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Statistical Methods for DNA Sequence
Segmentation
Jerome V. Braun and Hans-Georg Müller

Abstract. This article examines methods, issues and controversies that
have arisen over the last decade in the effort to organize sequences of
DNA base information into homogeneous segments. An array of differ-
ent models and techniques have been considered and applied. We demon-
strate that most approaches can be embedded into a suitable version of
the multiple change-point problem, and we review the various methods
in this light. We also propose and discuss a promising local segmenta-
tion method, namely, the application of split local polynomial fitting. The
genome of bacteriophage λ serves as an example sequence throughout
the paper.
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1. INTRODUCTION

1.1 DNA Sequence Data

We consider methods of analyzing the deoxyri-
bonucleic acid (DNA) sequences which are the ba-
sic information carriers of life. These sequences are
long chainlike molecules composed of four nucleic
acids, or bases. The bases are adenine (A), guanine
(G), cytosine (C) and thymine (T); they are attached
to a simple sugar–phosphate backbone, deoxyribose.
A nucleotide is a base with its quota of backbone.
DNA usually exists in a double strand with the two
strands pairing by hydrogen bonding under the rule
that A pairs with T and G pairs with C. The double
strand is usually found twisted in the famous dou-
ble helix structure. A single such molecule contains
the instructions to generate a complete organism,
such as a mouse or a man.

Triplets of bases code for amino acids, the build-
ing blocks of proteins (there are 43 = 64 differ-
ent such triplets) and are called codons. Three of
the codons are “stop” codons which signal that the
translation should stop. The remaining codons code
for 20 amino acids. The central dogma of genetics
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is that DNA is transcribed into messenger ribonu-
cleic acid (mRNA), which is translated into proteins,
which form the building blocks of life.

Recent technological advances in the field of
molecular genetics have generated a deluge of
information—the sequences of entire genomes have
been determined in many cases, and many more
are expected (Pennini, 1997). Statistical analysis of
DNA sequences is motivated by at least three ar-
eas of exploration, as Curnow and Kirkwood (1989)
indicated:

1. Sequence data offer an extraordinarily fine view
from which to extend the traditional methods of
analysis of variation—for example, the analysis
of variation between individuals can be brought
to the level of even a single nucleotide difference.

2. Sequence data offer the opportunity to study
the fine-tuning and organization of the genetic
process—for example, the structure of genes may
include elements such as protein binding sites
or noncoding regions called introns; these may
have characteristic physical and structural prop-
erties.

3. The comparison of sequences between species
demands methods for determining similarities
in evolution or function—for example, impor-
tant sequences such as protein binding sites are
conserved through evolution; their relationship
can help describe the evolutionary relationships
among widely different species.
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In earlier days, sequence information was ob-
tained only for genes of known function. Nowadays
large chunks of the genome are sequenced whole-
sale. The functions of many of these new sequences
are unknown; most of the time scientists rely upon
homology (similarity) with previously well studied
small sequences. It is of interest to devise meth-
ods of describing and assessing sequences in ways
which provide parsimonious, useful characteriza-
tions. One class of models for DNA sequences goes
under the rubric of segmentation models. In such
models, it is assumed that the sequence can be par-
titioned into a number of segments, where each
segment has a certain degree of internal homoge-
neity.

1.2 Biological Basis for Segmentation Models

Early evidence of segmental genomic structure
was provided by the phenomenon of chromosome
banding. It was noticed early on that in the sali-
vary glands of Drosophila melanogaster the chro-
mosomes replicate many times and form what are
called polytene chromosomes. Under the microscope
one can see distinct banding patterns, which re-
sult from underlying physical or chemical structure.
These bands are stable enough to make them useful
for the identification of chromosomes and for genetic
mapping.

By a variety of special staining techniques, simi-
lar banding patterns can be made to appear in the
chromosomes of other organisms. Again under the
microscope the chromosomes exhibit a pattern of
light and dark transverse bands. For example, if
the chromosomes are stained with Giemsa dye after
protein denaturation, the so-called G-banding pat-
tern appears. Bickmore and Sumner (1989) review
the role of chromosome banding in elucidating the
organization of the genome.

On the basis of a comparison of density gradi-
ent centrifuge data which showed the existence of
differing DNA organization in both warm-blooded
vertebrates and cold-blooded vertebrates, Bernardi
et al. (1985) coined the term isochore to refer to
large segments (greater than 300 kilobases (kb))
of DNA that belong to a “small number of classes
characterized by different �G + C� levels and by
fairly homogeneous base compositions (at least in
the 3 to 300 kb range)” and which may correspond
to Giemsa- and reverse-banding patterns in mam-
malian chromosomes. See Ikemura, Wada and Aota
(1990) for further discussion of isochores.

The neutral theory of evolution, which assumes
that most mutations are neutral with respect to
Darwinian selection, implies that most nucleotide
changes occur by chance (Kimura, 1983). Composi-

tional heterogeneity may give a toe-hold for natural
selection to operate at the genome level. Holmquist
(1989) postulates hierarchical selection on ever
smaller functional units, noting that chromosome
banding patterns appear to be evolutionarily sta-
ble; if there is a stable global structure which is
maintained throughout evolution, this would indi-
cate the existence of functional constraints on the
ability of DNA sequences to mutate freely. Genomic
structures which arise as instances of composi-
tional constraints would not be subject to neutral
mutations. Thus, understanding possible compo-
sitional constraints on sequence organization has
implications for theories of evolution (Gillespie,
1991).

1.3 DNA Sequence Segmentation

We represent the observations along the sequence
as Y1; : : : ;Yn, where Y takes on one of the val-
ues of the DNA alphabet (A, C, G or T). We fur-
ther suppose that there are segments within which
the observations follow the same or nearly the same
distribution, and between which observations have
different distributions. Interest may lie in describ-
ing the structure of the sequence, in detecting seg-
ments which are anomalous (in the sense that they
are either mistakenly included in the sequence un-
der consideration or perhaps derive from some other
organizational scheme), or in comparing structures
between sequences.

The nucleotides or the amino acids themselves
could be further classified into various groups based
on their physical and chemical properties. These
groupings are termed alphabets; examples of some
possible alphabets are listed in Tables 1 and 2. See
Karlin, Ost and Blaisdell (1989) for a discussion of
the use of these and other alphabets in the analysis
of DNA sequences.

The DNA segmentation problem can be put into
the framework of the multiple change-point prob-
lem for categorical data. In this approach, change-
points correspond to the end points of the segments.
The observations Y1; : : : ;Yn are taken to be split
into R + 1 contiguous segments by the values 0 =
τ0 < τ1 < · · · < τR < τR+1 = 1; the observations
Y�nτr−1�+1; : : : ;Y�nτr� are supposed to be identically
distributed for each τ = 1; : : : ;R + 1. The number

Table 1
Some statistical alphabets for DNA sequences

Pair Alphabet

Purine versus pyrimidine R (A or G); Y (C or T)
Heavy versus light S (C or G); W (A or T)
Keto versus amino K (T or G); M (A or C)
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Table 2
Some statistical alphabets for amino acid sequences

Grouping Alphabet

Chemical Acidic (Asp, Glu); aliphatic (Ala, Gly, Ile, Leu, Val);
amide (Asn, Glu); aromatic (Phe, Trp, Tyr);
basic (Arg, His, Lys); hydroxyl (Ser, Thr); imino
(Pro); sulfur (Cys, Met)

Charge Acidic (Asp, Glu); basic (Arg, His, Lys); neutral
(all others)

Hydrophobic Hydrophobic (Ala, Ile, Leu, Met, Phe, Pro, Trp, Val);
hydrophilic (Arg, Asn, Asp, Cys, Gln, Glu, Gly,
His, Lys, Ser, Thr, Tyr)

R of change-points is usually unknown and needs
to be determined.

