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MISSING DATA IN THE ONE-POPULATION MULTIVARIATE
NORMAL PATTERNED MEAN AND COVARIANCE MATRIX
TESTING AND ESTIMATION PROBLEM

By TeEp H. SzATROWSKI!

Rutgers University

In this paper the multivariate normal linear patterned mean and covari-
ance matrix testing and estimation problem is studied in the presence of
missing data for general one-population hypotheses. The Newton-Raphson,
Method of Scoring and EM algorithms are given for finding the maximum
likelihood estimates. The asymptotic joint distribution of the maximum like-
lihood estimates under null and alternative hypotheses are derived along with
the form of the likelihood ratio statistic and its asymptotically Chi squared
null and asymptotically normal nonnull distributions. The distributions of the
maximum likelihood estimates and nonnull distributiong of the likelihood
ratio tests are derived using the standard multivariate and univariate delta
method respectively, and may be evaluated at a parameter point under the
alternative hypothesis parameter space or at a parameter point in a parameter
space that contains the null and alternative hypothesis parameter spaces.
New results for these problems in the presence of complete data as well as
known results (Szatrowski, 1979) are special cases of the results of this paper.

1. Introduction. The problem of testing and estimation for the unknown mean p
and covariance matrix = from a multivariate normal distribution, 4#(u, Z) given a random
sample x;, --., Xy from this distribution has been studied when p and = have linear
patterns by many authors. (See Anderson (1973) and Szatrowski (1979) for a partial list of
references.) Maximum likelihood estimates (MLE), likelihood ratio statistics (LRS) and
various null and nonnull, exact and asymptotic distributions have been obtained for both
this one-population case and for generalizations to k-populations. In this paper, we extend
these one-population results to the case in which we do not observe every component of
every observation. This “missing data” or “incomplete data” can arise in any problem in
which one is collecting multivariate observations. Szatrowski (1981a) obtains similar results
for testing and estimation problems involving linearly patterned means and linearly
patterned correlations (versus linear patterned covariances considered in this paper).

As a motivating example, consider the following problem which arises in test equating
(Holland and Wightman, 1982). Let exams A and B each consist of three separately timed
parallel sections, A;, A2, As and B;, B;, B; respectively. Students are randomly assigned
to take one of three forms of a five section exam, three sections of which always consist of
A1, Ay, and As. The other two sections are either (B, B:), (B1, Bs), or (B2, Bs). Students
are scored based on their performance on the operational sections, A;, Az, and As. The
sections of test B, the experimental sections, are included for equating purposes only.
Thus, it is not necessary for each student to take all sections of test B. Students do not
know which sections are operational or experimental and order of sections may be
randomized. Thus, each observation has as missing data one of the sections of test B.

The analyst’s task is to estimate the mean vector and covariance matrix for the scores
on the six test sections. Standard methods of estimation (MLE) that ignore possible
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948 TED H. SZATROWSKI

patterns in the population mean and covariance estimates lead to less efficient estimates.
In the case where only one rather than two sections of test B are given to each student,
standard methods that ignore patterns in the mean and covariance matrix do not lead to
unique estimates of the population mean vector and covariance matrix.

Let X be a p-component column vector with multivariate normal distribution such that
the mean vector p = & (X) and covariance matrix T = Cov(X) = & (X — p)(X — p)’ have
the linear structure considered by Anderson (1969, 1970, 1973). Specifically, p = }'1 z,8;

=2ZB,Z = [z, -+, z], B € R, where the z's are known, linearly independent column
vectors and the 8’s are unknown scalars. The covariance matrix is given by X = X (g) =
3" 0,Gg, 0 = (01, -+, 0m)’, Where the G’s are known, linearly independent symmetric

matrices and the o’s are unknown scalars, such that 6 € ©, ® = {§ € R™| 2(f) > 0}, where
2 > 0 denotes X positive definite. We assume that @ is nonempty so that there exists at
least one value of ¢ that results in = (o) being positive definite. In some cases, there exists
an orthogonal matrix I" such that I'G,I'" = A,, g = 1, ---, m, diagonal matrices. This
greatly simplifies some of the results obtained in this paper.

DEFINITION 1.1. Let A be a p X p symmetric matrix. (A) is defined to be a column
vector consisting of the upper triangle of elements of A,

(A) = (a1, @22, *++ , Ap, Q12, *+* , Q1p, A23, *** , Up—1p) -

Using Definition 1.1, and defining W = [(G1), (Gz), ---, (Gn)], we observe (X) =
Wo.

