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CHARACTERIZATION OF TYPE FROM MAXIMAL
INVARIANT SPECTRA

By CHRISTOPHER G. SMALL

Simon Fraser University

The affine type of distributions on the real line are represented as
sequences of distributions of maximal invariants on spheres. It is shown that
such a representation characterizes the affine type. A consistency condition is
introduced, and it is shown that any sequence of maximal invariant distribu-
tions satisfying the condition is generated by some affine type on R.

1. Background and introduction. This paper is the second in a set of two that
study characterization results for distributions of maximal invariant statistics. In (13),
duality theory for locally compact abelian groups was used to derive characterization
conditions for maximal invariants under actions of such groups. In this paper it will be
shown that the class of affine types of distributions can be identified as the inverse limit of
classes of maximal invariant distributions.

In a set of early papers, H. Hotelling [4] and E. J. G. Pitman [10, 11] introduced the use
of invariant arguments into problems of inference. G. W. Brown (2) provided conditions
under which maximal location and scale invariants of a sample possess power to distinguish
hypotheses with location and scale nuisance parameters. His methods were analytic rather
than statistical and effectively showed that affine type is characterized by the distribution
of maximal invariants in most cases of statistical interest. A. A. Zinger and Yu V. Linnik
[4] and L. Bondesson [1] have strengthened G. W. Brown’s results. Yu. V. Prokhorov [12]
developed similar results for distributions satisfying the Cramer condition.

The development of techniques by D. A. S. Fraser [3] has emphasized the importance
of the affine group. Recent work by D. G. Kendall [5] makes use of maximal invariants for
spatial data in what he calls the statistics of shape.

Let R be the real line endowed with the Borel o-algebra. Let G be the group of
transformations (a, b) of R of the form

(a,b)x=ax+ b

where a > 0 and b is any real number. Then G is called the affine group. Let 2 be the class
of all (Borel) distributions on R. For each P € Zand (a, b) € G, define (P(a, b))(A) =
P({a, b)(A)) where A is any Borel set. Then P(a, b) € #. We define [P], the affine type
of P,by [P] = {P(a, b):a >0, b any}. Let Z/G = {[P]: P € 2}. So #/G, the orbit space
under the action of G on &, is the class of types in the sense of M. Loeéve [6].

For each sample (x1, x2, - - - , x,) € R", define the maximal invariant

X1—X Xo— X Xn— X .
recalie UL v1/2> if v#0

Tn(-‘x‘i’ X2y *00, xn) = <
{*n} if v=0.

In this definition, £ = (Y%, x;)/n, v = Y%, (x; — ¥)*> and {*,} is some arbitrary point that
is distinct from the points of R". Then T, contains all the information in the sample that
is invariant under transformations of the kind (x1, x2, + - -, x,) = ({(a, b)x1, (@, b)x2, - - -,
{(a, b)x,). For n = 1, the range of T, is 8" U {*,}, where S" % is a unit (n — 2)-sphere in
R" (The sphere of dimension —1 is defined as the empty set.) Let S"~* be endowed with
the restriction of the Borel o-algebra from R”. The point {*,} shall be measurable.
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For a sample (x;, x2, - - - , x,) drawn independently from R with distribution P € £, the
maximal invariant 7', will induce the distribution P"T;' on 8" 2 U {*,}. Define 2 (n) =
{P"T;': P € 2}. These spaces can be represented in the following diagram

q
P — P/G
In Sn
P(n)
where g(P) = [P], ro(P) = P"T;"' and s,([P]) = P"T;". Note that s, is well defined and

that r, = s.q.

The characterization problem is to determine whether the equality P*T ;" = @"T';'
implies [P] = [@]. The existence of counterexamples for all n = 1 shall be discussed in
Section 3. Such examples for the translation group were first noticed by I. N. Kovalenko
[7]. By restriction to subclasses of &, characterization results were proved in [2], [12] and
[13], among others.

In [1], L. Bondesson noted without proof that if the distributions of the maximal
translation invariants are known for all sample sizes then the additive type of the generating
distribution is determined. For affine type, given [P] # [@] does there exist a number N
such that for all n = N, P"T ;"' # @"T ;'? It can be shown that for other groups, even this
sequential characterization can sometimes fail. For example, for the group of strictly
increasing continuous transformations of R onto itself, the maximal invariants of a sample
are the rank statistics. However, the rank statistics do not characterize the equivalence
class of generating distributions under the group action. Information as to whether the
distribution has compact support is not contained in the rank statistics of a finite sample.

However, for the affine group, such sequential characterization will be proved in Section
2 as part of a stronger result. For all n = 1, we can write T, as a function of T,.:. So the
distribution of 7T, is determined by the distribution of 7.... Suppose Ri, Rz, --- is a
sequence of distributions of Ti, T%, Ts, - - - , respectively, such that R, = PrT," for some
P,.. The main result of this paper establishes that if R, is determined from R, as above,
then there is a P on R such that R, = P"T ;' foralln =1,2, - - . . Hence the class of affine
types will be identified as the inverse limit of the classes of maximal invariant distributions.