The problem of statistically segmenting DNA se-
quence data has a history of about four decades. It
has been known for at least that length of time that
the sequence of bases does not follow a simple ran-
dom assignment (Shapiro and Chargaff, 1960; Josse,
Kaiser and Kornberg, 1961).

In Section 2, we give an overview of known seg-
mentation methods for DNA sequence data. We also
include a discussion of some recent controversies,
summarized by the concepts of “long-range corre-
lation” versus “patchiness.” In Section 3, we discuss
the embedding of the DNA segmentation problem in
the multiple change-point framework. We suggest
approaches to the DNA segmentation problem by
considering multiple change-point methods, as well
as introducing a new approach for local segmenta-
tion by split local polynomial fitting. In Section 4,
we provide a brief discussion, including directions
for further research.

The genome of the bacteriophage λ provides an
example sequence which is used throughout the pa-
per to give a feel for the behavior of the different
models. We chose this genome because:

1. Its sequence was determined quite early (Sanger
et al. 1982), and it has a long history of being
used in demonstration of new numerical tech-
niques.

2. It is a long enough sequence that statisti-
cal methods become believable; yet it is short
enough so that graphs are not overwhelmingly
compressed.

3. The sequence is a complete genome and is known
biologically to have several large components.

Bacteriophage λ is a quite interesting organism
in its own right. It is a virus which lives upon Es-
cherischia coli, a common gut bacterium which is
widely used in research and in the biotechnology
industry. The bacteriophage binds to the cell and
injects DNA into it, leaving behind an empty protein

head. This DNA may either become integrated into
the E. coli genome or drive construction of λ compo-
nents and eventual cell lysis. Although the genome
must be quite compact to fit into the protein head,
not all of the genome is necessary for the last stage
of construction. Thus, bacteriophage λ may be used
to transfect E. coli cells with foreign DNA, by the
device of replacing the unnecessary section with the
genetic sequence of interest (of course, the section
is quite necessary for the usual life cycle of the bac-
teriophage).

2. SEGMENTATION METHODS

2.1 Historical Attempts at Segmentation

Before the advent of the ability to sequence DNA
accurately and in bulk, a variety of ingenious meth-
ods of determining sequence composition existed.
These methods relied on indirect measurements us-
ing physical and chemical properties of the DNA as
well as on direct measurements of the cell nucleus.
An example is the method of density gradient cen-
trifugation to determine molecular weight, density
and heterogeneity of molecules of DNA, pioneered
by Meselson, Stahl and Vinograd (1957). The use
of density gradient centrifugation corresponds to
the heavy–light alphabet in Table 1. In subsequent
work, Skalka, Burgi and Hershey (1968) model the
bacteriophage λ genome as a six-segment compo-
sition. They examine the density gradient graphs
under the assumption that the graphs represent
mixtures of homogeneous segments, and succes-
sively refine their analysis of the λ genome by
selecting fragments from the visually determined
modes of the mixture distribution. We may com-
pare the results of their approach with the exact
proportions of G + C obtained from the sequence,
as shown in Figure 1.

Other early approaches are discussed by Elton
(1974), based on data from both density gradient
centrifugation and melting curve techniques. In
melting curve studies, the DNA is gradually dena-
tured (the strands separated) by heating. The bonds
of the G–C base-pairs are stronger, taking more
heat to melt; thus the proportion of G + C can be
deduced. Elton investigates the variation of propor-
tion G–C base-pairs with four statistical models:
the simple random sequence model; a first-order
Markov chain model; a “satellite DNA model”; and
a segment model. Segment models appear to fit the
data best in this study.

2.2 Maximum Likelihood Estimation of Segments

The multiple segmentation problem in a sequence
of independent Bernoulli variates is considered by
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Fig. 1. A comparison of the Skalka, Burgi and Hershey �1968� segmentation model for bacteriophage λ: fitted G+C proportions �solid
line� with the observed G + C proportions in nonoverlapping 200-base windows �dots�. The observed proportions are derived from the
GenBank sequence LAMBDA.

Fu and Curnow (1990). Their goal is to find statisti-
cal methods of determining secondary protein struc-
ture, but the approach applies to DNA sequence seg-
mentation as well. They present an algorithm for
computing the maximum likelihood estimate for the
number of changed segments given a restriction on
the minimum length of changed segments. We will
outline their approach as applied to DNA sequence
data.

In the most general form, denote the nucleotides
as Yi = �Yi1;Yi2;Yi3;Yi4�, i = 1; : : : ; n, where
Yi = �1;0;0;0� if the ith nucleotide is an A, and so
forth. We model the distribution of the Yi by a se-
quence of independent multinomial variables with
probability vector p = �p1; p2; p3; p4�, so that

P�Yi = yi� = p
yi1
1 p

yi2
2 p

yi3
3 p

yi4
4 :

Further we allow p to take on only one of two
values, so that one is considering two types of
segments, “unchanged segments” (p = ρ0) and
“changed segments” (p = ρ1).

For simplicity, define a new sequence ci, i = 1;
: : : ; n, where ci = 0 for unchanged segments and
ci = 1 for changed segments. Let P�Yi = yi�ci�
denote the probability mass function for Yi given
that the underlying sequence is unchanged �ci =
0� or changed �ci = 1�. Allowing for a mixture of
“changed” and “unchanged” segments, the likelihood
function can be written as

L =
n∏
i=1

P�Yi = yi�ci�:

From this the likelihood ratio for the null hypothesis
of no “changed segments” is

lnLR = ln
�n
i=1P�Yi = yi�ci��n

i=1P�Yi = yi�ci = 0�

=
l∑

k=1

nk∑
i=mk

ln
(
P�Yi = yi�ci = 1�
P�Yi = yi�ci = 0�

)
;

where mk; nk, k = 1; : : : ; l, represent the begin-
ning and ending of the kth changed segment out
of a total of l changed segments. For an arbitrary
segment S = �Ym; : : : ;Yn� we define the func-
tion

f�S� =
n∑

i=m
ln
(
P�Yi = yi�ci = 1�
P�Yi = yi�ci = 0�

)
:

Then, representing the changed segments by Sk,
k = 1; : : : ; l; the log-likelihood can be written as

lnLR =
l∑

k=1

f�Sk�:

This form shows that the log-likelihood ratio takes a
simple form depending only upon the changed seg-
ments; the function f is a simple sum of the scores
for each individual observation on the changed seg-
ments.

To compute the maximum likelihood solution, we
might consider breaking up the sequence into all al-
lowed configurations to find the segmentation which
maximizes the log-likelihood ratio. Of course, this
brute-force approach requires huge amounts of com-
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Fig. 2. Results for the maximum likelihood method for finding changed segments using the Fu–Curnow algorithm for a binomial model.
The probabilities represent independent nucleotide occurrences and were chosen as ρ0 = �0:5;0:5� and ρ1 = �0:52;0:48� by a hidden
Markov chain analysis. A minimum segment size of

√
n = 220 was imposed.

puting and as a consequence will be impractical for
sequences which are long or which contain many
changed segments. Also, the log-likelihood ratio will
be maximized for that segmentation which calls all
runs of identical observations changed segments—
here we see the reason for restricting the minimum
length of the changed segments.

The dynamic programming algorithm of Bement
and Waterman (1977) computes the global maxi-
mum with much less effort in the situation when
the segment size is unrestricted (see Auger and
Lawrence, 1989, for a use of the algorithm in a
least-squares framework). Fu and Curnow devised
a different algorithm for finding the global max-
imum which respects the minimum size of the
changed segments. This algorithm can be described
as follows. The determination of the l best seg-
ments (in terms of maximizing the log-likelihood) is
performed sequentially. The best segment is found,
then the best two segments are found and so on
until the best l segments are found. The method of
computing the best l segments from the best l − 1
segments is simply described:

Step 1. Find the best segment which does not
overlap any two of the best l− 1 segments.