In the complete data problem, we observe independent, identically distributed obser-
vations, X;, - -+ , Xy from a multivariate normal distribution with patterned mean g and
patterned covariance matrix 2. Identify substructures of Z, 8, W and ¢ by

(1.1) Z =[Z0:Z:], B = (Bo, B1)', W = [Wo:W1], 0 = (00, 01),

where Z, and 8, are p X ro and ro X 1 respectively and W and oy are %2 p (p + 1) X mo and
mo X 1 respectively. At least one of the inequalities ro < r and mo < m is assumed to be
strict. The problem is to test the null hypothesis Hy: 81 = 0, o1 = 0, versus the alternative
hypothesis H; which does not so restrict 8 and ¢. To do this we find the MLE under each
hypothesis and form the LRS.

However, instead of observing x;, we observe E,3,X;, i = 1, ---, N where E,, a = 1,
.+, q are known u, X p matrices of full rank with u, < p. The function «(Z) is given by
af)=jfori=m;_1+1,---,mj;j=1, -+, q, mo=0. For example, if g = 2, the observed
data would be of the form Eix;, .-+, EiXp , EeXp 41, -+, BoXp,. We let n, = ma — ma—1
be the number of observations of the form E,x and f, = n,/N.

The following Condition 1.1 relating the structure of the missing data and the patterned
mean and covariance structures is assumed to hold for the data collected in the one-
population missing data problems under consideration. If this condition did not hold, data
would not be available for estimating one or more of the unknown parameters.

ConbpITION 1.1. For eachj, there exists an « such that E.z;#0,j=1, -..,r, and for
each g, there exists an a such that E.G;E;#0,g=1, --- , m.

In Section 2, iterative algorithms for finding the MLE are given. Asymptotic distribu-
tions of the MLE are derived in Section 8. These asymptotic distribution results are used
in Section 4 in the derivation of the asymptotic nonnull distributions of the likelihood
ratio statistic. Details of many of the proofs of Lemmas and Theorems in this paper may
be found in Szatrowski (1981b).

2. Maximum likelihood estimates and iterative algorithms. In this section, the
forms of the Newton-Raphson, Method of Scoring and EM algorithms (e.g. Dempster,
Laird and Rubin, 1977) are given for finding MLE for the various hypotheses in the one-
population problem. Several algorithms are given because none of them have been shown
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to have guaranteed convergence or to be always better than the others. Some brief
comments are made concerning starting points and convergence of these algorithms at the
end of this section.

The likelihood function for our observations E;x;, - - , EgX is of the form

(2.1) L(B, 6) = K [[%1 | E.ZE4| "/%exp{— natr(E,ZE,) 'E.C.E.},

with n,C, the usual sample cross product matrix for X;..+1, - - -, Xm. given by
A, =Y (X — X)X — Xo), Xe = (/1) Yme 41X,

plus a term involving the patterned mean, n, (X, — p) (X, — p)’, i.e.

2.2) 1.Coa= A + Ny (Xe — )Xo — ), a=1,:--,q,

with K being a generic for constants independent of 8 and o. Letting =, = E,2ZE,, and
C} =E,C.E,, we find the loglikelihood function to be

(2.3) 1(B, 0) = K — 2%(n,/2) log | Zu|— =%(n./2) tr ;'C .

To derive the first and second partial derivatives of (8, o), we use the following well-
known matrix derivative results, given in Lemma 2.1 and Lemma 2.2,

LEmMaA 2.1. If 2 is a patterned covariance matrix, then
dlog |X|/dos = tr Z7'9(X)/dc, = tr T7'Gy.
LemmMmA 22. IfY is a matrix function of a matrix X, then

3 tr(AYB)/ax;; = tr A(9Y/ox;,)B, Y /oxi; = =Y 1(3Y Jax;)Y L.

Using Lemmas 2.1 and 2.2, we find the first partial derivatives of I(B, o) are given by
(2.4) (8l/0B) = Zn,2, 27'E (X, — p),
(2.5) (Bl/aog) =1 anatr 2;1(}30‘2;1(0: - za)) 8= ly e, m

with Z, = E,Z and G, = E,G;E/, a = 1, --., q. Continuing to take partial derivatives
yields the second partial derivatives given by

(2.6) —(@%/9B8% = 22,2 L.,
2.7 —%/3B;d0n) = N2/ E.E Gre 2 Ba X — ), j=1,--,rh=1 .-, m
(2.8) —(0%1/30,90;) = % ZIn,tr B G 22 Gra 25 (2CE — %,), & h=1,---,m.

Taking the expected values of the second partial derivatives after observing that X, =
poand £CE =32,,a=1, ..., g, yields

(2.9) —&(3%1/9B%)= 2inZ.2; L.,
(2.10) —ég(azl/aﬂjaoh)=0, j= 1, cee ,r,h= 1, cee,m,
(2.11) —£(0%1/305001) = Yo DInatr 2. G o2 'Gray, g h=1, -+, m.

