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Assessing Uncertainty in Measurement
Leon Jay Gleser

Abstract. In 1993 the International Organization for Standardization
(ISO), in cooperation with several other international organizations, is-
sued Guide to the Expression of Uncertainty in Measurement in order to
establish, and standardize for international use, a set of general rules for
evaluating and expressing uncertainty in measurement. The ISO recom-
mendation has been of concern to many statisticians because it appears
to combine frequentist performance measures and indices of subjective
distributions in a way that neither frequentists nor Bayesians can fully
endorse. The purpose of this review of the ISO Guide is to describe the
essential recommendations made in the Guide, and then to show how
these recommendations can be regarded as approximate solutions to cer-
tain frequentist and Bayesian inference problems. The framework thus
provided will, hopefully, allow statisticians to develop improvements to
the ISO recommendations (particularly in the approximations used), and
also better communicate with the physical science researchers who will
be following the ISO guidelines.

Key words and phrases: Accuracy, measurand, random errors, system-
atic bias, frequentist distributions, subjective distributions, combined
measurement, propagation of errors, use of expert judgement, confidence
intervals, credible intervals, estimation of risk.

1. INTRODUCTION

Measurements and the conclusions derived from
them are the foundation of science and technology.
No measurement can perfectly determine the value
of the quantity being measured (the measurand).
Imprecisions arising from flaws in the construction
of the instrument, from operator error, from incor-
rect specification of environmental conditions or
from failure to identify all factors determining the
measurement output can lead the measurement
to deviate from the measurand value. A measure-
ment, together with current knowledge, can allow
one to eliminate certain values as implausible, but
there will be uncertainty about which of the re-
maining values is the correct one. A measure of the
spread of the collection of values not rendered im-
plausible by the measurement might be called the
uncertainty of that measurement.

Scientists checking each other’s conclusions about
a certain measurand will compare measurements.
They need to know what amount of disparity be-
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tween measurements is acceptable. A measure
of uncertainty should set limits for such differ-
ences, such that a difference outside of these limits
suggests that different measurands are being mea-
sured. Thus, communication among scientists about
the results of their measurements requires presen-
tation of some index of the uncertainty of the
measurement(s) involved.

In industry, measurements of processes are com-
pared to requirements set by management or to
quality standards set by the national standards
laboratories. For example, the diameters of drilled
openings in circuit boards are compared to values
set by a manufacturer’s specifications, whereas the
viscosity of motor oil must meet standards decided
upon and enforced by the oil industry. Instrumental
calibration is typically done by using instruments
on measurands whose values are “known” (stan-
dards). Knowledge of the amount of uncertainty in
the measured values of these standards is required
in order to determine if the instruments being cal-
ibrated need to be adjusted to remove systematic
bias.

How should an index of uncertainty of measure-
ment be defined and presented? For measurements
that are (in theory) repeatable, with outcomes
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whose deviations (errors) from the measurand ap-
pear random with mean zero, the traditional quan-
tification of uncertainty for a single measurement
has been some multiple of the standard deviation
(or other suitable measure of spread) of the distri-
bution of errors. If u is the uncertainty of a mea-
surement m, the measurement and its uncertainty
are often presented in the form

�1� m± u:

Unfortunately, in this notational convention the
multiple of the error standard deviation used to cal-
culate u varies widely from field to field, and even
among researchers within a field. In physics, u is
typically chosen to be the error standard deviation,
so that (assuming that errors are approximately
normally distributed) the interval (1) gives a 68%
confidence interval for the value of the measurand.
Other disciplines may set u to be 1.96 times the
error standard deviation, so that (1) is a 95% con-
fidence interval for the value of the measurand. At
various times in the last century, prominent scien-
tists (such as Churchill Eisenhart; see Eisenhart,
1968) have deplored the multiplicity of uncertainty
indices and notational practices, and called for a
standard way of presenting information about un-
certainty in measurement.

As the processes treated in science and indus-
try become more and more sophisticated, requiring
extremely high degrees of accuracy, the simplistic
model

�2� m = µ+ e; e random with mean 0;

has become less and less realistic because devia-
tions from the measurand µ due to imprecisely de-
termined contextual conditions (or imprecisions in
the scientific models used) are now of such a magni-
tude that they cannot be ignored. These deviations
tend to hold constant over repeated measurements
(in a given context) and thus lead to systematic bias
in measurement.

Consequently, the model

�2′� m = µ+ b+ e; e random with mean 0;

where b is the systematic bias, may be more ap-
propriate. This is particularly true when b and the
standard deviation of e are of the same order of mag-
nitude. If b is known, then of course we can subtract
b from m and create a new measurement that obeys
model (2). It is much more often the case, however,
that the value of b is not precisely known. Determin-
ing b may involve other measurements (with their
own uncertainties) and also require scientific judge-
ment. Scientific opinions are not infallible and can

vary from expert to expert. If a range �X−d;X+d�
of values from b is known with near certainty to
contain the correct value of b, then conservative
methods for establishing a confidence interval for
the value µ of the measurand have been proposed.
For example, the method advocated by Eisenhart
(1963) uses the midpoint X as a bias correction to
m, and reports the interval

�3� �m−X� ± �1:96�st.dev. of e� + d�

as a 95% confidence interval for the value of the
measurand.

The method described by Eisenhart has been
called “the (American) orthodox position.” It has
been used by the National Bureau of Standards
(now called the National Institute of Standards
and Technology) of the United States, and similar
methods also have been recommended by the Na-
tional Physical Laboratory of the United Kingdom.
Apart from requiring specification of a range of val-
ues for the bias, this approach avoids reliance on
individual scientific judgement and presents uncer-
tainty about the measurand in frequentist terms,
thus following the paradigm for statistical inference
that has been the “orthodox” American and English
approach to statistical inference in this century.

Indeed, the strong belief of supporters of the “or-
thodox position” that data-based measurement, be-
ing objective, was superior to “subjective” expert
opinion, led them to make a strong distinction be-
tween random and systematic uncertainties, and
to insist that these components of any overall un-
certainty be separately reported. Many statisticians
even felt that these components should not be com-
bined at all. In response Eisenhart and Collé (1980)
stated:

Without depreciating the perils of short-
hand expressions, there is often a need
for an overall uncertainty statement
which combines the imprecision and
systematic uncertainty components. Ar-
guments that it is incorrect from a
theoretical point of view to combine the
individual components in any fashion are
not always practical. First, an approach
which retains all details is not amenable
for large compilations of results from
numerous sources. And second, this ap-
proach shifts the burden of evaluating
the uncertainties to users. Many users
need a single uncertainty value result-
ing from the combination of all sources
of inaccuracy. These users believe, and
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rightly so, that this overall estimate of
inaccuracy can be most appropriately
made by the person responsible for the
measurement result.