Step 2. Find the best splitting and expansion
for each of the best l− 1 segments.

Step 3. Choose from Steps 1 and 2 the seg-
ment that provides the greater increase in the log-
likelihood.

Given the restriction on the minimum size of the
changed segments, the log-likelihood will eventu-
ally decrease with additional segments, or it will be
impossible to add more segments. Of course, until
that point, the log-likelihood must be increasing in
l. The maximum likelihood estimate of the number
of changed segments is the value of l which maxi-
mizes the log-likelihood. For a given value of l, the
computational effort is at most O�n2�.

Figure 2 shows the result of applying the origi-
nal Fu–Curnow algorithm to bacteriophage λ. The
bases were scored using the heavy–light alphabet,
with A;T = 1 and C;G = 0, and the Bernoulli case
was assumed. The probability vectors ρ0 and ρ1
were obtained by using the hidden Markov chain
analysis in the next section and were taken as
ρ0 = �0:5;0:5� and ρ1 = �0:52;0:48�, with a slight
abuse of notation. The likelihood was maximized
when assuming four changed segments. Figure 3
shows the result of an alternative application of
the Fu–Curnow algorithm to the same data. In
this case, the nucleotides are assumed to follow
independent multinomial distributions on each seg-
ment; initial probability vectors were obtained as
before and were ρ0 = �0:21;0:25;0:25;0:29� and
ρ1 = �0:32;0:21;0:27;0:20�: The likelihood was
maximized when assuming six changed segments.

The classical inferential theory for this estimation
scheme is not well developed. Fu and Curnow use
simulation to tabulate critical values for the number
of changed segments. Key to the implementation of
this approach is the fact that the probability vectors
are assumed known. In practice, of course, we do not
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Fig. 3. Results for the Fu and Curnow algorithm for a multinomial model, with ρ0 = �0:21;0:25;0:25;0:29� and ρ1 = �0:32;0:21;
0:27;0:2�.

know these vectors; the scheme might be extended
to some sort of joint estimation approach, where the
unknown parameters are estimated iteratively, but
this has not been studied. Some approximate ap-
proaches may be found in Wallenstein, Naus and
Glaz (1994). Also see Auger and Lawrence (1989)
for a discussion relating this problem to the seg-
mented regression and multiple subsets problems,
as well as some pragmatic comments about ad hoc
use of the F-statistic.

2.3 Hidden Markov Chain Model

Churchill (1989, 1992) proposed a hidden Markov
chain model to model segmentation of DNA se-
quences and to try to predict the locations of
possible segments in mitochondrial and phage
genomes. The hidden Markov model assumes that
the different segments can be classified into a finite
set of states, for example, CpG-rich or CpG-poor.
In each state, the nucleotide data is assumed to
follow a probability distribution, for example, a
zero-order Markov chain. The states are assumed
to switch from one to the other at random with low
probability—since the states are unobserved and
random in occurrence they form a hidden Markov
chain. Note that under this model the lengths of
segments follow geometric distributions with pa-
rameters given by the transition probabilities of
the unobserved chain. A good introduction to the
hidden Markov chain model is found in Rabiner
(1989).

Suppose that there is a finite number r of states;
these states may be described by r-vectors with S =
�1;0; : : : ;0� representing state 1 and so forth. As-

sume that the states underlying the observations,
denoted by Si; i = 0; : : : ; n, follow a Markov pro-
cess with transition matrix 3 = �λjk�. For example,
with two states we may represent the Fu–Curnow
situation of unchanged and changed segments.

The system equations for the hidden chain are

P
[
Si = si�Si−1 = si−1

]
=

r∏
j=1

r∏
k=1

λ
si; jsi−1; k

jk :

Now assume that the observations Yi = �Yi;1; : : : ;
Yi;4� follow a multinomial distribution which de-
pends on the state, say,

P
[
Yi = yi�Si = s

]
=

4∏
j=1

p
yi; j
s; j ;

where with another slight abuse of notation �ps;1;
: : : ; ps;4� is the multinomial parameter associated
with state Si = s. From this we obtain the system
equations for the observations

P
[
Yi = yi�Yi−1 = yi−1; Si = s

]
=

4∏
j=1

4∏
k=1

p
yi−1; jyi; k
s; k :

The smoothing equations

P
[
Si = s�Y1; : : : ;Yn

]

can then be derived and plotted to indicate homoge-
neous regions in the sequence.

As Churchill points out, the unknown distribu-
tion of the states and the distributions on the states
can be estimated from the data using the EM al-
gorithm, and the Bayesian information criterion
can be used to determine the number of states
necessary. Parameter values can be estimated and
displayed graphically, without the need for window
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Fig. 4. Two-state hidden Markov chain analysis for the bacteriophage λ sequence.

size determination. This makes implementation
very flexible and highly automatic. However, this
method still forms a kind of smoothing, where the
weightings of the data are not explicit and therefore
not apparent to the user. An example of a two-state
hidden Markov chain analysis of the bacteriophage
λ sequence assuming independent multinomials on
each segment is shown in Figure 4.

The use of hidden Markov chain models has ex-
panded to the areas of chromosome hybridization
data (Dupuis, 1994), of multiple DNA sequence
alignment, where the models can be used to de-
tect subtle sequence signals (Lawrence et al., 1993;
Liu, Neuwald and Lawrence, 1995; Neuwald, Liu
and Lawrence, 1995; Liu and Lawrence, 1996),
and of protein modeling (Krogh et al., 1994). In
the multiple alignment problem interest centers
on determining whether small segments of DNA
within several sequences are sufficiently similar to
warrant declaring a match. For practical use the
computational aspects are particularly important,
and here the work of Krogh et al. in describing
applications is quite useful.

2.4 Bayesian Approach

A theoretical advantage of the Bayesian ap-
proach to this estimation problem is that one can
take advantage of the structure of the problem to
marginalize over unknown parameters to obtain the
global optimum. There are many early references
for Bayesian methods for single change-points; ex-
amples are Smith (1975) and Raftery and Akman
(1986). Methods for multiple change-points may
be more immediately adaptable to sequence data.
There are several approaches which are flexible
enough. Product partition models (Hartigan, 1990;

Barry and Hartigan, 1992) provide a method which
is analytically tractable. Carlin, Gelfand and Smith
(1992) explore hierarchical analysis of change-point
problems; as an example they consider observations
from a Markov chain with switching transition ma-
trices. Stephens (1994) provides theory for binomial
and regression models. Liu and Lawrence (1996)
present a unified approach which directly includes
segments, allows for incorporation of multiple se-
quences and addresses computation issues via the
Gibbs sampler.

To be more precise, let S = �S1; : : : ; SK� be the
collection of sequences. Suppose that the number
of segments in each sequence is Q, and 2 is the
parameter vector for the sequence model. Let vkq
indicate the position of the last observation in the
qth segment of the kth sequence, and let Vk =
�vk1; : : : ; vkQ�, where vkQ = nk is the length of the
kth sequence.

Now let Mk = �mk1; : : : ;mkQ�, where m belongs
to �1; : : : ;L�, indicating different types of segments.
Let Sk�i; j� denote the ith through the jth observa-
tions from the kth sequence. Under the assumption
that observations within a segment are independent
from observations in other segments (the Markov
assumption), given the partition, the probability of
observing that Sk�1; j� has q+1 partitions with the
last segment of type m is

P
(
Sk�1; j��2; vk; q+1 = j; mk; q+1 =m

)

=
j−1∑
v=1

L∑
l=1

P
(
Sk�1; v��2; vkq = v; mkq = l

)

·P
(
Skv+ 1; j�2;mk; q+1 =m

)

·P
(
mk; q+1 =m�mkq = l

)
;
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where P�mk; q+1 =m�mkq = l� is the probability of
observing the segment from i to j of model type m.