The Newton-Raphson and Method of Scoring iterative procedures are of the form
(2.12) 60V =89 + aS™H(@s(0)

with a = 1, (a different from one is used for monitoring step size to improve convergence),
s(0) = 31(8)/30, and with 6 and 6 the old and new values respectively in the iteration
scheme. Let # and s in (2.12) be given by 8 = (8’, ¢’)’, s = (s1, s3)’, s1 = (3l/9B) and (s2),
= (8l/doz), g =1, - -+ , m, in (2.4) and (2.5) respectively. Partition S(r + m) X (r + m) into
Sij, i, j=1,2with Sy  r X r.
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LeEMMA 2.3. The Newton-Raphson algorithm for finding the MLE in the one-popu-
lation problem is given by (2.12) with a = 1, S;; = (—9%1/B% in (2.6), (Siz)jn =
(—8%1/8B;d01) in (2.7), So1 = S’z and (Sa2)gn = (—8%1/30,d01) in (2.8).

For the Method of Scoring algorithm, the components of Si1, (Siz),» and (Sz2)z. are
given in (2.9)-(2.11) respectively. Because S, = 0, the Method of Scoring using (2.12) with
a = 1 simplifies.

LeEMMA 24. The Method of Scoring algorithm for finding MLE in the one-population
problem is given by

(2.13) B=CEn2.272,) S22 E.X,,
(2.14) 1.Co = Ay + 1o (%, — ZB) (X, — ZB)» Ci = E.C.EL,
(2.15) 6 = [29n.tr £ G2 Gralah Cnatr 271G 2518 2),,

where the right sides of (2.13)-(2.15) use the current value ‘of B and é to yield a new value
given on the left-hand side. Since S;2 = 0 allows us to get new values of 8 and ¢
sequentially at each iteration, we may revise the value of C. in (2.14) with the new value

of B before using (2.15).

Note in (2.15) that the term [ ]z is an m X m matrix and the term ( )gisanm X 1
column vector. The gh and g terms are given respectively inside [ ] and ( ). Equations
(2.13) and (2.15) follow directly from (2.4) and (2.5). Anderson (1973) used this derivation
for the complete data case with E, =L, a =1, ..., q. The matrices (E{n,Z, b 1Z.) and
Y =[Z{tr ﬁ;ngaﬁglGh,,]gh in (2.13) and (2.15) are easily shown to be positive definite for
£ positive definite. For example, for x # 0, x’Y x is given by

XY x = Yoh %, Yorxn = Ztr £, () ST, (x) = T Vi (B22(x)272)2> 0.

The EM algorithm has an E step (conditional expectation) and an M step (maximiza-
tion). Let X = (1/N)=Vx;, A = 2V(x; —X)x, - X), NC = A+ N - )& - ),
statistics which we cannot calculate directly from our observed data E;x;, - - - , Egxy. For
each E,, (u, X p), form a matrix F,, ((p — u.) X p) so that (E,, F,)’ is of full rank. The
E step involves evaluating the two conditional expectations given in equations (2.16) and
(2.17) below. The derivation of these equalities is straightforward (e.g. Szatrowski, 1981b).

E(X|Eixy, + -+, Egxn; p, X)
(2.16)

_lgo (B (EX
N\ K Fop + (F.2ZE)(EZE,) "Eo(Xe — ) )
éa(AlE1X1, ey, EqXN; I, 2)

_wofEa\ [ ((E)ulZr2)a A(EN
(217) = z?(}vﬂ) {((521)41(522)41) + na(l - (na/Iv))nana}(Fa)

a1 —1
- zqmy e (;3) (mnz)(l'?j) ,
(E11)e = ELAE,, (B21)s = (E12)e = (B.AEL)(EZE,) (E.ZF,),
(B2)a = Na(l — N7)(FoZF, — (F.ZEL) (EZ.EL) 7 (E.ZF%))
+ (F,2E.)(E,XE,) '(E.A,E,)(E,ZE,) (E,ZF,).
N1e = (BaXo), 2o = Fopp + (F.ZE,)(E.ZE,) "'E, (X, — p).
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LEMMA 2.5. The EM algorithm for finding MLE in the one-population problem is
given by (1) E step: from an initial estimate of g and X finding the conditional expectations
(2.16) and (2.17), (2) M-step: and using these conditional expectations as complete data in
the complete data versions of Lemma 2.3 or Lemma 2.4 (dropping all sumsona =1,...,
g and E, in these results.) Each iteration of the EM algorithm involves both an E and M
step although more than one iteration may take place in an M step. The M step yields new
estimates of g and X which are used in the next E step.