The quantity “1:96(st.dev. of e) + d” can be re-
garded as such a combined uncertainty index for
the measurement m. Even so, note that this index
treats the random and systematic components of
model �2′� differently.

The increase of international cooperation in
industry and the merging of European commer-
cial systems seems to have given new impetus to
attempts to standardize the reporting of measure-
ment uncertainty. Such standardization is seen
as crucial to communication among national lab-
oratories, and also to communication among and
within multinational industries. In 1978 the Inter-
national Bureau of Weights and Measures (BIPM)
sent questionnaires to 32 national laboratories
about their measurement methods and reporting
of uncertainty. In the 21 replies received, the only
unanimous agreement (not unexpectedly) was that
the standard deviation be used for reporting “ran-
dom uncertainty” (i.e., uncertainty arising from
mean-zero random errors of measurement). Oth-
erwise, there was a wide divergence of opinion,
particularly on how to adjust for known sources of
systematic bias.

In 1980 the BIPM convened a Working Group,
consisting of representatives from 11 national stan-
dards laboratories. This Working Group produced
a set of five rules for reporting uncertainty. The
International Committee for Weights and Mea-
sures (CIPM) adopted these rules in 1981 and
later reaffirmed support of the BIPM recommen-
dation. In 1986, CIPM asked the International
Organization for Standardization (ISO) to develop
a detailed guide based on the BIPM recommen-
dations “which : : : reflects the needs arising from
the broad interests of industry and commerce.”
In 1993 the first edition of Guide to the Expres-
sion of Uncertainty in Measurement was published
(ISO Technical Advisory Group, Working Group 3,
1993; hereafter, the Guide). In the same year, the
National Institute of Standards and Technology
published Guidelines for Evaluating and Express-
ing the Uncertainty of NIST Measurement Results
(Taylor and Kuyatt, 1993) that implements the
BIPM/ISO approach.

If the BIPM/ISO approach is followed, there will
be international standardization of presentations of
uncertainty, at least by national laboratories; such
standardization is certainly highly desirable. The
methods advocated for expressing uncertainty in the

Guide, however, seem to form a new paradigm for
statistical inference that is neither completely fre-
quentist nor completely Bayesian, and consequently
lack a firm theoretical basis. Thus, there is concern
among statisticians that the methods advocated by
the Guide could prove to be misleading or inaccu-
rate. Widespread acceptance of the paradigm advo-
cated in the Guide within the physical science com-
munity also has the potential to increase confusion
about statistical concepts and thus impede commu-
nication between statisticians and nonstatisticians.

The main points of the BIPM/ISO proposal for
calculating and presenting uncertainty of measure-
ment are summarized in Section 2. It is shown in
Section 3 that the two types of uncertainty index
mentioned in this proposal can each be posed as
a solution to a certain frequentist inference prob-
lem. Bayesians will probably, and appropriately,
object that the BIPM/ISO proposal does not go far
enough in modeling and incorporating subjective
(expert) opinion into the expression of uncertainty,
and that indices of the posterior distribution of the
measurand value should be reported in place of
the BIPM/ISO uncertainty measures. In Section 4,
however, it is shown that the BIPM/ISO measure
of uncertainty provides an upper bound for the to-
tal Bayes risk of the measurement as an estimator
of the measurand. Some generalizations of the re-
sults presented in Sections 3 and 4 are outlined
in Section 5. Finally, the question whether a sin-
gle universal measure of uncertainty can exist is
briefly considered in Section 6.

2. THE BIPM/ISO PROPOSAL

2.1 The Basic Approach

The simple measurement context described in
the Introduction is a special case of a more gen-
eral measurement problem where the measurand
µ is not necessarily directly measured, but rather
is obtained as a function of p measured quanti-
ties θ1; : : : ; θp, whose uncertainties are determined
through statistical analysis of a series of observa-
tions (Type A uncertainties), and of r measurands
λ1; : : : ; λr, whose possible values and uncertain-
ties (Type B uncertainties) are evaluated by other
means, including expert judgement. That is,

�4� µ = g�θ1; : : : ; θpyλ1; : : : ; λr� = g�uyl�;
where u = �θ1; : : : ; θp�′, l = �λ1; : : : ; λr�′ and g�·y ·�
is a known real-valued function.

As an example, we might wish to determine the
power µ dissipated by a temperature-sensitive re-
sistor which has resistance λ1 at a specified tem-
perature c and whose linear temperature coefficient
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of resistance is stated in references to be λ2. A po-
tential θ1 is applied to the terminals of the resistor
when the actual temperature is θ2. Both the poten-
tial and the actual temperature are measured by in-
struments which have been statistically calibrated,
whereas the resistance at temperature t and the
linear temperature coefficient of resistance are de-
termined by expert judgement (here, the use of ref-
erences). In this case,

µ = �θ1�2�λ1�1+ λ2�θ2 − c���−1:

Whereas the orthodox approach distinguished
measurements by whether they had random or
systematic errors, the BIPM/ISO approach charac-
terizes measurements by the method through which
their uncertainties are quantified. In the example
just presented, the uncertainties of the measures
of potential and temperature are quantified by
calibration studies (that provide the user with es-
timated standard errors having specified degrees of
freedom). Thus, these measurements have Type A
uncertainties according to the BIPM/ISO classifica-
tion; our notation reflects this classification.

To obtain uncertainties for Type B measurements,
the BIPM/ISO Guide makes several recommenda-
tions. All of these recommendations have in com-
mon the establishment of a range of possible true
values of the quantities in question, and the adop-
tion of a probability distribution over this range.
For a scalar parameter λ, the range of values might
be �X − d;X + d� and the chosen distribution uni-
form or triangular over this range. The distribu-
tional choice, however, serves primarily to justify
formulas for the standard deviation in terms of the
half-width d of the range of values. For example,
this standard deviation is d/3 in the case of the
uniform distribution. The standard deviation of the
chosen distribution is taken to be the (Type B) stan-
dard uncertainty of the measurement of λ. If the
distribution is assumed to be symmetric about X,
or more generally has mean X, then X is taken to
be the measurement of λ.

Let Y1; : : : ;Yp be measurements of θ1; : : : ; θp, re-
spectively. Let σ�Yi� be the standard deviation of
Yi based on repeated use of the measuring instru-
ment yielding Yi, i = 1; : : : ; p. Let s�Yi� be an
estimate of σ�Yi� based on repeated observations;
where appropriate, let νi be the degrees of freedom
of s�Yi�. The (Type A) standard uncertainty of Yi,
denoted u�Yi�, is defined to be σ�Yi� and is esti-
mated by s�Yi�; i = 1; : : : ; p. We have already indi-
cated how measurements X1; : : : ;Xr of λ1; : : : ; λr
and the (Type B) standard uncertainties u�Xj� of
these measurements are defined.

