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BAYESIAN BIOASSAY DESIGN

By LynN Kuo

State University of New York at Stony Brook

A Bayesian treatment of the quantal bioassay design problem is given. It
is assumed that the potency curve is a Dirichlet random distribution F with
parameter a(t) = MFy(t), and that n,,..., n, animals are treated at drug
levels ¢y, . . ., t. respectively. The optimal design levels ¢, . . ., £, that minimize
the Bayes risk for weighted integrated quadratic loss functions are found in
the following cases: (i) L = 1 and the weight function arbitrary; (ii) uniform
prior guess, uniform weight and two animals treated; and (iii) uniform weight
and L arbitrary, but M — 0. These results disprove a conjecture of Antoniak.

1. Introduction. We can state our quantal bioassay problem as follows. The experi-
menter tests the potency of a certain drug by giving groups of animals injections of the
drug at certain levels; namely he treats n,, . .., n, animals at drug dosage levels ¢, ..., {L
respectively, and records &, ..., kL, the number of animals giving positive response at
each level. It is assumed that each animal’s response to a given dose of drug is either
positive or negative (no response) and that each animal has a threshold which the dose
given him must equal or exceed to produce a positive response. However, this threshold
varies from one animal to the next, so we treat it as a random variable with unknown
distribution F. In the literature this F'is often called the tolerance distribution or potency
curve. The drug dosage levels may be the actual dosage levels or the logarithms of these
levels.

A Bayesian nonparametric approach to estimating F, in which the prior distribution of
F is a process of the Dubins and Freedman type, was first proposed by Kraft and van
Eeden (1964). Ramsey (1972), Antoniak (1974), Wesley (1976), and Bhattacharya (1981)
have also studied inferences on F. For them F'is chosen from Ferguson’s Dirichlet process
(1973) with parameter a, where « is a finite measure on R. The objective of this paper is
to find the drug levels ¢y, .. ., fL to be administered such that the Bayes risk & [(F (¢) —
ﬁ‘(t))z dW (t) is minimized, where W is a nonrandom measure, and F"(t) =8(F(t)|ky...,
ki) is the Bayes estimator of F with respect to the Dirichlet process prior.

The Bayesian nonparametric approach has advantages over other approaches. Prior
information, which is often available from previous assays using similar subjects and
similar stimuli, can be incorporated into the analysis. While F is often assumed in the
literature to have a specific parametric form, such as normal or logistic, such assumptions
are frequently too strong. For a short review of other approaches to bioassay design
problems, I would recommend Cochran (1973), Abdelbasit and Plackett (1981), and
Tsutakawa (1982). A discussion of principles of good design for bioassays is also given by
Finney (1978, Chapters 6 and 19).

To use the approach based on Dirichlet processes, the statistician need only specify a
prior guess at F (possibly obtained from past assays) and a “prior sample size” signifying
how confident he is of his initial guess. As pointed out by Ferguson (1973): “a((— =, t])/
a(R) denoted by Fy(t) represents our prior guess at the shape of the unknown F(t). a(R)
denoted by M can be interpreted as a measure of the strength of belief in the prior guess,
measured in units of sample size. If M is large compared to the sample size n, little weight
is given to the observations. If M is small compared to n, little weight is given to the prior
guess at F.”

A few preliminary results are given in Section 2. In Section 3, we treat the design
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problem for the case L = 1, i.e. all the animals treated at the same level. In this case, we
are able to derive an optimal solution for any W (¢), M, and continuous Fo(t). For the cases
L > 1, we make the assumptions W (t) = ¢ and Fo(t) = ¢, where 0 < ¢ < 1, for computational
convenience. Actually, one of these assumptions (but not both) can be made without loss
of generality by a reparametrization of ¢. In Section 4, we find the optimal solution for the
special case: only two animals are tested, and W(¢) = ¢, Fo(t) = ¢, 0 < ¢t < 1. The optimal
solution to this case is given by treating one animal each at levels % — ¢y and % + ¢o, where
¢ is the unique root of a rational function depending on the value of M. For example:
when M — 0, the two optimal levels approach % and %; when M = 1, the two levels are
given approximately by .365 and .635; when M = 2, the two levels are given approximately
by .389 and .611; when M — oo, the two levels approach %. In Section 5, we treat the case
M — 0. The Bayes risk is reduced to a simple function from which the optimal design can
be derived easily. This design has drug levels spaced to divide the line into intervals having
equal prior probability.