Rubin and Szatrowski (1982a, b) suggest that in those cases in which the M-step does
not have an explicit noniterative solution, one may sometimes add additional fully missing
variables which result in the M-step having an explicit solution.

We next discuss the effect of the starting point on the convergence of the Newton-
Raphson, Method of Scoring and EM algorithms for several special cases. These cases
indicate the importance of using good initial starting points for the Newton-Raphson and
EM algorithms. The Method of Scoring appears to be less sensitive to the choice of
starting point. It should be noted that none of these algorithms appear to have guaranteed
convergence to a solution of the likelihood equations under all mean and covariance
patterns and all missing data configurations. When they do converge to a root of the
likelihood equation, this root is not always the MLE. The Method of Scoring has been
shown (Szatrowski, 1980) to converge in one iteration to the MLE when an explicit MLE
exists from any positive definite covariance starting point. Under certain conditions when
the complete-data model is a regular exponential family, the EM algorithm using the
Method of Scoring for the M step will have guaranteed convergence to a root of the
likelihood equations. (Dempster, Laird and Rubin, 1977).

Consider the problem of estimating £ = ¢ I, in the complete data one-population
problem assuming that the mean vector is known. The Method of Scoring in this case
involves the simplification of (2.15)

o =[tr £7'G, £ 'Gulz (tr £7G,£7C),
which further simplifies under = = o I,, with ¢ = tr C/p, to yield
W = (6%/p)pc/® = c.

Thus we see that from any positive definite value of 6 L,, convergence occurs in one
iteration. The Newton-Raphson algorithm (Lemma 2.3) for p = 1 simplifies to

D=1+ (c— 6)/(2c—3)

with & the old value, 6 the new value. Suppose we choose £ = I, i.e. 5 = 1 as the starting
point when c is very large. Then the iterations are 6 = 1, 6 = %, ¢ = % until the
estimates of o get close to c. This poor performance occurs even when there is an explicit
MLE, 6 = c. Finally, consider the EM algorithm using the Method of Scoring for the M-
step when we view the random sample of scalars x;, -- -, xy as the first components in a
bivariate normal distribution with mean 0 and covariance X = ¢ I.. The sufficient statistic
for the complete data problem is C = (=¥ x,x,)/N where the x’s are 2 X 1. The E-step
yields &(C| x1, ..., xn, £ = ¢ I) = diag(cu, 6).

The M-step using the Method of Scoring gives ¢'” = (ci1 + 6)/2. The MLE is 6 = cu1.
Thus if ¢, is very large and we choose $ =1, ie. 6 =1 as a starting point, the iterations are
@ = 1, oV = c11/2, o® = 3c11/4, ete.

These special cases suggest it is important to start the Newton-Raphson and EM
algorithms at good starting points for X. The Method of Scoring is less sens1t1ve to the
starting point for . One possible starting point would be to use ﬂ 0 and £ = =(4), i.e.
any positive definite  with the given patterned structure in the Method of Scoring in
equations (2.14) and (2.15) to yield a starting point for 6 to be used in any of the algorithms.
Since £C* = =,, ¢ would be an unbiased and consistent estimate of o. However, Z(4) is
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not guaranteed to be positive definite. One can also average elements in the mean and
covariance patterns. However, this can lead to a covariance estimate which is not positive
definite (e.g. Szatrowski, 1978).

3. Asymptotic distributions of the maximum likelihood estimates. In this
section asymptotic distributions of the MLE are given under both the null hypothesis (for
any true parameter that is included in the parameterization under which the MLE is
derived) and any alternative hypothesis (for any true parameter that is not included in the
parameterization under which the MLE is derived). These asymptotic distributions are
derived using the standard delta method and facilitate the derivation of the asymptotic
nonnull distributions of the LRS given in Section 4. The results under the alternative
hypothesis are useful for forming confidence intervals. Anderson’s (1973) result, that one
iteration of the Method of Scoring algorithm starting from a consistent estimate of X yields
an asymptotic efficient estimate of 8 and ¢ in the one-population complete data problem
even when the sampled population is not normal as long as the estimates obtained as the
solutions to the likelihood equations are asymptotically efficient, is extended to the missing
data problem using the Method of Scoring. The asymptotic distributions are given as N,
the total sample size, goes to infinity. This concept needs to be clarified in the one-
population problem because of the missing data. Roughly stated, we would like the number
of data points useful for the estimation of each parameter divided by the total sample size
N to have as a limit N — o, a number, possibly different for each parameter, that is greater
than zero. This condition is stated in Condition 3.1 below after we clarify some notation.
Condition 3.1 is assumed for all one-population asymptotic distributions when limy_, is
stated. Let 1(-) be one if the condition in ( ) is true, zero otherwise. Define N;(j) =
241 n.1(Euz; #0),j=1, --+, 1, and No(g) = 2% n, 1(E,G,E,# 0),g=1, -+, m.

