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ESTIMATING THE STABLE INDEX « IN ORDER TO MEASURE
TAIL THICKNESS: A CRITIQUE?

By WiLLiAM H. DUMOUCHEL
Massachusetts Institute of Technology

Stable laws are often fit to outlier-prone data and, if the index « is
estimated to be much less than two, then the normal law is rejected in favor
of an infinite-variance stable law. This paper derives the theoretical properties
of such a procedure. When the true distribution is stable, the distribution of
the m.Le. of a is non-regular if « = 2. When the true distribution is not stable,
the estimate of « is not a robust measure of the rate of decrease of the tail
probabilities. A more robust procedure is developed, and a statistic for describ-
ing and comparing the tail-shapes of arbitrary samples is proposed.

1. Introduction and example. The independent identically distributed variables
X, ---, X, are said to have a stable distribution with index « if X; + --- + X, has the
same distribution as 8, + n/*X;, 0 < a < 2. If « = 2 the distribution of X is normal and,
of course, has moments of all orders. If @ < 2, the distribution is called Stable Paretian,
since the tail probabilites are approximately like those of a Pareto distribution, P(X > x)
~ kx™®, x — o, and only moments of order less than « exist. See Feller (1966) and
DuMouchel (1973b) for more of the mathematical properties of stable laws.

Since the work of Mendlebrot (1960, 1963, 1969) the use of stable distributions to
model data suspected to have heavy tailed distributions, especially certain economic
variables such as stock price changes, has become popular. Some recent references are
Press (1975), Samuelson (1976), Koutrouvelis (1980), McCullough (1978), Feuerverger
and McDonough (1981), and Paulson et al. (1981).

Besides the stability property, stable laws are attractive because only stable laws have
domains of attraction. Thus, if an observed quantity can be thought of as the sum or
result of very many independent identically distributed effects, then it may have a stable
distribution. Also, the family of stable laws is reasonably flexible, since, besides «,
parameters regulating location, scale, and skewness are available.

There are practical difficulties with stable laws, primarily stemming from the fact that
no closed form expression exists for most stable density functions. Tables of the stable
distributions and/or percentiles can be found in Fama and Roll (1968), DuMouchel (1971),
Holt and Crow (1973), and Brothers et al (1982). Also, except for the asymptotic theory
of the maximum likelihood estimate, developed by DuMouchel (1973b), there is not much
theory of how to estimate the parameters.

Other heavy tailed distributions like the Student’s ¢, log normal, or Pareto families
have also been used to model data with high kurtosis. See, e.g. Blattberg and Gonides
(1974). But this paper focuses on the use of the stable model as proposed by Mandelbrot,
Fama (1965), Roll (1968) and others.- Within this model, the choice between oo = 2 and
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FiG. 1. Stem and leaf plots for 304 weekly differences in treasury bill interest rates, March 1959 through
December 1964. The labels D6 and D24 refer to differences for bills with 6 and 24 weeks to maturity,
respectively. The units are 1/100 of one percent. Thus 45 is a .45% increase in interest rates. For each
sample, three observations were too extreme to be plotted: they are listed next to the plot. Superimposed
over each stem and leaf plot is the symmetric stable density estimated by maximum likelihood.

a < 2 is sometimes referred to as a test for infinite variance. If a stable distribution with
a < 2 seems to fit the data well, then the property P(X > x) ~ kx™* is used to estimate
the probability of extreme deviations, while the estimated value of o may be used to
compare the tail behavior of this data to that of other data or other distributions.

As an example, Figure 1 displays the stem and leaf plots of two samples. The values of
D6 are 304 weekly changes in interest rates for U.S. Treasury Bills with six weeks to
maturity, covering the period from March 1959 through December 1964. The variable D24
is the same quantity for bills with 24 weeks to maturity. Roll (1968) found no significant
serial association in these series. The sample coefficients of kurtosis are 3.1 for D6 and
23.2 for D24.