As Liu and Lawrence point out, to implement
Gibbs sampling would require sampling from
P�2�M;V;R�, where M and V represent all se-
quence segment models and partitions, respectively.
If the global parameter 2 can be suitably decom-
posed, or approximately so, they show that the
collapsing theorem of Liu (1994) can be applied.
This allows integrating the parameter 2 out of
the problem. With this simplification, Liu and
Lawrence provide an extension of the dynamic pro-
gramming approach of Auger and Lawrence which
results in sampling from the joint distribution
P�Vk;Mk�R;V−k;M−k� in reasonable time. Liu
and Lawrence provide suggestions on model selec-
tion and also explore frequentist properties of the
model; for further details on Bayesian model deter-
mination in similar situations see Green (1995).

2.5 Criticism and Controversy Related to
Segmentation Models

On the biological side, while the emotional ap-
peal of segmentation models is high, especially
when considering such phenomena as chromosome
banding, there is by no means universal agreement
that genomes actually have segmented structure.
Schweizer and Loidl (1987) provide an example of
work with a complex computer model of the chem-
istry of DNA for C-banding patterns. (C-bands are
produced by chemical treatment of the chromo-
some; the technique is especially useful to highlight
the centromere and polymorphic bands.) They show
that their mechanistic model provides a nonran-
dom distribution of C-bands without the need for
an overall constraining optimality brought about
by some sort of chromosome field, and so could
theoretically explain the phenomenon of C-banding.

On the statistical side, one might wonder whether
the effects of ignoring the known dependencies
within DNA sequence data in favor of independence
models is serious. It has been noted that indepen-
dence models have good explanatory power in the
protein sequence setting. For example, Krogh et al.
found that the hidden Markov chain model agreed
well with methods using three-dimensional struc-
tural information. Liu, Neuwald and Lawrence’s
(1995) work with the Gibbs sampler and multiple
sequence alignment shows surprisingly good results
even under the independence assumption.

A model which directly incorporates dependencies
is the seventh-order Markov chain model consid-
ered by Scherer, McPeek and Speed (1994). This
dependency model comes at the cost of requiring
a huge number of parameters: since the model

must estimate the proportions of octamers in use,
there are 48 �= 65;536� parameters to estimate.
The megabases of sequence information and the
computing power available today make such an
approach possible.

Ideally, though, one would like to incorporate in-
formation about the chemical and physical prop-
erties of the sequences. Amfoh, Shaw and Bonney
(1994) show that models which include covariates
and a dependency structure within a logistic re-
gression model can adequately model mitochondrial
DNA data. They used information about the struc-
ture and mutability of amino acids. This was not
a segment model, but such models could be easily
constructed within the same framework.

Other statistical models which are also not seg-
ment models per se but which may predict the occur-
rence of homogeneous stretches have been proposed.
Among them are the walking Markov model and the
long-range correlation model; both are shrouded in
controversy.

2.6 Walking Markov Model

Fickett, Torney and Wolf (1992) examine the
base composition of human and E. coli genomes.
They analyze the phenomenon of strand symme-
try (same number of occurrences of each base on
each strand). They note the poor fit of homogeneous
models, in particular the fit of Markov models us-
ing the Bayesian information criterion (BIC), and
they identify a “large variance problem,” that is,
that there is less local homogeneity than necessary
for most segment models in the literature which
they studied. They are thus led to propose a new
model: the walking Markov (WM) model.

The walking Markov model is a continuously
varying stochastic process. The model is described
as follows. A reflecting random walk on the interval
�1/3;2/3� is denoted by Wi, i = 1; : : : ; n; in prac-
tice, we allow the Wi to advance in either direction
by a small fixed distance. The Wi are assumed to
control the distributions of the Yi, i = 1; : : : ; n, by
indexing first- or second-order Markov chains; that
is, the observation Yi is assumed to come from a
Markov chain with transition matrix MWi

, depend-
ing on one or two previous observations. The model
parameters are estimated as follows. First, one tab-
ulates quantities wj, j = 1; : : : ; J, where J is the
number of different observed A + T fractions seen
when running a 1,000-base window through the se-
quence of interest. The windows are separated by
some fixed number of bases to reduce overlap.

For each observed A + T fraction wj, the win-
dows which exhibit that fraction are collected. The
BIC is used to select a first- or second-order Markov
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Fig. 5. The DNA random walk for bacteriophage λ; when selecting the heavy–light alphabet, �G+C�–�A+T�.

chain Mw to model the data within the windows
corresponding to wj. (For example, if seven of the
windows showed an A + T fraction of 1/2, those
windows provide a total of 7,000 observations for
estimating the transition probabilities of the bases
M1/2.) Now to start the model, a w0 is chosen in the
range �1/3;2/3� under a uniform distribution; for
each i = 1; : : : ; n; we perform a reflecting symmet-
ric random walk in �1/3;2/3� with a small step size.
The ith observation is chosen at random following
the associated Mw. Fickett, Torney and Wolf claim
the variance thus obtained is appropriate and the
correlation structure is accurate. They also note that
more complex models may be required: perhaps w
should shift only every 100 bases or so; perhaps Mw

should be a more complex Markov chain; perhaps
the w should favor certain states. This approach em-
bodies the philosophy that local gradual change is
more realistic than infrequent large change.

This model is of course a version of the hidden
Markov chain model. It has a large number of dis-
crete underlying states, with an obligate jump to
another state at each observation; in general the
observations within each state follow a second-
order Markov chain. Although the observation
distributions are specified, the overall number of
parameters seems too high to estimate any of them
precisely. In Section 3.4 we discuss an alternative
method of modeling a gradual change in compo-
sition, which at the same time allows for distinct
jumps.

2.7 Long-Range Correlation Model

There has been a running debate over the last
few years about the presence of long-range correla-

tion in DNA sequences. In an effort to understand
the correlation structure of DNA sequences, Peng
et al. (1992) studied the following model. They used
the purine–pyrimidine alphabet to score a number
of DNA sequences. Specifically, for a given DNA
sequence, use a score function g�·� to obtain the
scores,

g�Yi� =
{+1; if the ith position is an A or G;
−1; if the ith position is a C or T.

Then the cumulative sum

Sk =
k∑
i=1

g�Yi�; k = 1; : : : ; n;

defines what is called the DNA walk. An exam-
ple of a similar walk is shown in Figure 5, using
the heavy–light alphabet (C or G versus A or T)
instead of the purine–pyrimidine alphabet. These
graphs appear to display a certain amount of self-
similarity at different scales, leading Peng et al. to
believe that there might be some fractal properties
encoded in the sequences.

We can define a scan statistic

Sk�L� =
k+L−1∑
i=k

g�Yi�; k = 1; : : : ; n−L+ 1;

where 1 ≤ L ≤ n is a given window size. Thus, for
a given window size L, we have a finite population
�Sk�L��n−L+1

k=1 of n−L+1 partial walks. The statistic
of interest is the variance of this finite population,

F2�L� = 1
n−L+ 1

n−L+1∑
j=1

(
Sj�L� −E�Sj�L��

)2
:

The quantity F�L� is called the fluctuation.
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Under the condition of stationarity of the se-
quence, we have

E�F2�L�� = LR�0� + 2
L−1∑
j=1

�L− j�R�j�;

where R�j� = cov�Yi;Yi+j� is the autocovariance
function of the sequence. If there is no covariance
between the Yi, then, for j > 0, R�j� = 0 and

E�F2�L�� = LR�0�;
so that we expect the ln-fluctuation is linear in lnL
with slope 0:5. (The same behavior holds for the
case of covariance up to a specified distance m0.)
If the covariance is decaying geometrically, so that
R�j� ∼ αj, where 0 < α < 1, we have what is known
as a short-memory process, and

E�F2�L�� = LR�0� + 2
L−1∑
j=1

�L− j�R�j�

= c0L+
L−1∑
j=1

Lcjα
j ∼ L:

Therefore, we again expect the ln-fluctuation to be
linear in lnL with slope 0:5. If the covariance is
decaying in an inverse polynomial fashion, so that
R�j� ∼ j2d−1, where d ∈ �0;1/2�, then we have
what is known as a long-memory process (Brock-
well and Davis, 1991). In this case we expect the
ln-fluctuation to be linear in lnL with slope d+1/2
greater than 0:50 if d 6= 0.