ConbpITION 3.1. limy ,o(Ns(¢)/N) =5, >0for s=1,¢t =1, ..., rands=2,t =1,
cee,m.

To facilitate the simplification of matrix derivative expressions, we use the notation of
Definition 3.1 and Lemmas 3.1-3.4 given below.

DEFINITION 3.1. (Anderson, 1969). Let ® be a {p(p +1)/2} X {p(p + 1)/2} sym-
metric matrix with elements ® = ®(Z) = (o) = (0w 0j1 + 0udp), L < J, k < I, where o;; is
the ij element of =. The notation o;; represents the element of ® with row in the same
position as the element a; in (A), where A is p X p symmetric, and column in the same
position as ax; in (A )’.

We observe that if the p X p matrix W > 0 has a Wishart distribution with parameters
X>0andn (.,Z(W) = W(Z, n)), then n®(X) = Cov((W)).

LEmMMA 3.1. (Szatrowski, 1979). If R is a nonsingular p X p matrix, then there
exists a nonsingular matrix B such that (RSR’) = B(S) for any p X p symmetric matrix
S. If, in addition, S > 0, ®( RSR’) = B®(S)B’.

LEMMA 3.2. (Szatrowski, 1979). IfE and F are p X p symmetric matrices, then
(EY®'(Z)(F) = % tr Z'E X7'F.

LeEmMA 3.3. IfX and X, are p X p positive definite covariance matrices, then

D(Z)D ()P (Zo) = B(ZE'Zo).

ProoF. Choose R so that it simultaneously diagonalizes = and X, with the property
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that RZR’ = I and R¥(R’ = D, a diagonal matrix with positive diagonal elements. From
Lemma 3.1 there exists a matrix B = B(R) with the property B®(S)B’ = ®(RSR’) for any
positive definite S. We then have

B(Z0)P ' (2)B(Zo) = BT ((B®(Z0)B') (B®(Z)B’') ™ (B®(Z)B’))B™
=B 1(@D)® 'I)®[D))B™ =B '®D*)B™" = ®dR'DR")
=®(R'DR)(RR)(RT'DR™)) = B(ZZ '),
with the third equality following by multiplication after noting
o) = diag(2ip, Lp-1y2) and ®D) = diag2d, - - -, 2d%; di, dis, + -+, docrp). O

LEMMA 34. Let 3, Z; and 2, be positive definite matrices and let E and F be
symmetric matrices, all of dimension p X p. Then

(3.1) (E) @7 '(Z) D)@ '(Z)(F) = % tr EX7'EX;'FX; 'S

Proor. Using Lemma 3.1, we see that for R nonsingular, (3.1) is invariant under the
transformation (E, F, ¥, 2, 3,;) - (RER’, RFR’, RZ,R’, RER/, RZ;R’).

Since X; and X, are positive definite, we can choose R so RZ;R’ = I and RZ,R’ =
diag(ds, - - -, dp) =D, and since E and F and thus RER’ and RFR’ are symmetric matrices,
it is sufficient to show for E and F symmetric, £ and D positive definite with D diagonal
that »

(3.2) (E)® (D)?(Z)® '(I)(F) = % tr D'ED'IFZ.

Let oJ;; be a symmetric matrix of zeroes with a one in the i/ and ji positions. By linearity,

it suffices to prove (3.2) for E=dJ;and F=dJu, 1<i<j=<pandl<k=1[=<p We

consider four cases: (1) i=j, k=1 2)i=j,k#1, 3)i#j, k=1L and (4) i #J, k# L
The right hand side of (3.2) with E = J;; and F = J},; simplifies noting D is diagonal to:

(3~3) Y% tr ])_lJijl)_lzJ/zl2 = Er,s,t,u d:l(Jij)rs ds_lzst(Jkl)tuzuh

This further simplifies in the four cases to (1) % d;%0% for i = j, k = I; (2) d;%ow0u for i

=J,k#1;(3) di_l dfla,-ko,-k for i # j, k = I; and (4) d;it dj'l(o,-kaﬂ + 0uoj) fori##j, k# 1.
The left hand side simplifies, noting ®(D) and ®(I) are diagonal with ®(I) =

diag(2L,, I,(p-1,2). If we decompose @ into blocks ®;, i, j = 1, 2, with ®;;, p X p then

O {(D)P ()P (I) is given by

Y% D72, (X) L% D72®,,(T)

Y% @5 (D)Pu(E) Pz (D)P2((X) |-

The verification that the right and left sides of (3.2) are equal follows directly for each of

the four cases using the results in (3.4), the definition of ® and the right hand side results
given after (3.3). 0

(34) o '(D)2X)P (D) = [

The asymptotic distribution of the MLE derived under the null hypothesis assumptions
when the true value of the parameters, (u*, *), does not necessarily belong to the
parameter space of the null hypothesis is given in Theorem 3.1. These results are used in
this paper when the asymptotic nonnull distribution of the LRS is derived. Theorem 3.1
also allows us to study the asymptotic behavior of the MLE derived under a reduced model
assumed under the null hypothesis when a model under the alternative hypothesis is the
true model. Thus, one can study the robustness of estimates, confidence intervals, etc.
when the null hypothesis modelling assumption is violated.