Superiniposed over the histograms in Figure 1 are the maximum likelihood fits of
symmetric stable densities. The estimates of « are @ = 1.37 + .11 and & = 1.23 + .08 for
D6 and D24 respectively. The preceding standard errors are based on the curvature of the
log-likelihood function. For more details on the computation of the maximum likelihood
estimate, see DuMouchel (1971). A Pearson Chi squared goodness of fit test based on 23
intervals of D6 and 19 intervals of D24 yields x? = 36 (P = .013, 19 df) and x* = 20 (P
= .2, 15 df) respectively. Thus a stable law fits D24 quite well, but not D6. If & + 3(SE)
< 2 is interpreted as “evidence of infinite variance” then both series show such evidence.

The remainder of this article derives the theoretical properties of such a standard of
evidence and also provides insight into the problem of estimating the tail behavior of a
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F16. 2. Sample 50% and 5% contours for the 10 simulated likelihood function (graphs A through J),
and the 50% and 5% concentration ellipses (center graph, with the values of (a, ¢*) and their mean
indicated) for the sampling situation having oy = 1.5, n = 1000.

distribution, with special emphasis on the use of stable models. Section 2 shows that when
the true distribution is normal, the asymptotic distribution of & is nonregular, and if the
true distribution is stable with index « less than but near two, the moderate sample
distribution of & is not well approximated by its asymptotically normal limit. Section 3
shows that the use of @ to measure tail behavior is not robust to the assumption of
stability. Section 4 suggests an alternative statistic for describing and comparing the tails
of distributions, and presents an alternative analysis of the treasury bill data. Section 5
contains a cqncluding discussion.

2. Inferences about o when « is near or equal to 2. This section assumes that
a stable law model is correct and discusses the problem of estimating the index o when «
equals 2 (i.e., the data are normally distributed) or « is slightly less than 2 (in which case
the model has infinite variance, but the density function is quite similar to the normal
density everywhere but in the extreme tails). The principal result is that nonregularities
in the asymptotic theory make it easier to distinguish a = 2 from « < 2.

Whenever a < 2, the maximum likelihood estimate will have an asymptotically normal
distribution with mean « and variance determined by the Fisher information. See Du-
Mouchel (1973b, 1975) for details. However, for fixed sample size, the accuracy of the
normal approximation becomes worse as a — 2, and the standard asymptotic theory fails
at a = 2.

Figures 2 and 3 show the results of a simulation experiment in which 10 samples of
size 1000 were drawn from each of 2 symmetric stable distributions. Figure 2 shows the
contours of the resulting likelihood functions with respect to the index parameter o and
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F16. 3. Sample 50% and 5% contours for the 10 simulated likelihood functions (graphs A through J),
and the 50% and 5% concentration ellipses (center graph, with the values of (&, ¢*) and their mean
indicated) for the sampling situation having oo = 1.9, n = 1000.

scale parameter ¢ (actually ¢* = log ¢ is presented) when the true value of « is 1.5. The
same information when « = 1.9 is displayed in Figure 3. (The location parameter § was
assumed known and equal to 0 in these simulations. When the distribution is known to
be symmetric, § is asymptotically independent of (&, ¢) and simple robust estimates of
location will perform about as well as the m.l.e. See DuMouchel (1975) for details.) The
center graph in each figure depicts the 10 maximum likelihood estimates with elliptical
contours which include 50% and 95% of the asymptotic distribution of the m.lLe.’s. Note
that Figure 2, depicting the o = 1.5 case, shows smoother, more symmetrical contours
than does Figure 3. The latter figure shows only 2 of the 10 values of & greater than a =
1.9 and these two simulations show likelihood functions especially skewed away from the
boundary a = 2 of the parameter space.