A few words should be said about Ramsey’s result (1972). In Example 4 of his paper, he
takes the parameter a(f) = MFy(t), such that Fyo(t) (—o < ¢ < ) is the standard normal
distribution function ®(¢). He assumes that the actual potency curve is a shifted standard
normal distribution ®(¢ — #). He examines the following designs for a total of six animals:

(i) one animal at each of the six different doses;

(ii) two animals at each of three different doses;
(iii) three animals at each of the two different doses.
The spacing of the drug levels is determined by letting them divide the prior guess in equal
percentages, namely, Fo(t;) — Fo(t:—1) = C for all i. With each of these designs, he estimates
the median of F and graphs bias, standard deviation, and the square root of the mean
squared error of this estimator for each of the designs over a range of 8. These graphs
reveal one conclusion; whether based on bias, standard deviation, or root mean squared
error, the best design uses one observation per dose.

Antoniak shows that the posterior distribution of F for the bioassay is a mixture of
Dirichlet processes when the prior on F is a Dirichlet process, and obtains the Bayes
estimator of F with two doses for the integrated squared error loss. Assuming Fo(¢) = ¢,
W(t) =t,0 <t =<1, he conjectures for the design problem: (i) If L is fixed beforehand, the
Bayes design is to set ¢; = i/(L + 1) and makes the n; as nearly equal as possible, i.e.
| ni — n;| = 1for all i, /. (ii) If L is not fixed, the Bayes design is to let L = n (where n is the
total number of animals experimented on) and take one observation each at the levels ¢;
= i/(n + 1). Our results exhibit a counterexample to both parts of this conjecture. Even
with the uniform prior guess, the equal spacing of the dosage levels is optimal only for M
— 0. As M increases, we can reduce the Bayes risk by taking animals at drug levels closer
to the center. Antoniak’s conjecture, part (ii), is correct for the case M — 0. Although we
have only treated very special cases, nevertheless I feel that when 0 < M < 0, W is an
absolutely continuous measure, and the number of drug levels is not fixed beforehand, the
best design is given by one observation per dose.

2. Preliminary results.  Let R be the real line, 4 be a o-field of Borel sets, and « be
a nonnull finite measure on (R, #). Let us make the following three assumptions:
(21) (1) F is a random distribution function chosen from the Dirichlet process on
(R, #) with parameter «;
(2) ny, ---, n;, animals are treated at drug levels ¢;, - - -, {1 respectively, and £,
«+., ky (denoted by k) are the observed number of animals that respond
positively at each level, where the ¢; are ordered in npndecreasing order;
(3) The loss function L(F, By is given by [ (F(¢) — F(t))? dW(t), where W (the
weight function) is a nonrandom measure. The measure W and the function
W(t) = W((—oo, t]) will be used interchangeably.
Then we can obtain the Bayes rule of F by pointwise minimization of the function
E[(F(t) — F(#))?| k] for each ¢.
Let us sketch the approach to estimating F for general a and L. Define y; and B; by the
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following equations: y; = F(£) — F(t:i-1), Bi = MFo(t) — MFo(t;im),i=1, - -+, L + 1, where
to = —o, tr+1 = . The likelihood function of the y is given by

N (g DRPIIES YRS

since, given F, the ks are independently and binomially distributed with parameters n;
and F(t;). Given the prior Dirichlet density of y = (y1, -+, y1; yr+1) with parameters
B = (Bi, --+, Br; Br+1) and the above likelihood function, we can derive the posterior
density of y, which is a mixture of Dirichlet densities that becomes quite complicated as
L increases. To minimize &[(F(t) — F(t))2|k], we want to estimate F'(¢) by F t) =
& (F(t)| k). Therefore, fori =1, --- , L, we have

F(t) = $i=1 € (3] k).
For other values of ¢, say &, < t < t;4+1, i =0, ---, L, we use the following interpolation
formula:
Fy(t) — Fo(t)

m[ﬁ (t1) — B ()1

(2.2) F@t)=F@) +

A proof of (2.2) is given in Wesley (1976, pages 53-57).
For L = 1, or 2, it is easy to obtain the likelihood function and posterior distribution. A
few results for L = 1 are given here for future reference. For L = 2, see Antoniak’s paper

(1974).
Assume Fo(t) =t,0=t=<1,L =1, and n, animals are treated at ¢; € (0, 1), and k; of

them react positively. Then, the posterior density of y; given &, is given by:
I + M) B g kit

Tk + BT (01 — k1 + B2)

where 81 = Mt,, B2 = M — Mt,. Hence

k1+B1_k1+Mt1
m+M m+M’

g(n lkl) =

2.3) Ft) =

tfﬁ(tl), ifOo=<t=<t;
1
(2.4) F@) =

p(tl) .
=7 ———(t-t)+F@), ft=t=1

For the general problem, there are L drug levels to be administered. F (¢) is given as
in (2.2). The design problem is to find t = (¢, ---, £2) such that the Bayes risk r(t) =
[ &(F(t) — F(t))® dW(t) is minimized. Note that F (t) is a function of the observations k
and the drug levels t. The expectation is taken with respect to the joint distribution of k
and F(¢). Since both F(¢) and F'(¢) are random, the first step is to simplify & (F(t) — F@))y?
to an expectation of a more manageable function. The following theorem gives the desired
simplifications.