THEOREM 3.1. The asymptotic joint distribution of the MLE derived under the null
and alternative hypotheses in the one-population missing data problem evaluated at the
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true parameter value (u*, =*) where p* and =* need not be patterned is given by
(r,s=0,1),

(3.5) limy_.-% {NV2((B5, 85, B1, 61 — (Bo, 66, B1, 61))} =4 (0, E),
(3.6) Z(6,, 65) =20 —F,)7'Y;'(2H,, + J,) Y (X — F,) 7,
3.7) Z(Br, 65) = QE(6,, 0.) + 2T, YA — F,)7,
(3.8) Z(B,, B) = QE(5r, 6,)Q% + S7'L,.S;!

+2(T,Y;'I - F,) ' Q. + Q.(I — F,) 'Y 'T),
with

F, = 2Y;! 32 fultr 2l G 2rd (Gra B (Bra — 2 — Broa)
(3.9)
+ ZoS7H Y01 £, 20 2 Gy 2 Brya)) Lo,

(3.10) Y, = [Y01 futr Bl GeaBrdGralen, Bra = (3 — pry) (d — pira)’,
3.11) S, = Y4t fa ZZr Loy Mg = Dt ful Wrga D 22 0 Wone ] g
(312) W = (1% — pr) Zrd Gga — =1 £, (1} — pry) =5 Gy 277 Zry S L),
(3.13) Jrs = Yot fltr Goo Tl B2 25 Gra B Brd 1o,
(3.14) Q- =S Q%1 fiZ1o Bl GaaZra (e — 13)) s

(3.15)  Tr = (87" Yiur fo ZruZrd T2 Tt Wina)ny  Lire = Bimi fo 270 Brd B EL Lo,

(g&h=1---,minF, Y, Q,Wg;8=1, ---,m, h=1, - -+, ms in dys; m1 = m), where
(B, 6,) are the “MLE” derived under H, with X} replaced by p% and AZ replaced by
n.2%. These “MLE” are not statistics. Also p% = E.p* and 2 = E.Z*E{, and Z,, = E.Z,
where Zy is defined in (1.1) and Z, is Z in (1.1).

Proor. Complete details of this proof may be found in Szatrowski (1981b). We use
the form of the standard multivariate delta method given in Bishop, Fienberg, and Holland,
(1975), Theorem 14.6.2. To use the delta method theorem, we must find 8f/86;. We use the
equations in Lemma 2.4. Note that $ =3(5). Let 0:;, be one of the elements of
&Y, (A¥)) = (E,X,), (E,A,E,)’). Taking derivatives with respect to 8;,, we get a set
of linear equations of the form

(3.16) (9B/30:) = Pin + Q(36/86:,), (86/30:) = My + F(36/00).
The second set of these equations can be solved yielding
(3.17) (86/30) = (I — F)'my,, (3f/36,) = pin + QA — F)'my,.

We then rewrite these equations in terms of matrices M and P with columns given by m.,
and p;, respectively, evaluating separately the cases when 8, is an element of X¥ and (A})
and then evaluate these expressions at the value X¥ = u}, A} = n, X, after replacing p,
B, £ and ¢ with p,, 8., . and o, respectively, r = 0, 1. These results are then substituted
into the following results on the form of the asymptotic covariance derived from the
multivariate delta method and the asymptotic multivariate distribution of the sample
mean and covariance (e.g., Theorem 2, Szatrowski, 1979), with the understanding that all
derivatives are evaluated at the parameter value (p*, £*),

Cov(B., B) = S1{(0f./0%}) (2} /n,) (@Bs/0% )Y
(3.18) A .
+ 0B /3(AF)) (n, ®(EF)) 0B./0(AF))},
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Cov(8;, 6,) = Z1{(36,/0% ) (3 /n,)(36,/0%} Y
(3.19)
+ (96,/0(A ) (n,®(E7)) (96:/9(A 7))},

Cov(B,, 65) = Z1{(3B./3% ) (X /n,) (38,/0% )
(3.20) )
+ (3B/3(A})) (nB(2))(36/8(AF))}.0

A simplified version of Theorem 3.1 for the complete data problem is given by Theo-
rem 3.2.