The mean and standard deviations of the 10 values of & are 1.876 and .037 respectively,
so that a test of E(a) = 1.9 would yield ¢t = 2.05 with nine degrees of freedom, (2 sided P
= .07) so that there is some evidence that & is biased and the likelihood functions are far
from normally shaped, even when the sample size is as large as 1000. See DuMouchel
(1971) for more details of the generation of the stable variates and computation of the
maximum likelihood estimates.

Next consider the situation when the true distribution is normal (¢ = 2). Since
observable asymmetry is obvious ground for rejecting normality, we consider only sym-
metric stable alternatives, and will also assume the center is known to be 0 (see previous
parenthetical discussion). Thus we consider the hypothesis Hy:a = 2 versus H,:a < 2 with
¢ as a nuisance parameter.
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TABLE 1
Proportion of times a < 2 when the true value of « = 2 and
the sample size is n.

# of sainples n Proportion * Standard error
known scale unknown scale

500 100 .18 + .02 .16 + .02

534 1000 .16 + .02 .13 + .02

205 10000 .08 + .02 - .08%.02

Note: Each sample consisted of n pseudo-random nbrmally distributed
variates using the IMSL function ggnorm.

The limiting distribution of & under H, is not regular. If it were, we would expect that
a =2 about 50% of the time, and that conditionally on & < 2, @ would have an approximate
half-normal distribution when the sample size n is largé. Instead, it is shown in the
Appendix that P(a = 2) — 1 as n — «. Thus the fixed test, “Reject H, if & < 2, otherwise
accept,” will have error probabilities of both types approaching 0 as n — .

Although the appendix merely shows that if o = 2, as n — ®, P(a < 2) — 0, we
conjecture further that, for some K > 0,

P(a < 2) ~ K/log n.

As a check, simulations were performed and are reported in Table 1. Random samples
of size 100, 1000, and 10000 were drawn from a normal distribution and the proportion of
times & < 2 was .19, .16, and .08 respectively, when the scale parameter ¢ was assumed
known. When ¢ was estimated also, the corresponding proportions were .16, .13, and .08.

Thus we see that P(a < 2) does decrease as n becomes large. If the conjecture that
P(a < 2) ~ K/log n is true, these simulations suggest the simple rule of thumb P(a < 2)
=~ (3 log;on)~!. This rule requires a few million observations before the critical region
“reject if & < 2” acquires the coveted .05 level of significance.

No theoretical results are ‘available for the distribution of & conditional on & < 2. No
obvious pattern showed up in the simulations. The first percentiles of & (fifth lowest
values of a out of about 500 simulations) were 1.83 and 1.97 for n = 100 and 1000
respectively, suggesting that perhaps the scale of 2 — & decreases faster than rate n="/2,

3. Robustness to the assumption of stability. This section shows that inferences
about tail behavior based on estimating the stable index are not robust. The lack of
robustness is demonstrated by constructing a family of distributions which are relatively
hard to distinguish from stable laws, but which give rise to misleading estimates of tail
behavior when stable laws are fit to them.

"The alternative densities have Pareto tails but match the normal density in the center.
They are denoted f,(x), for v = 0:

1 .
folx) = —=e™>" for |x| <1
Y Vo
—_— —v7-1
_ ¥ 1)[1+7(|x| 1)] for |x| =1
(2 (12

(When v = 0, the second factor is taken as the limit, exp—(| X | — 1)/¢. This parameter-
ization allows exponential tail behavior to be a limiting case of Pareto tail behavior. See
the next section. Note also that for v > .5, the tail probabilities of f, are asymptotically
proportional to those of s,, if a = 1/v.)