Peng et al. use a minimum–maximum partition-
ing of the sequence data to remove strand bias.
Comparing a sample of intron-containing sequences
having average slope of 0:61 with a sample of in-
tronless sequences having average slope 0:50 gave
a statistically significant difference. Their conclu-
sion was that there seems to be evidence for long-
range correlation in intron-rich sequences, while in-
tronless sequences do not show long-range correla-
tion. These findings were greeted with skepticism
by some and admiration by others (Maddox, 1992).
Prabhu and Claverle (1992) reanalyze the data, as
well as additional sequences, and find no particular
association between introns and slopes on fluctua-
tion plots. They conclude that the min–max parti-
tioning scheme introduces biases into the estima-
tion of the fluctuation.

2.8 Long-Range Correlation versus Patchiness

Nee (1992) noted that genomes have known struc-
tural patterns and that these patterns may have
been responsible for the observation of Peng et al.
(1992). Karlin and Brendel (1993) explored the im-
plications of a segmented structure or “patchiness”

for the fluctuation statistic. They consider the case
where each segment is independently distributed,
for simplicity, and the distribution differs between
segments. Then the classical partitioning of vari-
ance gives

E�F2�L�� := var�Sk�L��
= E

[
var�Sk�L��Segment�

]

+ var
[
E�Sk�L��Segment�

]

= L�2p1q1 + 2p2q2� +L2�p1 − p2�2

= c1L+ c2L
2:

With this in mind, we expect lnF�L� to be curvi-
linear in lnL. This contrasts with the linear forms
which were proposed by Peng et al.

Karlin and Brendel note that if there are only
two patch types, and the probability of falling
into either patch is 1/2, then each Yi can be
thought of as a transformed Bernoulli random
variable. That is, Yi = 2X − 1, where X is a
Bernoulli random variable. Then in patch j; j =
1;2, we have E�Yi�Segment j� = pj − qj and
var�Yi�Segment j� = 4pjqj, so that

E�F2�L�� = E
[
L var�Yi�Segment�

]

+ var
[
LE�Yi�Segment�

]

:= L�2p1q1 + 2p2q2� +L2�p1 − p2�2

= c1L+ c2L
2:

Only in the case when p1 = p2 will the L2-term
vanish.

Upon reexamination, the fluctuation plots for the
sequences studied by Peng et al. were found to be
nonlinear. They could be modeled pretty well by a
straight line up to a window width of about L = 50,
but the fit breaks down after that. (It is interesting
to speculate whether or not the curvature could tell
us something about the composition of the patches.)

The work of Peng et al. is extended by Voss (1992)
by using a mapping which does not introduce corre-
lations. Voss seems to find evidence for long-range
correlation (1/f-noise), from which he infers a frac-
tal scaling present in the genome. Buldyrev et
al. (1993) dispute this finding, by showing that
these observations could also have arisen from a
segmented organization. Voss (1993) defends his
previous work. He points out that the long-range
correlation would be expected to create segments of
strand bias, although he does not elaborate on this
idea.

Our conclusion is that, since DNA sequences are
known to show structural differences, the results
of Karlin and Brendel’s analysis suggest there is
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no reason to reject the simpler model of mosaic
structure and patchiness in favor of the long-range
correlation model, which is very hard to interpret
biologically. We also note the questions about the
usefulness of the power-law model which are put
forward by Avnir, Biham, Lidar and Malcai (1998).

3. CHANGE-POINT METHODS FOR
SEGMENTATION

In the following, we discuss multiple and sin-
gle change-point methods which have potential for
the segmentation of DNA sequences. These gen-
eral schemes could be applied to the particular
case of DNA sequences by postulating binomial or
multinomial models for the observations under the
independence assumption. Alternatively, the ob-
servations could be assumed to come from some
other distribution in conjunction with a scoring
method.

The basic form of the single change-point prob-
lem is as follows. Let Y1; : : : ;Yn be ordered random
variables and suppose that the distribution of the
Yi changes (at most once) to a different distribu-
tion after some number �nτ1� of observations, where
0 < τ1 < 1. The multiple change-point case intro-
duces the possibility of more than one change in dis-
tribution, say R changes. That is, each grouping of
data Y�nτr−1�+1; : : : ;Y�nτr�, r = 0; : : : ;R, is supposed
to arise from a different distribution, where for con-
venience we take 0 = τ0 < τ1 < · · · < τR < τR+1 = 1.
For reviews of theoretical issues connected with
change-points see Zacks (1983), Wolfe and Schecht-
man (1984) and, more recently, Bhattacharya
(1994). For modern developments in theory and
application see the monograph Change-Point Prob-
lems edited by Carlstein, Müller and Siegmund
(1994).

For applications to DNA sequences, the specific
case of the retrospective, multiple change-point
problem is of interest. The multiple change-point
problem can be broken down into the problem of
determining how many change-points exist in a se-
quence and of determining the locations of these
change-points. One can distinguish among three
types of approaches, to solve these two problems
simultaneously or sequentially, which are relevant
for DNA segmentation:

(a) iterated use of tests for single change-points,
thus finding a sequence of change-points and as-
sociated segments;

(b) minimization of a global objective function to
find an arbitrary number of arbitrarily located
change-points;

(c) using exceedance of a “local” objective function
above a threshold to declare a change-point and
to find the associated segments.

There is a need to develop change-point methods
which can deal with dependent data in a reason-
able way. The Markov chain method allows for de-
pendence and is very flexible; the price to be paid
for such flexibility is the explosion in the number
of parameters which must be estimated. In this re-
gard sparsely parametrized Markov chain models
are of interest, as are data-driven Markov chains.
The maximum likelihood method for estimating seg-
ments can be extended to include the Markov case
as well. Some recent results in the use of logistic or
other regression models which incorporate depen-
dency in the form of a covariance between obser-
vations may be useful here (e.g., Amfoh, Shaw and
Banney, 1994). The following discussion is based on
the assumption of independent data.

3.1 Binary Segmentation

To fix ideas, suppose that we are in possession of
a likelihood ratio test statistic T for the test of the
null hypothesis of no change-point. Assume that we
reject the null hypothesis for values of T which are
too large. If the null hypothesis of no change-point
is rejected for the data at a predetermined signif-
icance level α, we declare a change-point at that
value nτ1;1 which maximizes T. On each segment,
we now apply the test statistic only to that seg-
ment. For example, if we reject at the significance
level α on both segments, we would obtain two more
change-points nτ̂2;1 and nτ̂2;2. We continue in this
fashion until the null hypothesis cannot be rejected
anymore on any of the current subsegments. This
process defines the binary segmentation method.

The algorithm above which continually refines
change-points by further splitting subsequences is
discussed in Scott and Knott (1974) for the nor-
mally distributed case, where connections with
cluster analysis are also noted, and a simple con-
servative method for splitting data into groups
is discussed. The upper bound on the probability
of splitting into l homogeneous groups and then
getting at least one significant split is

α∗ = 1− �1− α�l;
where α is the significance level which is set for the
test statistic used to split the groups.