2. The identification result. We shall use the symbol “=” to denote weak conver-
gence in 2 and convergence in type in /G. A sequence [P,] in /G is said to converge in
type to P, [P,] = [P], if there exists a sequence (a,, b,) in G such that P,(a., b,) = P.
See M. Loeve [6]. For each n = 1, let 7,: R**' — R" be the projection defined as m,(x1, X,
ey Xny Xp41) = (X1, Xz, -+ -, X,). We construct a sequence of mappings 8,:S" ' U {*,41}
— 8" U {*,} by defining implicitly T,7, = 8,T%+:. Then B~ can be shown to be well
defined. Also B.({*n+1}) = {*.}.

The mappings B, induce functions between the classes #(n). Foralln =1, f,: 2 (n + 1)
— 2 (n) is defined by fn(R,+1) = R..18.", where R,.; € Z(n + 1). Now R,., can be written
as P"*IT,}, for some P € 2. So f,(P"'T' ;1) = P*\T7Y, Bl = P g\ T = P*T;L,

Therefore (2 (n), f)n =1, 2, - - . is a directed sequence of classes of distributions.

fs f2 fi
i 2(3) > 2(2) > 2 (1)
S3 S2 S1
2/G

The inverse limit of the directed sequence, lgn 2(n) is
lim 2(n) = {(R1, Rz, ---) E2(1) X 2(2) X +++ :fu(Rns1) = R, for all n}.

We can define a function J: /G — lim 2 (n) by setting J([P]) = (P'T{’, P°T5", ---).
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Then J is the natural function into the inverse limit induced by the diagram above. OQur
main result shows that </ is a bijection from 2/G to liln 2(n).

THEOREM. Let J be defined as above. Then J:2/G —>1i(x_n 2 (n) is a bijection.
Proor. The proof is divided into two parts.

Part 1. The proof that J is 1 — 1 is given first and establishes the characterization
result. For any x, € R", let E (x,) be the empirical distribution on the sample, defined by
assigning mass 1/n to each coordinate of x,,. Then E (x,) € £ It can be seen that [E (x,)]
= [E(y»)] whenever T,.(x,) = T.(y.). So we write [E (z,)] where z, = T,.(x,) to denote all
such equivalent representations of the type.

Suppose P"T ;' = Q"T" for all n = 1. The degenerate case where P assigns unit mass
to some point is dispensed with first. In that case P"T;'({*.}) = @"T',*({*»}) = 1 for all
n = 1. So @ is also degenerate.

Henceforth assume that P is not degenerate. Let (z,).-12".. be an independent sequence
of points where each z, is drawn with distribution P"T';,* from 8"~ 2 U {*,}. Without loss
of generality, set z, = T,(X,), where X, is an independent sequence and each x, is drawn
with distribution P"” in R". Almost sure empirical convergence E(x,) = P holds. So
Prob([E (z.)] = [P]) = 1. Similarly it can be seen that Prob([E (z,)] = [@]) = 1. By
Khintchine’s Convergence of Types theorem, [P] = [@], as neither is degenerate.

Part 2. To prove J is onto, let (R,)n-12.... be a point in lim 2(n). Then f.(R.+1) =
R, for all n = 1. Once again, the case where Rz({*,}) = 1 can be dispensed with first. If P
is degenerate, P"T';,' = R, for all n = 1. Henceforth assume that this is not the case. For
each n, choose @, € 2 such that Q2T ,' = R,. Without loss of generality, @, can be
chosen so as to satisfy
1) @Qux=0=% @.x=0=%

(i) Qr(|x:—x:|=1)=[1- Q%x: = x5)]/2

QA% — x1|= 1) = [1 — Qi1 = x2)]/2.
Each distribution, appropriately scaled and translated will satisfy (i) and (ii). For n = 4 the
statistic (X% | x: — %1()/| X» — %»—1| is a function of the maximal invariant T,(x:, x2, « -+,
x,). Therefore for all € > 0 there exists some L, > 0 such that

QA0 < (B |21 = )/ |20 = Hca [ < 1/L) <35 [1 = @l = m2)]
for all m = 1. Note that Q3(x; = x2) = @3(x1 = x2) = -+ . and so the r.h.s. does not depend
upon the choice of m = 2. From (ii),

m(lx:— 2|21 = [1 - Qhx: = x2)]/2.

So,
(24) Qu0<YiF |xi— x|<1/L) <e forall m=1.
Using a similar argument with the statistic | x4 — x3|/| x2 — x1| it can be shown that
(2B) for all £ > 0 there exists K > 0 such that @.(|x| > K) <e¢ forall m=1.