The scale parameter in the Pareto piece is chosen to make f,(x) continuous, so that o
= ®(—1)v/2me, where ®(—1) = .1587 - - - is a normal tail probability. It is not claimed that
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TABLE 2
Estimates and goodness-of-fit measures when n = 1000 points which fit the distribution f, exactly are
fitted to a stable law.
Pareto 1 Fitted Noncen- Fitted Pareto Stable Pareto Stable
% % a*SE trality c X.995 X.995 X.999 X 999
0 o  1.86+.04 5.6 11 11 3.3 3.4 4.3 7.0
2 5 171+.05 4.6 .15 694 4.3 4.9 6.8 12.0
5 2 1.54 + .05 1.9 .29 674 6.1 7.3 16.2 20.2
.67 1.5 146+ .05 2.9 23 667 9.9 94 28.9 28.1
1.0 1.0 132+.04 11.1 .02 .656 21.2 12.8 104.4 42.8

any particular data are generated exactly according to the densities f,, only that the a
priori plausibility of the densities £, is not much lower than that of the stable densities s.,
for most data sets. (Fisk (1961) fitted U.S. income data t0 a model with a Pareto upper
tail and a log-logistic distribution for the rest.) If data which follow the distribution f, are
instead fit to the family s,, what estimate & will result, and how good will the fit look?

Table 2 answers these questions for the five values v = 0, .2, .5, .67, 1, and sample size
N = 1000. For each value of v, the stable parameters (a, ¢) for which (1/¢)s.(x/c) is
“closest” to f, is found by maximizing the quantity

L(a, ¢) = J(: fy(x‘)log[% sa(f>] dx

with respect to « and c. (Actually, a finite discrete sum was used to approximate L(«, c)
in the computations.) These values of (a, ¢) will be the limit of the maximum likelihood
estimates of « and c if a stable distribution is fit to large samples taken from f,. The fitted
value of « is shown in column 3 of Table 2, plus or minus its supposed standard error if
the sample size were N = 1000. The standard errors are computed as described in
DuMouchel (1975).

Looking at row one of Table 2, if ¥ = 0 and the data have exponential tails, the
estimated a will tend to 1.86 and, if N = 1000, the theoretical standard error of .04 will
lead to a firm conclusion that « < 2.

In order to see how well the data from f, can be expected to fit a stable law, the
asymptotic behavior of a Pearson Chi squared goodness of fit test is computed. The
positive line X > 0 was broken somewhat arbitrarily into 13 intervals, and the approximate
non-centrality parameter

A = 2000 Y2, (F; — S:)*/S:

is computed, where F; and S; are the probabilities that f, and s, assign to the ith interval,
respectively. If a sample of size 1000 is drawn from f,, the Pearson Chi squared statistic
would have approximately a noncentral Chi squared distribution with 10 degrees of
freedom and noncentrality . (This is not quite true, since the result of Chernoff and
Lehmann (1952) states that the asymptotic distribution is not quite that of Chi squared
if the parameter estimates are based on ungrouped data. But the true situation should be
close enough for the present purpose.)

When the true model has exponential tails, the non-centrality is 5.6, so that the
expected value of the Chi squared test statistic is about 15.6, to be compared to the
distribution with ten degrees of freedom. Since the non-centrality will be proportional to
the sample size, if N = 200, the expected value of the goodness-of-fit statistic is just 10 +
.2(5.6) = 11.1. Clearly the power of the goodness of fit test would be very small. Even for
the larger sample size, the probability of rejecting the stable assumption is not large.
Column five shows P(x3 > 10 + non-centrality), or the attained level of significance of
the goodness-of-fit test if the test statistic equaled its expected value. For the row
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corresponding to v = 0 it is .11, not even significant at the 10% level for N = 1000. I think
most statisticians would be satisfied with the fit.

Looking at the other rows of Table 2, when v is .2 or .5, a similar phenomenon occurs.
The corresponding true distributions are in the domain of attraction of the normal
distribution, but the estimated o’s are 1.71 + .05 and 1.54 + .05 respectively, and the
goodness-of-fit based on 1000 observations is not likely to reject. When vy = .67 the “true”
& = 1/~ is 1.5 and the estimated is 1.46 + .05, so relatively little bias occurs. When v =1
the bias occurs in the other direction and & is 1.32 + .04, although in this case, columns 4
and 5 show that f; and s, 3, are different enough that the test of fit should catch it when
N = 1000.