Consistency results for this procedure for esti-
mating the true change-points τ1; : : : ; τR under
mild conditions, assuming that the τ1; : : : ; τR are
fixed, have been obtained by Vostrikova (1981); un-
der the more difficult condition that the τ1; : : : ; τR
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may asymptotically move closer together, Venka-
traman (1992) has achieved similar results. An
example of Venkatraman demonstrates that if
some of the R change-points move together such
that their distances decrease at a rate n−1/2 as
n increases, the binary segmentation method can
be inconsistent, even if the jump sizes increase
with n.

A modified version of this algorithm parallels the
idea of forward stepwise regression, as pointed out
by Christensen and Rudemo (1996). Their algorithm
includes the possibility of removing a change-point
which was previously included and of retesting
individual change-points at an increased signifi-
cance level in analogy to forward stepwise regres-
sion.

This estimation procedure is intuitive and simple,
and the algorithm for carrying out the estimation is
straightforward. However, the theory of inference
for this method can be quite involved. For the most
part, these methods depend on simulation in order
to determine overall levels, although asymptotic re-
sults are available for classical distributions in the
independent observation case.

3.2 Global Segmentation

The idea in global segmentation is to minimize
some target criterion over every possible allowable
partition of the data into R + 1 contiguous seg-
ments. A useful target criterion is the deviance
function, which naturally extends the idea of least-
squares estimation to the exponential family case.
The quasideviance may be used as a target cri-
terion when only the mean–variance structure is
specified; this leads to a minimum quasideviance
approach to change-point estimation. A refinement
may be made by adding a penalty function to the
target function. Such a penalty function is usually
a function of the number of change-points. Use of
the Schwarz criterion for change in normal means
was developed by Yao (1988); this was extended to
the estimation of a step function in Gaussian noise
by Yao and Au (1989), and naturally generalizes
to the quasideviance setting; for more details see
Braun and Müller (1998).

This estimation method is straightforward in
principle. The details of implementation are more
difficult, if large data sets are involved. Theoreti-
cal results on asymptotic properties are available
for the change-point problem in a wide variety of
settings for independent observations. For exam-
ple, the multinomial case can be treated within the
quasideviance framework; then results are avail-
able on consistency of estimators for location of
change-points, for number of change-points and for

other parameters, as well as asymptotic distribution
theory for all estimates.

Such a procedure seems in principle to require
one to check all possible partitions of the data into
R+1 contiguous blocks. The number of possible par-
titions of the data increases dramatically with the
sample size n and number of change-points R and
is given by

(
n− 1

R

)
:

As already noted, this approach is impractical for
the large sequences found in molecular biology
databases.

The Auger–Lawrence dynamic programming algo-
rithm is designed to compute the global minimum
in just the situation described above, and consists
of two main steps:

Step 1. Compute the target criterion for all pos-
sible segments.

Step 2. Sequentially compute the optimal parti-
tion for 2; : : : ;R+1 segments using the information
obtained in Step 1.

The algorithm requires roughly O�n2T�n�� oper-
ations, where n is the length of the sequence and
T�n� is the overhead associated with computing the
target criterion in the first step. This method is
guaranteed to find the global minimum. It may be
possible in some situations to achieve greater effi-
ciency in the overhead. In any case, if direct compu-
tation of the global minimum is necessary, then this
algorithm or a similar one should be used.

To cut the computational effort even further, ad
hoc algorithms may be devised. The following pro-
vides an example:

Step 1. Begin with no change-points.

Step 2. Determine a change-point which gives
the maximum reduction in the target criterion.

Step 3. Split each segment, and take as the
next change-point a point determining a split which
produces the maximum reduction in the target
criterion.

Step 4. Repeat Step 3 R − 2 more times to ob-
tain R change-points.

This method shares with the binary segmentation
procedure the property of maintaining the original
splits; it may be easier to accept a method where
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Fig. 6. A typical scan analysis of bacteriophage λ. A moving average G + C content with a 400-base window centered at the current
position is used to highlight areas of increased G+C content.

two large segments are further refined rather than
where the original large segments are erased and
differing change-points are introduced.

Computationally, this hierarchical approach re-
quires O�n� operations. However, it is not guaran-
teed to find the global minimum and in fact may
fail badly. Variants which allow certain changes
on previously established segments may be of in-
terest. For instance, after a new change-point has
been identified, a loop can be added which iterates
through the current change-points and repositions
them within their respective segments with respect
to the global minimum deviance target. Such com-
putational methods are probably useful mainly for
screening or for very large datasets.

Ultimately, there is a tradeoff to be made between
the sophistication of the model and the computa-
tional effort needed to calculate results. We note
that this problem is combinatorial in nature, and
similar problems have been successfully tackled in
the engineering and physics literature by related
methods, such as simulated annealing, or “artificial
intelligence” methods, such as the taboo search (Cvi-
jovic and Klinowski, 1995).

3.3 Scan Statistics

In a brief digression, we touch upon a widely used
method for detecting regions of biological interest in
DNA sequences, namely, the method of scan statis-
tics. The method may also be thought of as a visu-
alization method for sequence segmentation.

In scanning techniques, the letters of an alpha-
bet of interest are numerically scored, for example,
by assigning +1 to G or C and 0 to A or T, and a
moving average is plotted (see Staden, 1984). An ex-

ample of this approach for bacteriophage λ is shown
in Figure 6, where at least two regimes of differing
G+C proportions can be discerned.

Formally, we take Y1; : : : ;Yn as defined above
and define a mapping g from an alphabet of interest
into the real numbers. Next, we consider the partial
sum Sj of L observations of g�Yi� starting at posi-
tion j in the sequence, where j = 1; : : : ; n −L + 1,
that is,

Sj =
j+L∑
i=j

g�Yi�:

The quantities Sj are evaluated locally at each point
of the sequence and are known as L-scan statis-
tics. Intuitively, high values of Sj represent loca-
tions in the genome where there is a concentration
of observations with high values of g. The stochas-
tic properties of L-scans have been derived by Kar-
lin, Dembo and Kawabata (1990) and Karlin and
Altschul (1990). This involves a study of the devi-
ation from the independent sequence case with the
aim to pinpoint areas of statistically significant de-
viation, and includes the Markov-dependent case.
For review and further development of these ap-
proaches, see Karlin and Dembo (1992) and Karlin
and Brendel (1992).

The running window approach is a graphical
presentation of the L-scan approach. This leads
naturally to the questions of optimal assignment of
scores to the alphabet and selection of window size
so that important features will be detected visually.
These issues are explored in Tajima (1991) under
the independence assumption by means of simula-
tion studies and elementary probabilistic reason-
ing. Also of interest in this connection is the work of
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Stoffer, Tyler and McDougall (1993), who derive the
optimal score to emphasize periodicities in the se-
quence data, assuming a stationary time-dependent
structure.

In general, the L-scan statistics correspond to
smoothing the data, and the window selection prob-
lem corresponds to the familiar bandwidth selection
problem in the smoothing literature. Such L-scan
statistics may provide a pointer to locations in the
genome where there are interesting things. These
methods are not designed to estimate change-points,
but the transformed data can also be used as input
to methods for detecting change-points.

3.4 Locally Weighted Split Polynomial Regression

Kernel smoothing and similar nonparametric
regression methods allow modeling smooth varia-
tion of probabilities and distribution parameters
within segments, while suitably modified versions
also allow for the local detection of change-points;
see Müller (1992) for a kernel method and Müller
(1993) for an analogous proposal based on local
polynomial fitting. For specific versions, the rate
of convergence of estimated change-point locations
is shown to be n−1 in Müller and Song (1997).
Under the more restrictive assumption of Gaus-
sian observations, a similar result was obtained
by Loader (1996). Adapting methods developed in
Fan, Heckman and Wand (1995) and refined in Fan
and Gijbels (1996), these ideas can be extended to
localized quasilikelihood models. In the following
we propose a framework for the application of split
local polynomial fitting to the DNA segmentation
problem.