THEOREM 2.1. With the assumptions in (2.1), F(t) as in (2.2), and [ &F(t)* dW(t)
< oo, then

& f [F@) - FOT dW(t) = f Var F(t) dW(¢t) — f Var F(t) dW(¢t)

= f EF ()2 dW () — j EF () dW(2).
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ProoF. The proof is standard. We will only show the first equality. Since & (F(¢)| k)
= F(t), and &F(t) = &F (t) = Fo(t), we have

& J [F@) — F@OTF dW(@©)

_ J' (ELF(t) — EF(OT — 2618 (F(®) — EF@)(F () — 6F ()| K)]
+ &[F(@t) — eFt)P) dW ()
= j [VarF(t) — éa{ﬁ(t) — EF ()Y’ ] dW(t) = j [VarF(t) — Var ﬁ'(t)] dW(¢).

From Theorem 2.1, we see that minimizing the Bayes risk & [ (F'(t) — F@)?dW(¢) over
t is equivalent to maximizing [ Var F @) dW(#) over t, since Var F(t) = Fo(£)(1 — Fo(t))/
(M + 1) is independent of the drug levels t. Intuitively we can make the following
interpretation. If there were no observations, our best guess at F(¢t) would be &F(t) =
Fo(t). The Bayes risk is [ Var F(t) dW(¢t). If there are observations we can reduce the
Bayes risk by [ Var F(#8) dW(t). The best design corresponds to testing animals at drug
levels where the weighted average of Var F@)is big. From the second equality of Theorem
2.1, the design which maximizes [ EF (t)2 dW(¢) also solves the design problem.

3. Solution to the design problem for L = 1. In this section, we assume that
n(=n,) animals are treated at the same drug dosage level, say ¢;. Mantel (1967) has given
an example in which a single dose experiment is significant when prior information is
available. We assume F is taken from the Dirichlet process with parameter MF,, where Fy
is assumed to be continuous. Then we can find a strictly increasing function p such that
Fo(p(t)) = ¢t, 0 < ¢t < 1. Moreover, G(t) = F(p(t)) is the random Dirichlet distribution with
parameter MFo(p(t)) = Mt, 0 < t < 1. We also have

L(F,F) = f (F(t) — F@t)? dW(t) = J [F(p(®) — F(o(t)]? dW(p (t))

- J (G(®) — G(1)? dW(p(2)).

Therefore, by a reparametrization of ¢, we can assume without loss of generality Fo(f) =
t,0 <t =< 1. We will give a general formula for solving the design problem and treat special
cases such as: W(¢) is concentrated on the two points & and 1 — £, and dW(£)/dt = 1, ¢,
1/[t(1 — #)], or t(1 — ¢t).

THEOREM 3.1. Assume (2.1) with Fo(t) =t, 0 <t =<1, L =1, and W is a measure
such that [§ t(1 — t) dW(t) < . Then, (i) the solution to the design problem is given by
t; € (0, 1) such that the following function of t, is maximized:

1-¢4

1

h(t) =

—ua

t
j 2 dW(t) + — j (1= 82 dW();
[0,41] 1 (1]

(ii) if W (¢) is continuous, then the optimal solution is necessarily a root of the following
equation in t;:
4

1 ' 2 1 2
(3.1) W[ 1-1 dW(t)—t—JO > dW(t) = 0.

Proor. (i) By Theorem 2.1, we have:
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1 1 1
(32 ¢ J [F@t) — F@O)F dW () = j [t(1 — &)/ (M + 1)] dW(2) — j Var F(t) dW ().
0 0 0
(The condition [§ (1 — £) dW(t) < = is imposed in the theorem to assure that the
Bayes risk is finite.) It follows from (2.4) and straightforward calculation (see Kuo 1980a
or b) that

1 i 2 _ 42
J' Var Bt aw(p) <EF0) — 8 f £ dW (t)
o t 10,11

(3.3)
SR - &

1-82dW().
1-t)? J:thl]

Now, from (2.3),

SRt = g(k‘ + Mtl)2 _EkE+ 2Mu 8k + (M1)*

n+M (n, + M)?
We need
&k = 8(& (k1| F)) = & F(t))) = nity and
8k} = (& (k1| F)) = €[nF(t)(1 — F(&)) + niF(t)*]
= MMt — 8)/(M + 1) + n3t(Mt + 1)/ (M + 1).
It now can be verified that
ER(t)? — £ = mt(1 — t)/[(M + 1)(m + M)].

From (3.3) we have

1
fvﬂﬁdem=c(fFlﬁﬁ&Wm+—ﬁ—u—nmwmqdwm)
(3.4) o tl 1- t

= ch(ty),
where
c=ny/[(M+ 1) + M)].