The remaining columns of Table 3 provide more comparisons of f, and its “best fitting”
stable distribution ¢~'s.(x/c). Column 6 is the best fitting scale parameter, c, and the last
4 columns compare the 99.5 and 99.9 percentiles of the two distributions. In all five cases,
the error is greater when estimating the more extreme percentile. If a sample of size 1000
is available, then it would seem that the 99.9th percentile is a logical choice for defining
the “extreme” tails, since the largest observation should be about that large.

Of course, it is always possible to develop more sophisticated tests of fit to the stable
model, especially for specific alternatives like the densities £,, but these calculations show
that the stable maximum likelihood estimates of tail behavior are not robust to the
stability assumption, even when alternatives which are relatively hard to distinguish from
stable laws are considered. (Paulson et al. (1981) perform a direct test for the stability
property. After estimating the index a based on all n observations, they then reestimate
« based on n/2 sums of 2 observations, n/4 sums of 4 observations, n/8 sums of 8
observations, etc., and see whether this sequence of estimates of « show any upward trend,
as would be expected if the parent distribution had finite variance.)

4. Letting the tails speak for themselves. The rationales for using stable laws
are usually that the stability property is useful and that the generalized central limit
theorem makes a stable law plausible. However, DuMouchel (1973a) showed that the
latter argument is not very persuasive, especially when 1.5 < a <2, because of the slow
convergence of convolutions to their limiting stable law. Blattberg and Gonedes (1974)
reported success in fitting ¢-distributions to stock price data.

A more natural way of modeling the tail behavior of data is to let the tails “speak for
themselves” by basing the inferences on the extreme observations without making any
assumptions about the center of the distribution. This paper does not attempt a thorough
analysis of how to estimate the tails of a distribution. DuMouchel and Olshen (1975), Hill
(1975), Weissman (1979), Breiman et al. (1978, 1981) have discussed the problem of
estimating tail behavior. A common family of distributions used in such cases is the Pareto
family, P(X >x) = x ™ forx> 1, a > 0.

This section suggests fitting the largest and/or the smallest ten percent of the sample
by a generalization of the Pareto distribution. The generalized Pareto family to be proposed
here has attractive theoretical and practical properties, and leads naturally to a descriptive
tail-behavior statistic for comparison to other samples or other distributions. Finally,
application of this more robust method to the Treasury Bill data will lead to conclusions
different from those based on the stable model.

DEFINITION. The random variable Z is said to have the generalized Pareto distribution
with parameters v and ¢ [Z ~ GP(v, )] if P(Z>2) = (1 + yz/o) M, —0o <y <0, 0< ¢
< o, z > 0, vz > —o. (The distributions with v = 0 are defined to be the exponential
distributions with mean ¢.)

This family of distributions has several nice properties. All manner of tail behaviors
are represented. When v > 0, P(Z > z) ~ k27 g0 that 1/ is seen to be comparable to
the « of the Pareto and Stable Paretian families. At vy = 0 is the exponential distribution.
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TABLE 3
Tail-shape parameters, v, describing the upper ten percent of several
common distributions.

Distribution Y
Uniform —1.000
Triangular —.5000
Normal® -.151
Exponential 0.000
Student (5 DF)®? .099
Log Normal .259
Student (2 DF) 452
Cauchy .988

2 Although the normal distribution has infinite range, the choice of the
99.995 percentile as the largest percentile used in fitting v is not crucial.
If 10000 2’s are chosen so that .

B(xo + 2;) = .900005 + .00001 k, k=0,1, ---,9999;

then the fitted v becomes —.145, rather than the value —.151 shown.

b The value v = .099 differs from the value DF~! = .2 that would describe
the very extreme tail of this Student distribution. Some such difference
should be expected, since the Student distributions approach normality as
DF~! — 0, while the GP distribution with v = 0 is exponential.