The BIPM/ISO Guide assumes that

�5� m = g�Y1; : : : ;YpyX1; : : : ;Xr� = g�YyX�
will be used as the measurement of µ. A key part
of the BIPM/ISO recommendation is the method by
which the standard uncertainty u�m� of m is calcu-
lated.

Assuming existence and continuity of the first
partial derivatives of g�·y ·�, (5) is expanded in a
first-order Taylor series about �uyl�:

�6�
m ≈

p∑
i=1

∂g�uyl�
∂θi

�Yi − θi�

+
r∑
j=1

∂g�uyl�
∂λj

�Xj − λj�

from which it follows that

�7�
var�m� ≈

p∑
i=1

[
∂g�uyl�
∂θi

]2

u2�Yi�

+
r∑
j=1

[
∂g�uyl�
∂λj

]2

u2�Xj�;

assuming mutual statistical independence of the
Yi’s and λj’s. The approximation (7) will be reason-
ably accurate when the range of values for the Yi’s
and λj’s is sufficiently small that g�·y ·� is nearly
linear over that range.

The standard uncertainty of m is (approximately)
the square root of the right-hand side of (7) and can
be estimated by

�8� ū�m� ≈

√√√√
p∑
i=1

�ci�2s2�Yi� +
r∑
j=1

�dj�2u2�Xj�;

where

ci =
[
∂g�uyl�
∂θi

]

u=Y;l=X
; dj =

[
∂g�uyl�
∂λj

]

u=Y;l=X
;

and

Y = �Y1; : : : ;Yp�′; X = �X1; : : : ;Xr�′:
The Scatterthwaite–Welch formula is used to com-
pute an “effective degrees of freedom” νeff for this
estimate of uncertainty:

νeff =
�u�m��4

�p
i=1�ci�4s4�Yi�ν−1

i

:

(Note that here, the Type B uncertainties have been
assumed known, and thus have infinite degrees of
freedom for purposes of computing approximate de-
grees of freedom. The Guide also suggests ways to
assign degrees of freedom to Type B uncertainties
when such uncertainties are only approximately
known.)
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The BIPM/ISO Guide calls (8) the combined stan-
dard uncertainty of the measurement m. An ex-
tended combined uncertainty for m is defined to be
k times the standard uncertainty, where k is a con-
stant (the coverage factor) chosen to make the inter-
val

�9� m± kū�m�

a 100�1− α�% “confidence” interval for the measur-
and µ. Choosing k to be the 100�1− α/2� percentile
of the t-distribution with degrees of freedom equal
to νeff is said to serve as a reasonable approximation
when the estimated Type A standard uncertainties
have (approximate) chi-distributions.

Either the standard uncertainty or an extended
uncertainty of a measurement m is acceptable as a
quantitative report of uncertainty for the measure-
ment. Note, however, that if m is later used as part
of the determination of a measurand defined as a
function of µ and other quantities, an extended un-
certainty will have to be converted into a standard
uncertainty for m in order to compute the combined
standard uncertainty of the new measurement. For
that reason, the Guide requires that k be separately
specified whenever an extended measurement is re-
ported.

In the context of the measurement model �2′�
given in the Introduction, we can identify θ1 with
the sum µ + b of the measurand and bias, Y with
the original measurement m, and λ1 with the bias
b. Then

µ = g�θ1; λ1� = θ1 − λ1:

If the bias λ1 is equally likely to take on any value in
the interval �X− d; X+ d�, and if Y has a normal
distribution with known standard deviation (Type
A standard uncertainty) u�Y�, then instead of the
interval

�10� Y−X± �1:96 u�Y� + d�

recommended by the “orthodox position” as a
95% confidence interval for the measurand µ, the
BIPM/ISO Guide would recommend

�11� Y−X± 1:96 �u2�Y� + d2/3�1/2

as an approximate 95% “confidence” interval. When
d is sufficiently large relative to u�Y�, the interval
(11) contains the interval (10) even though (10) is
known to be a conservative frequentist confidence
interval for µ. This point raises conceptual issues
about how the BIPM/ISO measures of uncertainty
are to be interpreted.

2.2 Concepts

The Guide’s standard uncertainty of measure-
ment is intended to be interpreted as the standard
deviation of a probability distribution h�µ� of pos-
sible values for the measurand µ. The extended
uncertainty is the half-width of an interval centered
at m that yields a specified probability determined
from the distribution h�·�. The Guide’s interpreta-
tion of the distribution h�·�, and of probabilities
obtained from this distribution, is that such a distri-
bution represents “degree of belief” about possible
values of the measurand.

Although this interpretation seems to coincide
with a Bayesian point of view, the distribution h�·�
is not a posterior distribution for µ given the mea-
surement m. Rather it is constructed partly from
a frequentist distribution for the measurements
Y (and their estimated uncertainties) and partly
from a subjective (degree-of-belief) distribution for
the quantities λ1; : : : ; λr. To make these distribu-
tions comparable indications of degrees of belief,
one must be prepared to argue that a distribution
for a measurement Y of a measurand u can be rein-
terpreted as a distribution of degree of belief about
the values of u based on the observation of Y. This
reinterpretation cannot be Bayesian in nature, for
such a reinterpretation would be equivalent to as-
serting that the distributions of Y conditional on u
and of u conditional on Y are always the same. In-
stead, certain comments made in the Guide seem
to follow the spirit of R. A. Fisher’s justification of
fiducial probabilities. (Particularly revealing is the
note at the end of page 45 that “It is assumed that
probability is viewed as a measure of the degree
of belief that an event will occur, implying that a
systematic error may be treated in the same way
as a random error and that εi represents either
kind.”) There are known conceptual problems with
the general use of fiducial theory. Whether or not
a revival of fiducial probabilities is the intention
of the authors of the Guide, the theory underly-
ing the interpretation of standard and extended
uncertainties requires additional clarification.

2.3 Properties

Nevertheless, there are many attractive features
of the BIPM/ISO method for determining standard
uncertainties of measurements:

1. It uses a familiar measure of variability, the stan-
dard deviation, as its index of uncertainty, and
uses a well-known method for propagating errors
to combine component uncertainties.

2. It eliminates the necessity for distinguishing be-
tween random error and systematic bias, a dis-
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tinction basic to the orthodox method, but (as
argued in the Guide) often dependent on con-
text. (For example, errors made in measurement
due to individual foibles of the measurer can be
viewed as systematic biases when only one in-
dividual is doing the measurements, but can be
viewed as a component of variation when many
individuals are responsible for measurements.)
Even though the Guide distinguishes Type A and
Type B uncertainties, this distinction is used only
in deciding what information needs to be used to
compute uncertainties. Once the standard uncer-
tainty of a measurement is given, it is used in
the same way regardless of whether it is Type A
or Type B.