Statement (2B) implies that the sequence (@n)m-12,... is tight. So there exists some
subsequence @, = P. It will be seen that P is the required distribution.

Now, P"T;'({*s})) = P"(x1 = %2 = +++ = %) = lim supi=1@n (%1 = -+ %) =
R.({*»}). We can also write P"T;'({*,}) = lim_P"Qiz|x: — x|< 1/L) =
lim;.lim inf,Q7, (372 | 2; — %1|< 1/L) = Ra({*x}). The last equality follows from (2A).
Combining these results, P"T ;' ({*,}) = Rn({*.}), for all n = 1.

Let V be an open set in S"~%. Then T;*(V) is open in R". We write bdry(V) for the
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boundary of Vin 8”2 and Cl(V) for its closure. Note that T';*(C1(V)) is not closed in R".
However, T'7;}(CI(V) U {*,}) is closed. Suppose that P"T',,'(bdry(V)) = 0. Then P*T (V)
= lim infiQ} T (V) = R.(V). However, in addition, P"T;'(CI(V)) = P"T;'(CI(V)
U {#n}) — Ra({*x}) = lim sup,@7. T7 (CL(V) U {*a}) — Ra({*a}) = Ra(CLV)) + Ru({*x})
— R.({*s}) = R,(CI(V)). Combining these results, P"T, (V) = R.(V) = R.(CK(V)) =
P™T;Y(CI(V)). This implies that R.(V) = P"T;(V). Sets with P"T';,' — null boundaries
form a separating class. Hence R, = P"T';," for all n = 1. So P is the required distribution.

0

The Consistency Theorem of Daniell and Kolmogorov, in the form presented in (9;
pages 137-140), shows that the sequence (P"T;') can be identified with a distribution
induced on the inverse limit of the sequence (S" 2 U {x,}, B.). This inverse limit is
endowed with a o-algebra generated by the o-algebras on the finite dimensional spheres of
the sequence with the points {*,}. Khintchine’s Convergence of Types Theorem establishes
that the o-algebra on the inverse limit is sufficiently large as to permit characterization of
[P] from the induced distribution on that inverse limit.

3. Counterexamples to characterization. In this section, counterexamples to
characterization are given. It is shown that for all n = 1 there exists P, @ € 2 such that
P"T;' = Q"T," and [P] # [Q]. The result follows from Kovalenko’s construction of
counterexamples for affine type. Because these are not readily accessible in the literature,
an explicit construction is given here. .

To construct such counterexamples, it is sufficient to find P, @ of different affine type
which generate the same distribution on the maximal translation invariant statistic (xz —
X1, X3 — X1, +++ , Xn — X1). As Th(x1, X2, + + + , Xn) is a function of (xz — X1, + -+ , X, — x1) P and
Q@ will generate the same distribution on T',.

It will be convenient to to use characteristic functions. Let ¢/(¢) and £(¢) be the “saw
tooth” characteristic functions

Y(@)=1—|¢t—2j| for t€[2j—1,2j+ 1],jan integer
£@t) = 2y(¢/2) — 1.
See [8; page 123]. We define ¢{™(¢) and ¢{™ () inductively.

S10(t) = [«p(t) -2+ g(t)] ¢<§> o(8) = [¢(t) ;r s(t)} 5(%)
() + ¢57(2) ¢
(m+1) —_

mityee | 917@) + 657(2) ¢
®¥ )(t)—[ 3 ]£<2m+1>

If x1, x2, +++, xo»u are 2™*" independent points whose distributions have characteristic
function ¢{™(t), i = 1, 2 then (xz — X1, * + +, Xa»: — X;) has characteristic function

o= D222 6] TI321 72 6™ (t).

we must prove that
(3A) ¢(m)[ 22" +1_g tk] H2m+l_2 (m)(tk) — (I)(m)[ Z2m+1_2 tk] H2m+l_2 (l)ém)(tk),

Let D,, = {t: ¢{™(t) # 0}. Then D,, = U; (2™*% — 1, 2™*' j + 1) where j is an integer. Define
on Dnox™(t) = $5™(t)/${™(¢). It can be shown that x‘""(t) = (-1)’ for t € @™ — 1,
2™*Y + 1), Elsewhere x™ is undefined. Now |, — 2™*Y| < 1 for some ji, and| i 1 % t
— 2™*1j| < 1 for some j, imply that Y3212 ji = j. So the equation

(3B) XTI 2 1) = TTRZ 2 X ()
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om+l_g

holds whenever defined (namely where ¢, € D, for all £ and hy A t, € D,,). From (3B)
equation (3A) follows.

If P is a distribution with characteristic function ¢{™(¢) and @ has characteristic
function ¢§™(¢#), then [P] # [Q]. However (3A) implies that P, @ generate the same
distribution on (x; — x1, -++, . — x1) for all n = 2™*! — 1. So P"T;! = Q"T';* for all
n=2""_1,
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