Anscombe (1961) mentions that the distributions with v > 0 can be generated by gamma
mixtures of exponential distributions. When v < 0 the distribution has shorter tails than
the exponential, in fact, even a finite range, since 0 < z < —¢/. However, if v is near 0,
say v = —.1 and ¢ = .1, the density is (1 — z)°, which has a very smooth contact with the
z-axis and so can serve well as a model for a short-tailed distribution with possibly infinite
range. When v = —1, the uniform distribution over (0, ¢) results, while ¥ = —.5 corresponds
to a triangular distribution.

The distributions with v > —.5 obey the regular large sample theory, (as can be shown
using the results of Hall, 1982) with an easily evaluated information matrix. Thus, the
asymptotic distribution of the m.l.e. based on a sample of size n has mean (v, ¢) and
covariance matrix

n_l<(1 +y)? ol +7) )
c(l+7v) 2421 +17v))"

To use this generalized Pareto family to estimate the tail behavior from. sample
observations on a variable X, it would be necessary to choose a value x,, say, and then let
Z =X — xofor all X > x,. (Or let Z = xo, — X for X < x, to estimate the left tail.) The
choice of x, is somewhat arbitrary. Since all the GP(y, o) densities are convex, one
suggestion is to look at the sample histogram and choose x, to be near the point of
inflection of each tail. If the GP model fits for X > x,, then choosing a cutoff point x, >
Xo, larger than necessary, results in a GP distribution with the value of v unchanged, but
with ¢ replaced by o + v(x; — xo).

To be less subjective, we propose choosing x, to be the 90th (or 10th) percentile of the
sample. The maximum likelihood estimate of v applied to the resulting sample of Z’s is
defined as the descriptive measure of tailshape. By convention, if the upper tail of a
continuous distribution F is to be described, first the values of zy, 2;, - - -, 2999 are defined
by

F(xg + 2,) = .90005 + .0001k, k=0,1, ---, 999;
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where F(xg) = .9. Then the quantity
1000 log o + (1 + v71) X8% log(1 + vz/0)

is minimized with respect to (v, ¢); the resulting value of v being the descriptive tail-
shape parameter. Table 3 shows the v’s which describe several common distributions.

The choice of the upper ten percent, rather than some other fraction of the sample, is
a compromise between the practical need for enough observations to reliably estimate v
and the theoretical desire to describe the behavior of F(x) as x — o. If the tail of F is
actually in the generalized Pareto family, the standard error of ¥ is approximately
(1 + v)/v/m, where m is the number of observations used to estimate v. This leads to an
approximate standard error of .3 if the upper ten percent of 1000 exponential variates are
used. Referring to Table 3, this sample size cannot reliably distinguish the tails of the
normal, exponential, and log-normal distributions. (The log normal distribution used in
Table 3 is such that log X has variance 1.) Using an even smaller fraction of the
observations would restrict profitable use of the statistic to much larger sample sizes. On
the other hand, to use more than the upper one-tenth of a sample would seem to allow
too much dependence on the central part of the distribution.

Breiman et al. (1979, 1981) also propose a measure of tail heaviness of a continuous
distribution F. It is

H(p) = 1" (x1)/[V" (215 %,

where I(x) = —log(1 — F(x)) and x, satisfies F(x,) = p. They show that H(p) has desirable
theoretical properties but they do not discuss its estimation from samples.

Returning now to the Treasury Bills data, Table 4 shows the results of fitting the GP
model to the samples of size 60 formed by subtracting the 30 smallest observations from
the 31st smallest, and by subtracting the 31st largest from the largest 30, then merging

the two groups.
Reference to the estimate of v and their approximate standard errors in Table 4 shows
that the D6 series is not at all consistent with an infinite variance model, since ¥ = —.081

indicates tail behavior lighter than the exponential distribution. For the D24 series v =
.227 and v/SE = 1.4, so that even here an exponential tail model cannot be ruled out with
much confidence.