3. It is highly portable. The standard uncertainty
u�W� of a measurement W and its degrees of
freedom (if u�W� is estimated or approximated)
can be used directly to compute the combined
standard uncertainty and degrees of freedom
for any measurement m composed from W. The
standard uncertainty for m can in turn be used
to compute the combined standard uncertainty
for a new measurement m′ composed from m,
and so on. This is true regardless of whether
u�W� is a Type A or Type B uncertainty.

4. It does not require precise distributional assump-
tions. For measurands u with Type A uncertain-
ties, it is not even necessary to assume the exis-
tence of (prior) distributions of degrees of belief.

Difficulties with the method are as follows:

(a) It appears to interpret standard deviations of
measurement error distributions as if they were
standard deviations of degrees of belief for dis-
tributions of Type A measurands.

(b) The accuracy of formula (6) depends on the cur-
vature of g�·y ·�; and may not be sufficiently pre-
cise for many applications. Using more terms in
a Taylor expansion to account for the nonlinear-
ity of g�·y ·� may fail to provide improvement,
and also is more cumbersome.

The Guide’s extended uncertainties have desirable
properties similar to those of the standard uncer-
tainties, although (because of the need to specify
the constant k) they are more complicated to use.
The extended uncertainties also share all of the
drawbacks of the standard uncertainties. In addi-
tion, they depend for their interpretation on distri-
butional approximations whose applicability is not
assured in every case. As already noted, the “confi-
dence” associated with these extended uncertainties
does not have a clear interpretation in terms of de-
grees of belief.

Fortunately, it is possible to give meaningful in-
terpretation to the Guide’s standard and extended
uncertainties in both frequentist and Bayesian
terms, as seen in Sections 3 and 4, respectively.

3. A FREQUENTIST INTERPRETATION

Although the orthodox method takes a worst-case
view of the quantities λ1; : : : ; λr, it is not a violation
of the frequentist paradigm to seek instead to esti-
mate µ = g�uyl� under a weighted squared-error
loss function:

�12� L�m;u�=
∫ ∞
−∞
· · ·
∫ ∞
−∞
�m− g�uyl��2π�l�dl:

(Indeed, weighted averages of distributions over
“nuisance parameters” underlie the marginal like-
lihood approach (which is a frequentist approach)
to statistical inference. See Kalbfleisch and Sprott
(1970).) Here, π�l� is a nonnegative weight func-
tion defined on the possible values of l that can
represent degree of belief. It is assumed that both
the integral of π�·� over r-dimensional space and
the integral in (12) are finite. Because of this as-
sumption, we can assume without loss of generality
that π�·� is a probability density function. Conse-
quently, even though we may regard some elements
of l as representing fixed unknown states, math-
ematically we can treat l as if it were a random
vector.

3.1 The Standard Uncertainty

In such a context, it seems reasonable to define
the uncertainty of m to be the risk of m as an esti-
mator of µ. Alternatively, so that m and its uncer-
tainty u�m� are measured in the same units, we can
define the uncertainty of m to be the square root of
the risk of m:

�13� u�m� = �E�L�m;u���1/2;

where the expected value is taken over the distribu-
tion of Y. (Remember that m = g�YyX� and that X
is a constant.) Strictly speaking, u�m� is a function
of u, but this fact is suppressed in our notation so
as to parallel the notation used in the Guide. The
Guide would estimate u�m� by substituting Y for u.

If f�· � θ� is the density of Y, then

�14�
u2�m� =

∫ ∞
−∞
· · ·
∫ ∞
−∞
�g�YyX� − g�uyl��2

· f�Y � u�π�l�dY dl:

Consequently, u2�m� can be viewed as the expected
value of the squared difference between g�YyX� and
g�uyl� over the joint distribution of Y and l. Note
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that in this joint distribution, Y and l are statisti-
cally independent.

Now, note that m = g�YyX� can be regarded as
a random variable resulting from one of a family of
transformations g�·yX� of Y indexed by X. In Sec-
tion 2 it was (implicitly) assumed that Y is an unbi-
ased estimator of u. Hence, if g�·yX� were a linear
transformation of Y, it would follow that E�m� =
E�g�YyX�� = g�uyX�. The extent to which E�m�
differs from g�u;X� depends on the amount of non-
linearity in the transformation g�·yX�.

Similarly, µ = g�uyl� can be viewed as a random
variable resulting from one of a family of trans-
formations g�uy ·� of l indexed by u. Assume that
E�l� = X, as would be the case if each compo-
nent of l were uniformly distributed over an inter-
val whose midpoint is the corresponding component
of X. If g�uy ·� were a linear transformation, then
E�µ� = g�uyX�. Thus, when g�ayb� is linear in both
a and b, E�m� equals E�µ�.

Note. Observe one essential difference between
measurements with Type A uncertainties and mea-
surements or states with Type B uncertainties.
Measurements Y with Type A uncertainties vary
randomly about the fixed unknown value u of the
measurand, whereas values of the measurand l
for measures of states having Type B uncertain-
ties vary randomly around the observed measure-
ment X.

Regardless of whether or not g�·y ·� is linear, it is
straightforward to show that

�15�
u2�m� = E�m− µ�2

= Var�m�+ �E�m�−E�µ��2+ Var�µ�;

noting in (14) that Y and l are statistically inde-
pendent.

When g�·y ·� is sufficiently close to being linear in
both arguments, then E�m� is approximately equal
to E�µ� and use of one-term Taylor expansions to
approximate the variances on the right-hand side
of (15), estimating u by Y, yields the square of the
right-hand side of (8). This provides some frequen-
tist justification for the Guide’s recommended stan-
dard uncertainty of m.

3.2 Extended Uncertainty

The Guide’s extended uncertainty may be de-
fined in frequentist terms by requiring the interval
m±ku�m�, whose half-width is the extended uncer-
tainty ku�m�, to have minimum weighted coverage

probability satisfying

inf
u

[∫ ∞
−∞
· · ·
∫ ∞
−∞

P
{
−ku�m� ≤m− µ ≤ ku�m�

}

· π�l�dl

]

≥ 1− α;

(16)

where π�l� is a nonnegative weight function defined
over the values of l. As already noted, π�·� without
loss of generality can be assumed to be a probability
density function and thus l, although conceptually
fixed, can be mathematically treated as if it were a
random vector. (Recall again that µ = g�uyl� and
that m = g�YyX�, where X is the assumed mean
vector of the distribution of l.)

Note. If the standard uncertainties of the ele-
ments of the vector Y have to be estimated, then
u�m� in (16) will involve these (random) esti-
mates, and the probability being integrated on the
left-hand-side of (16) will concern these random
estimates of uncertainty as well as the random
vector Y.

