actual application to a
problem”), Statistics in Medicine (“The journal will
publish papers on practical applications of statistics
and other quantitative methods to medicine and its

applied science”), Biometrics (“describing and ex-
emplifying developments in these methods and their
applications in a form readily assimilable by experi-
mental scientists”), JASA Applications and Case
Studies (“For real data sets, present analyses that
are statistically innovative as well as scientifically
and practically relevant. ... Using empirical tests,
examine or illustrate for an important application
the utility of a valuable statistical technique”) and
JASA Theory and Methods (“The research reported
should be motivated by a scientific or practical
problem and, ideally, illustrated by application of
the proposed methodology to that problem. Illustra-
tion of techniques with real data is especially wel-
comed and strongly encouraged”). While a routine
statistical analysis does not fall into these cate-
gories, a creative analysis that offers a novel ap-
proach to the problem often would. The recognition
of the value of consulting as a vehicle for advancing
statistical research should be widened through the
publication of such articles. The Editors of this
journal have taken some further steps toward this
end.
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