In general, we could estimate a smooth mean re-
gression function g�x� = E�Y�X = x� from data
�Xi;Yi� by locally fitting polynomial functions. The
fitting procedure employs kernel weights generated
by Kb�z� = �1/b�K�z/b�. Here K is a nonnegative
kernel or weight function with compact support; for
instance, K�x� = �1 − x2�µ+, where µ = 0 (rectan-
gular kernel), µ = 1 (Epanechnikov kernel), µ = 2
(biquadratic kernel) or µ > 2. Allocating the weight
Kb�Xi−x� to the observation �Xi;Yi� in the quasi-
likelihood Q, the local polynomial kernel estimator
ĝ of a mean regression function g is given by

ĝ�xyp; b� = β̃0�x�;
where

β̃�x� =
(
β̃0; : : : ; β̃p

)′�x�

= arg max
β∈<p+1

n∑
i=1

Q
(
�β0 + · · · + βp�Xi − x�p�;Yi

)

·wiKb�Xi − x�

and the wi denote additional case weights which are
sometimes useful.

The weighted least squares approach is a special
case, where

β̃�x� = arg min
β∈<p+1

n∑
i=1

�β0 + · · · + βp�Xi − x�p −Yi�2

·wiKb�Xi − x�:
In this prescription for local polynomial smooth-
ing, the smoothness of the function estimate ĝ is
inherited from the smoothess of the kernel func-
tion K. To incorporate segmentation, assume that
S1; S2; : : : ; Sl are l given segments.

The idea is to fit a smooth function within the
segments, but to allow for jump discontinuities at
the endpoints of the segments. For the local polyno-
mial modeling approach, this is easily implemented
by using the modified target criterion

β̂�x� = arg min
β∈<p+1

l∑
j=1

n∑
i=1

1�x∈Sl;Xi∈Sl�

· �β0+ · · · +βp�Xi−x�p−Yi�2

·wiKb�Xi − x�;
in the least squares case and an analogous cri-
terion in the quasilikelihood case. This means
that the function values are fitted for each seg-
ment separately, not taking any observations from
other segments into account. The local polynomial
method automatically provides for the necessary
adjustments near the endpoints; for analogous
implementations with kernel methods, such ad-
justments can be explicitly implemented by using
boundary kernels.

This method provides segmented smooth fits once
the segments have been determined and a smooth-
ing parameter b is provided. In practice, one needs
to estimate the segments, usually by determining
first a suitable smoothing parameter or bandwidth
and then estimating the endpoints. One common
principle to locate the segments is to choose those
locations as endpoints of segments where the re-
sulting jumps in the function g are maximized. As-
sume that one considers just two segments S+ and
S−, which have a common endpoint at t, that is,
S− = �−∞; t� and S+ = �t;∞�. We then define the
function

1̂�t� = β̂+0 �t� − β̂−0 �t�;
where β̂±�t� = �β̂0

±�t�; : : : ; β̂p
±�t��′ and

β̂±�t� = arg min
β∈<p+1

n∑
i=1

1�Xi∈S±�

·
{
β0 + · · · + βp�Xi − t�p −Yi

}2

·wiKb�Xi − t�:



156 J. V. BRAUN AND H.-G. MÜLLER

The change-point estimate is then τ̂ =
arg max 1̂�t�. Denote the locations of the ordered
maxima of 1̂�·� by τ̂1; τ̂2; : : : ; that is, 1�τ̂1� ≥
1�τ̂2� ≥ 1�τ̂3� ≥ · · · : Choosing l change-points,
the �l + 1� segments generated by the sequence
τ̂1; τ̂2; : : : ; τ̂l are then Ŝ1 = �−∞; τ̂�1��, Ŝ2 = �τ̂�1�;
τ̂�2��; : : : ; Ŝl = �τ̂�l−1�; τ̂�l�� and Ŝl+1 = �τ̂�l�;∞�,
where �τ̂�1�; : : : ; τ̂�l�� are the order statistics of
�τ̂1; : : : ; τ̂l�. The estimated function is obtained
as ĝ�x� = β̂0�x�, where in the definition of β̂�x�
above the segments Si are replaced with estimated
segments Ŝi. This estimate is adapted to the es-
timated segmentation by declaring the estimated
change-points as endpoints of the support.

Theoretical results for this kind of procedure show
that the rate of convergence for estimated change-
points is Op�n−1�. Invariance principles hold for the
fixed jump sizes when using smooth boundary ker-
nels, at the cost of slightly slower rates for estimated
change-points; they hold for split local polynomial
change-point estimators only for the case of con-
tiguous jump sizes. That means that one assumes
that asymptotically the jump sizes converge to zero;
this is also known as the case of a faint signal or
the small jumps case. These asymptotic properties
are explored in Müller (1992) and Müller and Song
(1997).

3.5 Local Nonparametric Segmentation in Action

A big advantage of the local split polynomial fit-
ting method, compared with global schemes, is the
fact that everything is based on local computations,
and efficient algorithms for local polynomial or ker-
nel fitting require only O�n� multiplications. Band-
width choice and selection of the number of change-
points increase the computational effort again. Nev-
ertheless, the local methods scale up to larger num-
bers of bases much better than the global methods,
which are hampered by the requirement to solve
high-dimensional optimization problems.

Even if one eventually prefers global, for instance
Bayesian, segmentation methods, the locally based
nonparametric approaches provide easy-to-compute
starting configurations for global segmentation
schemes. Since global schemes typically depend
on iteration algorithms, the computational ease
as well as quality of an initial segmentation can
be a crucial ingredient for the success of a global
method.

For the practical implementation of local nonpara-
metric segmentation algorithms, certain auxiliary
parameters need to be determined. For the imple-
mentation with split local polynomials, these are
the order of the local polynomial to be fitted and the

bandwidth. As for the order of the polynomial, for
virtually all applications fitting of local first-order
polynomials, that is, choice of p = 1, correspond-
ing to the fitting of local lines, will suffice. A harder
problem is the choice of the bandwidth, which can
be coupled with the problem of finding the number
of change-points l.

One approach is to base these choices on an esti-
mate of the prediction error such as that provided by
the leave-one-out cross-validation sum of squares,

CV�l; b� =
n∑
i=1

�ĝ�−i��Xi� −Yi�2wi;

which is to be minimized with respect to l and b.
Other strategies which are worth exploring include
two-step procedures, selecting first a bandwidth
based on pilot methods and then the number of
change-points via cross-validation. The problem of
choosing the number of segments can alternatively
be phrased as the problem of finding a critical
threshold 10, such that change-points occur at all t
where

∣∣1̂�t�
∣∣ ≥ 10:

We note that within the segments, the mean re-
gression function ĝ is allowed to vary smoothly in
the local method, but is required to be constant
in the global segmentation schemes. This increased
flexibility is an advantage of the local method. The
disadvantage of the local methods is that they de-
pend heavily on the choice of a smoothing parameter
b as well as of a critical determination of number of
change-points, or alternatively, of the critical jump
size value 10. This drawback is shared with iterated
testing and stepwise regression methods, where lev-
els of the iterated tests must be specified which then
also have a strong impact on the number of seg-
ments estimated. If 10 is chosen too small, spurious
jumps which are caused by noise in the data will be
erroneously detected and the number of segments
will be overestimated; the opposite happens if 10 is
chosen too large. These choices become much more
tricky for dependent data (see Lombard and Hart,
1994). However, at a minimum the outcomes of such
local approaches could be used as starting points for
the more elaborate global methods.