Let

I�Y;l� =
{

1; if �g�YyX� − g�uyl� � ≤ ku�m�;
0; otherwise;

be the indicator of the event �−ku�m� ≤ m − µ ≤
ku�m��, and let f�Y � u� be the density function
of Y. (If u�m� is estimated from observations other
than Y, think of f�· � u� as being the joint density
of these observations as well as Y.) Define

�17� C�u�=
∫ ∞
−∞
· · ·
∫ ∞
−∞

I�Y;l�f�Y � u�π�l�dY dl:

In terms of C�u�, requirement (16) becomes

�18� inf
u
C�u� ≥ 1− α:

Note that C�u� is a coverage probability defined
from the joint distribution of Y (and any other data
used to estimate u�m�� and l.

The Guide’s recommendations for determining k
involve a great many approximations whose appli-
cability is not always clear. First, the use of nor-
mal or t tables to find the multiplicative constant
k seems to require that m − µ = g�YyX� − g�uyl�
is approximately normally distributed (for fixed X
and u). The Guide appeals to the central limit the-
orem and Taylor series approximations involving
(weighted) sums of the elements of Y and l to sup-
port such approximations. Note, however, that even
when Y has an exact multivariate normal distri-
bution and g�ayb� is linear in both a and b, the
convolution g�YyX� − g�uyl� need not have a nor-
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mal distribution if the dimension r of l is 1 or 2
(and the components of l are independent uniform
random variables). The Guide does cite references
that indicate that convolutions of i.i.d. uniform (or
of symmetrical unimodal) distributions share with
the normal distribution the property that approxi-
mately 90–95% of the total probability lies within
two standard deviations of the mean, but the com-
ponents of Y and l are not, in general, identically
distributed, and the components of Y need not have
symmetrical distributions. Further, to use this re-
sult about convolutions, the standard uncertainty
u�m� must be known (or else approximated so ac-
curately that the error has small effect).

If u�m� must be estimated, the Scatterthwaite–
Welch approximate t-calculations recommended by
the Guide have doubtful validity. If the possibility
that Y is based on data series that are not normally
distributed is entertained, then the squared stan-
dard uncertainties of the elements of Y estimated
from this data need not have chi-squared distribu-
tions and need not be independent of (or even uncor-
related with) the elements of Y. Consequently, even
if g�ayb� is approximately linear in a, the pivotal
quantity �m − µ�/u�m� need not have a distribu-
tion that can be approximated by a t-distribution.
One other point to note is that the weights in the
Taylor series expansion (6) depend on the unknown
parameter u and thus are estimated in (8) by sub-
stituting Y for u. Consequently, both the numerator
and denominator of the pivotal quantity

�m− µ�
u�m� =

g�YyX� − µ
u�m�

depend on Y.
Although the left-hand side of (16) is the formal

definition of the (weighted) confidence of the inter-
val m ± ku�m�, recent work on confidence interval
estimation has tended to concentrate on the cover-
age probability C�u� at the “true” value of u, rather
than the minimal coverage probability. For exam-
ple, bootstrap confidence intervals are constructed
by choosing the interval endpoints as a function of
the data so as to make a bootstrapped estimate of
C�u� equal the desired coverage probability 1 − α.
[See DiCiccio and Efron (1996) and discussion fol-
lowing.] Choosing k as a function of the data in this
way may provide a superior measure of uncertainty
free of the ad hoc approximations that are of concern
above. [See Taylor and Kuyatt (1993) for a similar
recommendation.]

3.3 Commentary

Viewed as the risk of a frequentist inference pro-
cedure, (14) most closely resembles squared error

prediction. That is, a statistic m = g�Y� is used to
predict the value of an independent random variable
µ under squared error loss. This is done, according
to familiar theory, by choosing the statistic m to es-
timate the mean of µ. In the present case, the mean
of µ is

�19� G�u� =
∫ ∞
−∞
· · ·
∫ ∞
−∞

g�uyl�π�l�dl:

Realizing that estimation of G�u� rather than
g�uyX� is required makes m = g�YyX� less in-
tuitively attractive. It might be preferable to use
G�Y� instead, particularly if G�u� is approximately
linear in u.

In place of a formula that estimates the variance
of µ based on the approximate linearity of g�ayb� as
a function of b, it might be preferable to compute

τ2�u� = var�µ�

=
[∫ ∞
−∞
· · ·
∫ ∞
−∞

g2�uyl�π�l�dl

]
−�G�u��2;

(20)

and estimate the variance of µ by τ2�Y�. The inte-
grals (19) and (20) can be computed by a variety
of numerical methods, including Monte Carlo sam-
pling; in some cases, exact analytical expressions
can be derived. Note that if G�Y� is used in place
of g�YyX� as an estimate of µ, then the estimated
squared uncertainty of G�Y� is

�21�
u2�G�Y�� = var�G�Y�� + var�g�Yyl��

+ �E�G�Y�� −G�u��2;
which is approximately equal to var�G�Y�� + τ2�Y�
when G�u� is approximately linear in u.

It might be argued that requiring one to spec-
ify the distribution π�l� reduces the portability
of the measurement G�Y� and its associated un-
certainty estimate (21). This would be true if the
distributions used were general. In fact, the Guide
discusses primarily uniform and triangular dis-
tributions for those measurands λj evaluated by
expert judgement (where the experts provide the
endpoints of the range of possible values), and nor-
mal distributions for other quantities having Type
B uncertainty of measurement. (These are usually
combined measurements constructed from statisti-
cal series of measurements and expert judgement.)
Consequently, if l is assumed to have indepen-
dent components, no more information is needed to
compute (19) and (20) than is needed to compute
approximations using Taylor’s expansions.

The coverage probability C�u� defined in (17) can
be thought of as giving the probability that m pre-
dicts µ with error no greater than ku�m�, where
both m and µ are random quantities defined as
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transformations of the observable random vector Y
and of the unobservable random vector l, respec-
tively. The interval m ± ku�m� satisfying (18) can
thus be regarded as a 100�1− α�% prediction inter-
val for µ.

4. A BAYESIAN INTERPRETATION

Bayesians will point to the Guide’s probabilistic
modeling of subjective opinion concerning the ele-
ments of l and question why the same is not done
for the elements of u. The Guide does not answer
that question, and many statisticians believe that
the answer may be political: a compromise made
between those who see no distinction between fre-
quentist and subjective probabilities and those who
have been taught to distrust the use of subjective
opinion in scientific inference.