THEOREM 3.2. Under the conditions of Theorem 3.1 with complete data, the asymp-
totic joint distributions of (B4, 65, B1, 61) is given by (3.5)-(3.8) with (3.9)-(3.15) replaced
by
(3.21) F, = 2Y; [tr Z7'G. =1 (G271 (B, — % — B,) + R.Z;'Gr 2. 'B,) 1en,

(322) Y, =[tr 57'GE'Gulen, Br= (* — p)* — ), S, =Z.37'Z,,

(3.23) H. = [w 2 ' 2*2 i ]m, Ry =Z.(2:%'Z,)7'Z),
(3.24) Wy = (u* — ) Z2'Ge (I - RZ1Y),

(3.25) Jrs = [tr G = E ' Gr 2 B E 1 n,

(3.26) Q = (S7'ZIZ'GeZ (e — 1)),

(3.27) T, = (S7'Z/E'E*E0)e, Ly = 2127242,

Under the additional assumption that the MLE have explicit representations under
the null hypothesis (e.g., Szatrowski, 1980), the form of the asymptotic covariance =
simplifies, becoming

E(&n 63) = 2Y;l(2Hrs + Jrs)Ys_l’
Z(B., 6,) = 2T, Y5, EB, B) = STZUZ. Z*'%,)'Z,S;

ProoF. In the complete data case we can drop all Y7, all subscripts a, 1, v, and all £,
become ones. When there is an explicit solution, further simplification follows after noting
Qo and F, are zero matrices. [

Finally, we extend Anderson’s (1973) results on asymptotic efficient estimates obtained
from one iteration of the Method of Scoring algorithm in the one-population complete
data problem to the one-population missing data problem. We parallel Anderson’s (1973)
Section 3 presentation. Note that standard asymptotic distribution results for MLE yield
the following Lemma.

LeEmMA 3.5. The asymptotic distributions for the MLE of ﬁ and ¢ in the one-
population missing data problem evaluated at a value B and o in the null hypothesis
region are independent with marginal distributions given by

(3.28) imy_. £ (NVA(B = B)) = /0, Bn.Z:27'Z.)7Y),
(3.29) limy_o L (NY46 — 0)) = N (0, [% Zinatr 27 Ga 27 Gra] ™).
Let A(N) be given by (2.13) with £ = = on the right hand side. Then N2(B(N) — B)

has a limiting normal distribution given in (3.28) even when the population distribution is
not normal assuming the population mean and covariance exist.
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THEOREM 3.3. If the data in the one-population missing data problem come from a
population whose distribution is not necessarily multivariate normal with mean p = Z8
and covariance =, and £(N) is a consistent estimate of X, then if ,é* (N) is given by (2.13)
withL a consistent estimate of £, N'*(B*(N) — B) has the limiting normal distribution
given in (3.28). If B(N) is asymptotically efficient, so is f*(N).

PROOF.
NY2(B*(N) — B(N)) = N*(B*(N) — B — (B(N) - B)}
=11 (X% £,2,27°Z) 22 NN) — (X0 f,2,27'2,) 22 (N) Yo NV Ry — ZoB)

converges stochastically to 0, where f, = n./N because fora=1, ..., g,
plimya($i-1 /2,27 (N)Z,) 2.2 (N) = (Bi-1 £2,27'Z,) 2.2,

and f, NV*(X,(N) — Z,8} = f*nY*{(X.(N) — Z.B)} is either a random variable that
converges stochastically to zero or to a limiting normal distribution when either n,/N —
Oorn,/N—n,>0.0

Using the notation of Anderson (1969, 1973) or Szatrowski (1979, 1980)2 we can write
the scoring equations for ¢ in (2.15) in the same form as the equation for 8 in (2.13), and
thus generalize the results of Theorem 3.3 for covariances.

THEOREM 3.4. If the data in the one-population missing data problem come from a
population with a linearly patterned population mean and covariance, then one iteration
of the Method of Scoring algorithms given in Section 2 from any consistent estimate of
the population covariance matrix yields estimates with asymptotic normal distributions
given in (3.28) and (3.29). If the estimates derived as solutions to the scoring equations
are asymptotically efficient, then the one iteration solution from a consistent estimate of
the covariance matrix are also asymptotically efficient.

We note that when the estimates derived as solutions to the scoring equations are MLE,
such as when the sampled population is normal, then these estimates are asymptotically
efficient in the sense of attaining the Cramér-Rao lower bound for the covariance matrix
of unbiased estimates.