After determining the change-points, the usual
Lp-convergence properties of the curve estimates on
the segments are preserved due to fast convergence
of the estimated change-point locations, as demon-
strated in Müller (1992). In several limited simu-
lations (not shown) with the binomial, exponential
and Gaussian cases, this local segmentation method
performed well overall. While it is well known that
cross-validation gives consistent (if not sometimes
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Fig. 7. �Top� the function 1̂�t� indicating where change-points might be located in the bacteriophage λ sequence; �bottom� the cross-
validation sum of squares as a function of the number of change-points.

overly variable) bandwidth choices, the asymptotic
properties of the corresponding selector of the num-
ber of change-points need to be further investigated.
A competitor is the determination of the multiplic-
ity of change-points with the Schwarz criterion (Yao,
1988).

Demonstrating these local segmentation ideas
with the bacteriophage λ sequence, we first binned
the data into nonoverlapping windows of length
200, leading to 242 such bins. The bandwidth was
chosen as 5,000 (the unit is base-pair here). Both
cross-validation and a version of the pilot method

(Müller, 1985) gave bandwidths which were consid-
ered too small. The function 1̂�t� under these spec-
ifications and the cross-validation sum of squares
in dependency on the number of change-points are
shown in Figure 7. Constraints were imposed for
change-points to have a minimum distance of 5,000
from one another as well as from the ends of the
data. Under this constraint, the order of the lo-
cal maxima of the function 1�t� was as follows (in
units of 1,000 base pairs): τ̂1 = 22:6; τ̂2 = 33:2;
τ̂3 = 39:2; τ̂4 = 6:0, τ̂5 = 27:8; τ̂6 = 17:6; and
τ̂7 = 11:4.
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Fig. 8. Choosing bandwidth 5;000; fits with split local polynomials, assuming no �upper left�; one �upper right�; two �lower left� and
three �lower right� change-points for the bacteriophage λ sequence.

The fits which were obtained when assuming
0–7 change-points are shown in Figures 8 and 9.
From the cross-validation plot in Figure 7 as well
as from visual inspection of the various fits in Fig-
ures 8 and 9, it appears that assuming about three
change-points leads to a reasonable fit for these
data.

4. DISCUSSION

We have observed that segmentation models are
useful for modeling DNA sequence data. They are
soundly underpinned by biological theory, which
demonstrates and predicts such segments within
the genome—so far, results from other models such
as the long-range dependence model or the walk-
ing Markov model remain somewhat mysterious.
Applications of segmentation models are locat-
ing introns, sequence alignment, decomposition of
long sequences into homogeneous pieces and evolu-

tionary studies. The various segmentation models
which have been used are considered within the
unifying framework of the multiple change-point
problem. Besides reviewing the segmentation tech-
niques that have been used successfully, we briefly
discussed a promising new visualization method:
local segmentation by nonparametric regression,
which in addition accommodates drift within seg-
ments.

As noted by Geyer (1995), we should distinguish
between the various concerns involved in the analy-
sis of DNA sequence. First, we have the underlying
biological theory, which encompasses the physical
and chemical composition of the sequence, as well
as its evolutionary history. This theory may or may
not make definite predictions about the structure of
the sequence, but in any case should be respected
by the statistical model we choose for analysis. Sec-
ond, we have the stochastic model of the sequence.
Independence models may be appropriate when we
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Fig. 9. Split local polynomial fits for the bacteriophage λ sequence, assuming four �upper left�; five �upper right�; six �lower left� and
seven �lower right� change-points.

are interested in structural properties, and may
adequately reflect biological functional constraints.
More general models which incorporate dependence
structures based on the underlying chemistry and
physics are of interest but have not been well devel-
oped to date. Third, we have the statistical theory
of inference and its associated mathematical ma-
chinery. Fourth, and finally, we have the practical
problem of actually computing the quantities of
interest from the given sequence data.

The method of Fu and Curnow is thus usable
when interest centers on the structural properties
of the sequence. The problem of choosing l changed
segments is seen as a special case of the problem of
choosing R = 2l suitably restricted change-points.
The model requires prior knowledge of the parame-
ters of the underlying distributions; the restriction
on segment length must be evaluated within the
scope of its intended application. As usual with more

complicated models, the classical inferential theory
may be difficult. Also, work needs to be done to de-
termine the sensitivity of this approach to misspec-
ification of those parameters, as well as to allow
estimation of the parameters from the data, per-
haps by an iterative approach. Dynamic program-
ming approaches provide O�n2� or faster methods
for computing the locations of the segments.

The hidden Markov chain model seems overall to
be suitably flexible, finding practical use in many
settings. It is readily customized to capture under-
lying biological theory, and the estimation theory
is particularly straightforward. It has been noted
that this very flexibility may also be a weak point,
requiring large data sets for successful use. Also,
there is little classical theory addressing model
selection or inference. Dynamic programming tech-
niques provide fast computation of smoothing dis-
tributions given the parameters and the data, but
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estimation of the parameters requires a method
such as the EM algorithm, which may fail to find
the global optimum.

The framework put forward by Liu and Lawrence
provides a general setting for such problems. It
can incorporate biological information such as the
existence of secondary protein structure. The the-
ory of inference is straightforward and, under
some conditions, it may be possible to marginalize
over nuisance parameters. Computational issues
center around implementation of simulation meth-
ods for computing posterior distributions, methods
for sensitivity analysis and optimizing the effort
needed.

Local segmentation by split local polynomial fit-
ting provides a formal extension of scan statistics
for visualizing regions of interest. The walking
Markov model contains the idea of a smoothly vary-
ing change in the underlying structure, but does not
seem as parsimonious. Local segmentation provides
for estimation of location and size of jump points,
and naturally implements the idea of gradual
change within segments. The method, as are most
such methods, is analyzed under the assumption of
independent data. No further restrictions are nec-
essary; computation is local and therefore fast and
scales up to large data sets; and a fairly comprehen-
sive asymptotic theory is in place, although there
remain many open questions. The relatively fast
implementation of the local nonparametric methods
allows visual selection of a bandwidth or window
width and thresholds, and altogether this makes
the local nonparametric method a very attractive
alternative to the global schemes. Global optimiza-
tion schemes with very large sequences will require
further research in improving their computational
properties, as will extensions to dependent data
and use of covariate information.

There is a large body of theory and methods for es-
timation and inference in the multiple change-point
problem which may be taken advantage of when
contemplating the DNA segmentation problem. For
all such methods, there are some practical and nu-
merical issues to be resolved before large-scale ap-
plications are possible—in particular, methods with
global target criteria need to be implemented with
efficient programming approaches. It is mandatory
that the statistical model chosen reflects the under-
lying biological process and its associated chemical
and physical constraints, at least to the extent nec-
essary to obtain valid predictions and interpreta-
tions.

We note that even though DNA sequence data are
known to show dependence of all sorts, the indepen-
dence assumption is so attractive theoretically and

practically that it is usually made, with the under-
standing that it allows capturing the relevant func-
tional constraints to a large extent. It seems that the
necessary infrastructure is in place for development
of both theory and application of multiple change-
point models for dependent data, both within and
beyond the established hidden Markov chain mod-
els. Such developments will be immediately usable
in the DNA segmentation problem.

We thus expect that the multiple change-point
problem, especially for dependent data, and in par-
ticular the local approaches, will continue to be an
important research area. It is of interest to develop
tests and diagnostics regarding the issue of whether
change-points associated with discontinuities in an
otherwise smooth function are present (for a pro-
posal in this direction, see Müller and Stadtmüller,
1997) and to find reliable and computationally feasi-
ble estimation procedures for the number of change-
points present. The potential applications range far
beyond DNA sequence data to other sequence data
problems in biology and in science and technology
in general.
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