Yet, it is possible that the failure to probabilisti-
cally model subjective opinion about the elements
of u can be given a robust Bayesian explanation. To
obtain useful results, the authors of the Guide are
willing to incorporate probability distributions for
quantities λ that cannot be evaluated by statistical
analysis of observations, yet also are sufficiently ac-
curately known that any possible deviations from
their assumed values make only a small (but not
negligible) contribution to deviations in the measur-
and µ = g�lyu� of primary interest. In such circum-
stances, errors in assigning probability distributions
to the values of such quantities do not materially in-
fluence the measure of uncertainty produced, partic-
ularly when (as in the Guide’s proposal) only a few
summary indices of such distributions are actually
utilized in the analysis. On the other hand, the fact
that series of observations are used to estimate the
elements of u and their uncertainties suggests that
less is known about the values of u, or that variation
in the values of u produces relatively greater vari-
ation in the values of the measurand µ. In this sit-
uation, errors in probabilistically modeling opinion
about the values of u would be of considerable con-
cern. Because no prior distribution can adequately
model uncertainty in a way satisfactory to every-
one, conclusions that are nearly independent of the
choice of distribution for u are desirable.

A thoroughgoing Bayesian analysis of each mea-
surement problem would be likely to involve exten-
sive computation (particularly if the dimensions p
and r of u and l are large), including analysis of
the sensitivity to the prior distribution of the esti-
mate of u. Although considerable progress has been
made recently in Bayesian computation, the exist-
ing methodology requires programs and expertise
not readily available to the typical scientist, engi-

neer or technician. The best reporting of uncertainty
about the measurand would, of course, be the pos-
terior distribution of that measurand. Such a dis-
tribution is not as portable as the Guide’s measure
of uncertainty. (For example, it would be difficult to
attach the accurate form of the posterior distribu-
tion to a measurand sent for comparative measure-
ment to another scientist, whereas a single number
such as u�m� is easily attached.) An index of spread,
such as the half-width of a highest posterior den-
sity (HPD) credible interval, could be reported in
a single use, but the full posterior distribution will
be needed if evaluation of µ and its uncertainty is
needed as part of a future measurement process.

What, then, can be said in a Bayesian sense about
the Guide’s proposed measure(s) of uncertainty? As
before, let f�Y � u� be the density of the measure-
ment vector Y, where we continue to assume that
this distribution does not depend on l. Let 0�u� be
the (prior) density of u, let π�l� be the (prior) den-
sity of l and let X be the (prior) mean vector of π�l�.
Recall that

µ = g�uyl�; m = g�YyX�;

G�u� =
∫ ∞
−∞
· · ·
∫ ∞
−∞

g�uyl�π�l�dl:

Let

0�u � Y� = f�Y � u�0�u�∫∞
−∞ · · ·

∫∞
−∞ f�Y � u∗�0�u∗�du∗

be the posterior density of u. Then the posterior
mean of the measurand µ can easily be shown to
be

�22� µ�Y� =
∫ ∞
−∞
· · ·
∫ ∞
−∞

G�u�0�u � Y�du:

Further, note that E�µ � u� = G�u�, and that

τ2�u� =
[∫ ∞
−∞
· · ·
∫ ∞
−∞

g2�uyl�π�l�dl

]
− �G�u��2

= Var�µ � u�
is the part of the variation of the measurand µ =
g�uyl� that is attributable to the variation of l. The
posterior variance of µ is then

v�Y� =
{∫ ∞
−∞
· · ·
∫ ∞
−∞
�τ2�u� +G2�u��0�u � Y�du

}

− �µ�Y��2:
(23)

A Bayesian might choose to report the posterior
mean µ�Y� as the measurement, in place of m, and
to report �v�Y��1/2 as the measure of uncertainty in
place of u�m�. However, unless the posterior distri-
bution of G�u� given Y is approximately normal (or
at least is symmetric unimodal), there is no nec-
essary proportional relationship between �v�Y��1/2
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and the half-width of an HPD credible interval for
µ (which would be a good Bayesian candidate for an
extended standard uncertainty measure for µ).

To what extent is the Guide’s measurement m
and standard uncertainty u�m� an approximation
to these Bayesian measures? Let

H�u� = E�m � u�

=
∫ ∞
−∞
· · ·
∫ ∞
−∞

g�YyX�f�Y � u�dY;

u2�u� = Var�m � u�

=
{∫ ∞
−∞
· · ·
∫ ∞
−∞

g2�YyX�f�Y � u�dY
}

− �H�u��2:
It can be shown (see Parzen, 1960, page 387) that
the best linear (inm) Bayes estimator of µ = g�uyl�,
in the sense of least expected squared error over the
joint distribution of Y and u, is

µLinear�Y� = E0�G�u�� + r�m−E0�H�u���;
where

r = Cov0�µ;m�
Var0�m�

and the subscript 0 on the expected value, covari-
ance and variance indicates that these computa-
tions are made relative to the prior distribution,
0�u�. The total (expected posterior) Bayes risk of
µLinear�Y� is

�24�
total Bayes risk of µLinear�Y�
= r2 Var0�m� + Var0�µ�:

Because the linear Bayes estimator based on m is
generally not equal to the Bayes estimator (22), the
total Bayes risk for estimating µ is less than or
equal to the total Bayes risk (24) of µLinear�Y�. Note
that the posterior Bayes risk v�Y� of µ�Y� is an es-
timator of the total Bayes risk, in the sense that the
expected value of v�Y� over the marginal distribu-
tion of Y is the total Bayes risk.

Suppose that

�25� Var0�m− µ�
Var0�G�u��

≈ 0:

Then it is shown in the Appendix that r ≈ 1. Thus

�26�
total Bayes risk of µLinear�Y�
≈ var0�m� + var0�µ� ≈ u2�m�:

Thus when (25) holds, the total Bayes risk of the lin-
ear (in m) Bayes estimator of µ under squared error
loss is approximately equal to u2�m�. This some-
what weakly justifies u�m� as a measure of uncer-
tainty from a Bayesian viewpoint.

Because u2�m� approximates the total Bayes risk
of µLinear�Y�, which is in turn greater than or equal
to the total Bayes risk for the Bayes estimator of µ,
it follows that u2�m� is possibly biased as an esti-
mator of the total Bayes risk of the Bayes estimator
of µ. It is not possible from this analysis, however,
to say that u2�m� is always greater than or equal to
v�Y�.

The assumption made in (25) corresponds to as-
serting that the variability of m around µ is small
relative to the variability of G�u�, which measures
that part of the prior uncertainty of µ due to uncer-
tainty about the values of u. This assumption agrees
with the scenario mentioned at the beginning of this
section that attempted to justify why uncertainty in
the values of l was probabilistically modeled in the
Guide, but uncertainty in the values of u was not.