4. Likelihood ratio statistic and its asymptotic distributions. In this section,
the form of the LRS and its asymptotic distributions are given. The asymptotic null
distributions given are the usual asymptotic Chi squared distributions for LRS. The
likelihood ratio statistic, A, for testing the null hypothesis Hy: 81 = 0, 01 = 0 against the
alternative hypothesis H; which does not so restrict 8; and o, is easily shown by substitution
of the MLE into the likelihood function to be given by

(4.1) AN = 119 (| B EL | /| EaZoEL |} o,

where £, and &, are the MLE of = under H, and H; respectively. Methods used to find
these MLE are discussed in Section 2.

In general, the exact distribution of the LRS is difficult to derive. Often no explicit form
of the LRS exists. The usual asymptotic Chi squared distribution applies under the null
hypothesis assumption, yielding limy_.%(—2 log A\) = x7, where f = m + r —
(mo + ro). We reject the null hypothesis when —2 log A is too large.

Finally, asymptotic nonnull distributions of the LRS are given using the standard delta
method for values of the true parameter which are not in the null hypothesis region. The
asymptotic null distribution results cannot be obtained from the nonnull results by
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assuming the true parameter is in the null hypothesis region. Such parameter values yield
zero variance values below since the standard delta method first order derivative is zero
under the null hypothesis. The values that we consider for the true parameter are not in
the null hypothesis region, but are either in the alternative hypothesis region or in a
parameter region that may include the null and alternative hypothesis regions. These
results are useful for power and sample size calculations and for studying the behavior of
the LRS for true parameter values that are neither in the null or alternative hypothesis
region. For example, one may wish to know the distribution of the LRS in the one-
population problem at a true value (u, ) which may have no patterned structure when
testing a null and alternative hypothesis which are both patterned.

The asymptotic nonnull results in this section follow immediately using the standard
delta method and the Section 3 asymptotic distribution of the MLE. They simplify to the
results for the complete data case given by Szatrowski (1979) with the advantage that the
simplified results in the present paper are in terms of X rather then ®(X), thus allowing for
a simplification of calculations. .

THEOREM 4.1. The asymptotic nonnull distribution for the LRS (4.1) in the one
population missing data hypothesis testing problem is given by

4.2) limp_, e ZINY2{(—(2/N)log A — Y- filog(| Zox|/| Z1al)}] = A (0, vw),
(4.83) Vo =Yrsco (1)L i fufy 7y Tt (T Brot Gga) (E (67, 65))en (tr 25 Gy ),

where E(6,, 6;) is given in (3.6) in Theorem 3.1, under the assumptions of Theorem 3.1
with the additional assumption that the true parameter (p*, *) does not lie in the null
hypothesis region.

Proor. We wish to find the asymptotic distribution of f(dy, 6:) = —(2/N)log A using
the standard delta method. Taking derivatives (e.g. Szatrowski, 1979) yields

af/a(ér)g = (_l)r i ﬁxtl'zr_,lega.
The variance term is
Voo = Erl‘,s=0(af/a(ir)/s(6r, ‘fs)(af/aés)- EI

Theorem 4.1 can be further simplified by making the usual assumption that (p*, =*)
belongs in the alternative hypothesis region. This greatly simplifies the form of Z(é,, é;)
when r or s is equal to one since g1, = p¥ and 2, = . The complete data case follows
from Theorem 4.1 by using Z(é,, ;) from Theorem 3.2, replacing f, with one in (4.2) and
omitting the subscripts a and y and the summations on a and y from (4.2) and (4.3).
Further simplifications for the complete data problem occur when we assume that
(p*, *) is in the alternative parameter region (see the above similar modification to the
missing data case) and/or when we make the further assumption that the null hypothesis
has an explicit MLE.

For example, consider the complete data case when the MLE under the null hypothesis
has an explicit representation and (u*, £*) is a value under the alternative hypothesis.
This covariance matrix in Theorem 3.2 simplifies to

E(8,, 8,) = 2Y(2H,, + J,,) Y
with H,; = 0 unless r = s = 0 in which cése we have
Hoo = (0* — po)'25'GZ5'Z*Z5'Gr 25 (n* — o),
and J,; is given by J1; = Y1, Jo = Jyo,
Jio = [tr GoZ0'=*25'GrZ* gn, dJoo = [trG,Z5'2*25'GrE5 2+ 25 ]
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The asymptotic variance simplifies to the known result (Szatrowski, 1979),
Vo = 2{tr(I — B5'2*)% + 2(p* — po) ' T*E5 (1 * — po)}
by noting that
Ve = B} gm0 (=1)"° 2Py B2y (tr B7'Gy) (B (87, 6))an (tr Z57'G)
=237 (-1)""6.(2H,s + J,5)0,
since

S (tr 279G (Y e = {00Y, Y1) = {05
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