On the other hand this analysis does rule out the tail behaviors which the stable model
predicted. Table 4 provides one-sided 95% lower confidence limits for v and for
comparison, the 95% upper confidence limits for the stable index a, from the analysis of
Section one. If the stable model holds for these data, the estimates of ¥~ should be near
those of «. On the contrary, the lower limit for v~ is greater than the upper limit for « in

TABLE 4
Maximum likelihood estimates of the generalized Pareto Laws for the
variables D6 and D24, applied to the outer 20% of each data set. The
confidence regions for v~! assume a normal distribution for v, while the
confidence regions for o are based on the stable model analysis of Section 1.

Statistics 6 week bills 24 week bills
no. of cases used 60 60
¥(SE) —-.081(.119) .227(.158)
¢(SE) 12.7(2.2) 11.1(2.2)
95% lower confidence bound
for y7! vy 1>8.73 vy 1>205

95% upper confidence bound
for a a < 1.55 a<1.36
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both data sets. We conclude that these data are much less outlier-prone than a stable law
analysis would lead us to believe.

5. Discussion. The good news on estimating the tail behavior of possibly long tailed
distributions is that, if a stable law is assumed, the problem of distinguishing o = 2 from
a < 2 is relatively easy. The Fisher information per observation is large, and the results
of Section 2 show that the asymptotic behavior of a test of « = 2 is non-regular in a way
that favors making a correct decision. The bad news is that this very feature of the stable
family, namely that the distributions having & < 2 are so different from the normal
distribution, leads to a biased measure of tail behavior if the true distribution is not stable.
For example, a distribution with exponential tails could easily be diagnosed as having
infinite variance.

To let the tails speak for themselves we suggest fitting a generalized Pareto model to
the data outside the 10th and 90th percentiles. (It is interesting to note that when the
simple Pareto model, P(X > x| X > x0) = (x/x0)™*, was fit te the Treasury Bill data, the
same biases occurred as in the stablé law analyses.)

Actually describing the tail behavior of data, rather than merely screening for outliers,
is becoming more frequent, especially in the analysis of large data sets. As techniques for
doing so become more standardized and sophisticated, their use may become almost as
common as those for describing location and scale. The computer programs of Hoaglin
and Peters (1979) are one example of this trend. A short computer program to find the
maximum likelihood estimates of (v, &) for a sample from GP(y, ¢), written in the language
APL, is available from the author.

Although the advantages of robustness are obvious, the proposed GP procedure is very
inefficient if the true distribution is in fact stable. As an example, suppose it is symmetric
stable with o = 1.5. Then calculations presented in DuMouchel (1975) show that V(a) ~
(1.54)%/n. On the other hand, if the outer n/5 observations are fit to the Pareto family,
V(v) ~ (1 + ¥)?/(n/5), and the asymptotic variance of 1/y is y™*V(y) = 5(1 + v)*/nvy*
which equals (8.39)%/n if ¥ = 1/a = %. Thus the efficiency of the robust procedure is only
(1.54/8.39)% = .034, a large price to pay for robustness.

Whether the price is worth paying depends on the investigator’s opinions as to the
plausibility of the stable hypothesis and the possible costs of being wrong. Alternative
strategies which fit ¢-distributions or other families of long tailed distributions to all of
the data are beside the point. Presumably, any method which uses the central observations
to help make inferences about tail behavior is somewhat nonrobust.

APPENDIX

Proof that P(a < 2) — (, Denote by s.(x) the symmetric stable density, with scale
parameter ¢ = 1, and by i(a) the corresponding Fisher information: i(a) = [ [ga(x)]*s.(x)
dx, where

8a(x) = 8a(x)/5a(x)
and
So(x) = 9s4(x)/0c.