Note 1. As remarked in Section 3, the function
G�·� can be computed from the known distribution
π�l�. Note that the measurement Y actually is used
to estimate G�u� rather than µ = g�u;l�. The total
Bayes risk for estimating µ is the sum of the aver-
aged (over 0�θ�� mean square error of m as an esti-
mator ofG�u� and the averaged conditional variance
of µ given u. Other functions of Y (such as G�Y�)
may be preferable to m as estimators of G�u�. The
approximations shown above apply also to these al-
ternative functions, with appropriate changes of def-
initions [e.g., of H�u�].

Note 2. The estimates of the uncertainties of
the components of Y have not explicitly appeared
in the discussion of this section. To include them, it
is only necessary to extend the definition of Y to in-
clude both the measurement of u and any estimates
of the component uncertainties of this measure-
ment. The steps in the above discussion, and the
main conclusions, remain unaffected by this change.
This is, in part, because we have not devoted at-
tention to how a Bayesian might want to estimate
the total Bayes risk of µLinear�Y�. The most appro-
priate estimate of this risk, to a Bayesian, would
be the posterior Bayes risk of µLinear�Y�, and this
quantity would depend upon the estimates of the
uncertainties of the components of Y.

5. GENERALIZATIONS

5.1 Correlated Measurement Errors

In Section 2, the assumption of mutual statistical
independence of the components of Y was utilized.
This assumption was employed only in deriving (7)
and (8). The intent in presenting these formulas was
to present the ideas underlying the Guide’s proposal
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without getting involved in too much notation and
detail.

The Guide presents generalizations of its variance
propagation formulas to the case where (some of)
the measurement errors of some of the components
of Y are correlated. In this case, estimates of the
covariances between the components of Y, obtained
from series of observations, are required. The Guide
also shows how to use one-step Taylor series ap-
proximations to determine the covariance between
two measurements constructed from the same basic
measurements Y or measured under similar envi-
ronments (common components of l), or both.

Because covariances between measurements of
a vector of measurands are needed in uncertainty
calculations, the definition of uncertainty in terms
of standard deviations (or variances) lacks needed
generality. The obvious generalization is to define
the standard uncertainty of a vector of dependent
measurements to be the (estimated) ensemble of
standard deviations and correlations of the differ-
ences of those measurements from their correspond-
ing measurands; or, equivalently, by the estimated
variance–covariance matrix of such differences. But
now, rather than being required only to report one
measure of uncertainty for each measurement, one
would need to report that uncertainty plus any
needed covariances or correlations with other mea-
surements. The portability and convenience of the
Guide’s proposal is thus not as great as might have,
at first glance, appeared to be the case.

5.2 Dependence between Y and l

Throughout Sections 2 through 4, it was assumed
that the measurands l were statistically inde-
pendent of the errors of measurement in Y. This
assumption is also implicitly made in the Guide be-
cause the authors regard measurement errors as
being those involved in the raw act of measure-
ment, and not in any adjustments made to try to
correct for the fact that the true state l of the envi-
ronment or physical system did not have the value
X assumed for it. This point of view is made explicit
in Sections 5.2.4 and 5.2.5 of the Guide, where it
is noted that two measurements can be correlated
because their values are corrected for common de-
viations from an hypothesized state X. In this case,
the Guide recommends that the measurements be
redefined to have the values they had before such
corrections were made, and that the common state
be included separately as a Type B measurand.

One can perhaps imagine situations in which
measurement errors involved in the raw act of mea-
surement have a distribution that depends on a
state of the environment that is accounted for by

l. As long as the raw errors of measurement con-
ditional on l have expected value 0, however, the
raw errors of measurement will be uncorrelated
with l, and the analysis given in Sections 2 and 3
would be unaffected. The formulas shown for the
exact Bayes estimator and its posterior Bayes risk
in Section 4 are, of course, invalidated when the
raw measurement errors in Y are statistically de-
pendent on l, but the conclusions reached about
the interpretation of the Guide’s proposals from a
Bayesian perspective remain unaffected.

6. THE MANY TYPES OF UNCERTAINTY

A scientist is interested in a measurand µ that
is a function of certain measurands θ1; : : : ; θp and
states λ1; : : : ; λr. The scientist measures θ1; : : : ; θp
using averages Y1; : : : ;Yr of series of observations
on these measurands. The scientist’s observations
also provide estimates of the standard uncertainties
of Y1; : : : ;Yp. The scientist uses Y1; : : : ;Yp and as-
sumed values X1; : : : ;Xr of the states to construct
a measurement m of µ. The scientist’s findings are
to be sent to four colleagues A, B, C and D. Should
the same standard uncertainty index be reported to
all of them?

Colleague A wants to use the value of this mea-
surand in a forthcoming article. For this colleague,
the Guide’s standard uncertainty u�m� for the
measurement m and µ is appropriate.

Colleague B will repeat the scientist’s measure-
ment in a different environmental context. The
measurand µ is assumed to be contextually invari-
ant, so that the measurement m∗ of this colleague
is statistically independent of m and has the same
uncertainty. Consequently, 21/2u�m� is the stan-
dard deviation of the difference m−m∗ and can be
used to determine whether the two measurements
are actually of the same measurand (value). Fur-
ther, m−m∗± t�21/2u�m��, for an appropriate value
of t, provides an approximate confidence interval
for the difference of the two measurand values (if
any). Because comparison of measurements is a
common use for an index of uncertainty, terminol-
ogy is needed to distinguish the uncertainty u�m�
of the measurand from the uncertainty 21/2u�m� of
the measurement process. (See also Ku, 1990.)

Colleague C also wishes to compare his or her
measurement m′ of µ with the scientist’s measure-
ment m. This colleague’s measurement, however,
will be taken in the same environment as the sci-
entist’s. Because the environments are the same
for the two measurements, the portion of the vari-
ation of m (and m′) due to uncertainty concerning
the states λ1; : : : ; λr cancels out in the difference
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m − m′. Thus u�m�, which incorporates this com-
ponent of variation, cannot by itself be used to
determine the standard deviation of m−m′. In this
situation, u�m� should reflect only the variation in
m due to measurement errors in the Yi’s.

Finally, Colleague D wishes to use the scien-
tist’s measurement m to help in the measurement
of a new measurand ν that is a function of µ
and of other measurands and states considered
by the scientist. Again, the scientist cannot help
this colleague by simply reporting the standard un-
certainty u�m�, but needs also to report standard
uncertainties for those measurands and states used
by both the scientist and this colleague so that the
covariance between the two measurements (m and
the measurement of ν) can be determined.

By now, the point being made should be clear:
What we report as measures of uncertainty depends
on the use that is intended for such measures. Thus
there can be no single universal index of uncer-
tainty, although in each case a different combined
uncertainty index can be used as an overall sum-
mary of measurement quality. Given the multiple
purposes for which a measurement may be used,
the best advice, made also by the Guide, is to report
enough information about the probability distribu-
tions of measures of the basic quantities (the θi’s
and λj’s) involved in the construction of the mea-
surand µ to allow users to compute indices of un-
certainty of their choice. Crude summaries based on
standard deviations and correlations may be enough
for most measurands, but for expensive, hard-to-
replicate measurements, more detailed records need
to be provided. One of the dangers of proposals such
as that made in the Guide is that they may encour-
age a minimal reportage that can cause important
statistical information to be discarded.

7. CONCLUSION

Viewing the Guide’s proposal for computing an
index of uncertainty concerning the values of a
measurand as a crude approximation to either a
frequentist or a Bayesian problem may hopefully
help reconcile statisticians to an approach that at
first glance seems to be entirely ad hoc. If all of the
Guide’s recommendations are followed, there will be
clearer and more self-consistent reports of accuracy
or uncertainty in science and technology, so that a
researcher in one field will not have to learn the re-
porting conventions of another field in order to make
sense of measurement summaries in the journals
of that field. The Guide also encourages reports of
uncertainties of component measurements, so that
more detailed summaries of results may be reported
than is presently the case. When used for the same

purpose in each case, the measure of uncertainty
proposed by the Guide is portable from study to
study, permitting (at a more crude level) the type
of updating of statistical information that is one of
the great advantages of the Bayesian paradigm.

Perhaps the major problem with (and criticism
of) the Guide’s proposal is that the assumptions
underlying its approximations can be violated, and
even if such assumptions hold approximately, it is
not clear how accurate these approximations are
in practical contexts. Although there is a consider-
able literature on “large-sample approximations,”
it is remarkable how little is known about distri-
butions arising from sums of independent, but not
identically distributed, random summands, or more
generally about the accuracy of distributional ap-
proximations based on Taylor series expansions.
In consequence, the definition of a standard un-
certainty can more easily be supported (in terms
of solutions to standard frequentist or Bayesian
problems) than can the definition of an expanded
uncertainty, which requires approximate normality
(or at least approximate distributional symmetry)
of the measurement to justify use of the standard
deviation in constructing confidence or credible re-
gions. For many researchers, however, a measure
of uncertainty is useful only if it provides one with
the ability to make confidence or posterior probabil-
ity statements about measurands, so that research
is needed to indicate the situations in which the
Guide’s approximations do, or do not, provide confi-
dence or credible regions of acceptable accuracy.

One can regard the reporting of measurements
and their uncertainty as a decision theory prob-
lem. Following Lu and Berger (1989), the action
to be taken can be a pair �m;u�, where m is a
point estimate of a measurand µ, and where u (or
u2) is an estimate of the risk of m under some
specified loss function. Alternatively (Kiefer, 1977;
Hwang and Brown, 1991), one can consider a pair in
which the first element is an interval estimate of the
measurand and the second element is an estimate of
the coverage probability of this interval. These pa-
pers, and many of the references they cite, empha-
size methods for determining the admissibility of
the second component of the pair (i.e., of u). The re-
sults and methods of analysis that they present may
be useful in approaching the problem of how to re-
port uncertainty. Such analyses, however, can have
little impact on the measurement field unless any
improvements made on the ISO’s recommendations
are nonnegligible and demonstrable, software is pro-
vided to implement such improvements, and the im-
provements are in performance characteristics of in-
terest and concern to measurement specialists.
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Whatever statisticians may think of the Guide’s
proposals for reporting accuracy of measurement,
this proposal is certain to influence the thinking of
physical science researchers about statistical con-
cepts. To react by saying “It’s not right and you
shouldn’t use it” is likely to be futile, for the ad-
vantages of the ISO proposal are compelling to
individuals not interested in statistical theory. In-
stead, what is needed is research that reveals the
limitations of the ISO approach, improvements that
extend its applicability with a minimum of extra
conceptualization and computation and statisticians
able to communicate such results to nonspecialists.

APPENDIX

Proof that (25) implies that r ≈ 1. It is well
known (see DeGroot, 1986, page 242, Exercise 25)
that

�A:1�

Cov0�m;µ� = Cov0�E�m � u�;E�µ � u��
= Cov0�H�u�;G�u��
= Cov0�H�u� −G�u�;G�u��
+ Var0�G�u��:

Using the formula Var�z� = E�Var�z � w�� +
Var�E�z � w�� repeatedly (see DeGroot, 1986, Exer-
cise 10, page 225),

�A:2�

Var0�m− µ�
= Var0�m� + Var0�µ� − 2 Cov0�m;µ�
= E0�Var�m�u�� + Var0�E�m � u��
+E0�Var�u � u�� + Var0�E�µ � u��
− 2 Cov0�m;µ�

= E0�u2�u�� + Var0�H�u�� +E0�τ2�u��
+ Var0�G�u�� − 2 Cov0�H�u�;G�u��

= E0�u2�u�� +E0�τ2�u��
+ Var0�H�u� −G�u��;

and also

�A:3� Var0�m� = E0�u2�u�� + Var0�H�u��:
Note that

�A:4�

Var0�H�u��
= Var0�H�u� −G�u� +G�u��
= Var0�H�u� −G�u�� + Var0�G�u��
+ 2 Cov0�H�u� −G�u�;G�u��:

Because the terms E0�u2�u��, E0�τ2�u�� and
Var0�H�u� − G�u�� are all nonnegative, it follows

from (A.2) and (25) that

�A:5�

Var0�H�u� −G�u��
Var0�G�u��

≈ 0;

E0�u2�u��
Var0�G�u��

≈ 0:

Thus, from (A.1) and (A.5),

�A:6�

∣∣∣∣
Cov0�m;µ�
Var0�G�u��

− 1
∣∣∣∣

= � Cov0�H�u� −G�u�;G�u�� �
Var0�G�u��

≤ �Var0�H�u� −G�u��Var0�G�u���1/2
Var0�G�u��

=
{

Var0�H�u� −G�u��
Var0�G�u��

}1/2

≈ 0;

and it follows similarly from (A.3), (A.4) and (A.5)
that ∣∣∣∣

Var0�m�
Var0�G�u��

− 1
∣∣∣∣

≤ E0�u2�u��
Var0�G�u��

+ Var0�H�u� −G�u��
Var0�G�u��

+ 2
{

Var0�H�u� −G�u��
Var0�G�u��

}1/2

≈ 0:

Consequently,

r = Cov0�m;µ�
Var0�m�

= Cov0�m;µ�/Var0�G�u��
Var0�m�/Var0�G�u��

≈ 1
1
= 1;

as was to be shown.

Note that, for r to be approximately 1, it is suffi-
cient for (A.5) to hold, rather than (25). That is, to
obtain the result r ≈ 1, we do not need to assume
that E0�τ2�u��/Var0�G�u�� ≈ 0.
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