PROPOSITION 1. i(a) —» ®© as a — 2.

PrOOF. Bergstrom’s (1952) expansion represents s.(x) = k(a)x™' + O(x~**') as
x — o, and DuMouchel (1975) shows that $.(x) = E(a)x™*' — k(a)log(x)x™ +
O((log x)%x~2*1). Strictly speaking, both expansions hold at a = 2, although since k(«)
= 77'I'(1 + a)sin 7a/2 — 0 as a — 2, this is trivially true for the series for s,(x), while
$2(x) ~ —x~3 as x — 0. Of course, s,(x) is the normal density with variance 2, so that g,(x)
~ —x7%*/J4x and E(| g:(X) |?) = o for p > 1 when a = 2.
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PROPOSITION 2. (The statement and proof of Proposition 2 are due to M. Wood-
roofe.) If Xi, ---, X, is a sample from the distribution with a = 2, then g, = g{® =
n! Y g,(X.) is in the domain of attraction of the stable distribution with a = 1, 8 = —1.
That is, there exists constants a, and b, such that P(a,gi" — nb, < y) — Sy,_1(y) where
S..5(¥) is the distribution function of the stable law with parameters (a, 8). The constants
a, and b, are:

(1) a, = (log n)2, b, =2 f sin(% gg(x)>sz(x) dx.

OUTLINE OF PROOF. The statistic g, is the average of n i.i.d. variables g,(X,), where
X, is normal and g.(x) is an even function bounded from above and asymptotic to
—| x| exp(x?/4)/V4r as | x | — . Therefore,

P(g:(X) < —=y) ~ P(| X | 2exp(X?/4) > Vizy)

~P(|X|>+V4logy+ 6loglog y+ 12 log 2 + 2 log(4x)).
Since P(| X | > R) ~ 4s(R)/R,

P<|X|>Jﬂ>~%sz<ﬂ>

4 exp< (logy+3loglogy+310g2+llog4))
~———— — 2 = T
V4 log yVar 2 2

__1 (logy
167 y )

Therefore, g.(X) is in the domain of attraction of a stable law with o« = 1 since P(g2(X)
< —y) ~ y~H(y) where l(y) is slowly varying. Since g, is bounded above, only its lower
tail is long, so that there exist constants a,, b, such that P(a,g, — nb, < y) — S;-,(y) as
desired. The forms of the constants given by equation (1) follows from results given in
Chapter XVII, Section 5 of Feller (1966), especially formula (5.16). (The quantity a, of
Feller is here denoted n/a, = n/(log n)?).

PROPOSITION 3. For ¢ > 0 sufficiently small but independent of n, the probability that
(0/0a)g <0 forall 2 — e < o < 2 approaches 1 as n — .

PROOF. (The proof of Proposition 3 is due to M. Woodroofe, 1973). This result is not
surprising, since the result that i(2) = « implies that E((3/da)g,) — —» as a — 2. The
details of the proof are omitted here.

Since the consistency of & implies P(a < 2 — ¢) — 0 the event g, < 0 is asymptotically
equivalent to & < 2. Thus, as n — ®© P(a < 2) — S;,_,(—nb,) — 0.

The final result, that P(a < 2) — 0, follows from

PROPOSITION 4. The quantity nb,, — ® as n — «, so that S,,—,(—nb,) — 0.

The proof is tedious and will be omitted. It uses the facts that

f g2(x)s2(x) dx = 0, that go(x)so(x) ~ —x~%, and that |R — sin R| < R3.
0

Details are available from the author.
This establishes the result that P(a < 2) — 0 when there is no nuisance parameter.
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The same result also holds if the scale parameter ¢ is estimated by maximum likeli-
hood. The proof, which is omitted for the sake of brevity, involves showing that
n7! ¥ g(xi/c) and n™' T, g(x;/¢) have the same limiting distribution.
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