To prove the existence of an optimal design, we need to show that 4 has a maximum
for 0 < ¢, < 1. It suffices to show % is continuous and nonnegative on (0, 1) and A(#) — 0
as i — 0 or #; — 1. It is clear that 4 is nonnegative. To show % is continuous, take any

sequence a, € (0, 1) with lim,—,. @, = &;; let

1—a. a
tZI[o,an](t) + id

a 2 (1= )L, 0(0).

\Pn(t) =
It can be verified that for every n, 0 < y,(¢) < t(1 — t) €L (W). Therefore,
lim,_..A(a,) = J limy . (t) dW(t) = h(t).

This proves that % is continuous on (0, 1). Moreover, A(t;) — 0 when £, — 0. To see this,
take a, € (0, 1) with lim,_,.a, = 0. Then

1

lim,_h(a,) = J lim, o (t) dW () = 0.

0
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Similarly, for the case t; — 1, h(;) — 0.
(ii)) We now assume W(¢) (regarded as a function) is continuous, and first prove the result
for W([0, 1]) < . Then, we can rewrite h(¢;) using integration by parts (see Theorem 6.30
of Rudin, 1964):

I 1
h(t) = —2-1—_—t—‘J tW(t) dt + 2-"“-] 1 - W) dt.
t A 1-4 A

Applying Theorem 6.30 of Rudin again, we obtain

d _1(", 1 ! .
(3.5) Et—lh(tl)- = fo ¢ dW(t)+W ft (1= )2 dW(¢).

1

Therefore, the optimal design is given by a root of (d/dt;)h(t:) = 0.

If W([0, 1]) is not finite, the same result as above follows. Since that value of #; which
maximizes the function A is shown in (i) to be bounded away from 0 or 1, we can rewrite
h(t;) as:

1-t t
f (——1 2L e(t) + — (- t)zlul,l—f)(t)) dw ()
t 1—-&

+170 0 awe + T-f— (1 — 1) dW(t)

1 Jioe 1 Ji—e1)

where W((e, 1 — ¢)) < » because [ £(1 — t) dW(t) < =, and the above integration by parts
is applicable to the first integral. Then we can differentiate with respect to #; and obtain
(3.5).

From Theorem 3.1, we can derive the optimal design for one drug level for specific W.
The following corollary gives the results for W (¢) = ¢. It can be verified by a straightforward
computation from (3.1), (3.2), and (3.4).

COROLLARY 3.1. Assume W(t) = t in Theorem 3.1. Then the optimal design is given
by t, = %, and the Bayes risk for it equals (n, + 2M) /[12(M + 1)(n, + M)].

REMARK. Let us observe this Bayes risk — 1/[12(M + 1)](not 0), as n; — o for fixed
M. Presumably this happens because we are only learning more about the potency curve
at a single point and the loss occurs throughout. (W (¢) = t assigns a uniform weight.) This
would suggest that it is necessary to increase the number of drug levels to make the Bayes
risk arbitrarily small.

For other weight functions, a few examples are listed as follows. When dW (¢) = ¢ dt,
dW(t) = t(1 — t)'dt, or dW(t) = 1/[t(1 — ¢)] dt, then the corresponding optimal designs,
which are derived in detail in Kuo (1980a), are given by £ = (1 + V7 )/6 = 61, t; = %, or
t; = % respectively. When the measure W (t) has mass 1 at £ € (0, %) and mass 1 at 1 — ¢,
zero mass elsewhere, then the optimal design is given by # = & or &1 = 1 — £, from the
result of part (i) of Theorem 3.1. Note that A(#) is not differentiable at & or 1 — ¢ in the
latter example.

4. Solution to the design problem for L = 2. When L < 2, let ¢; and (¢ < t) be
the drug levels. As before, if Fj is continuous, we can assume Fo(¢) = ¢, 0 < ¢t < 1 without
loss of generality. We treat only the special case W (t) = ¢, and n; = n, = 1. For other
weight functions W, the same method could be applied to find the optimal solution.
However, we cannot generalize the results to larger sample sizes because of the difficulties
in computing &F(8))%, #F ()%, and & F (t) F ().
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THEOREM 4.1. Assume (2.1) with Fo(t) = t, W(t) =t,0<t =<1, ni = ns = 1. Then the
solution to the optimal design problem is given by t; = % — co, t2 = 2 + co, where ¢, is the
unique root of the following equation:

16c(M + 1)(Mc + M + 2)  16c¢(M + 1)(2Mc + M + 4c) _

PrOOF. From the second equality of Theorem 2.1, we want to maximize [§ &F (t)? dt
for the optimal design. It follows from (2.2) and straightforward calculations that

1
f SR (0?2 dt = [EF (1) + (1 — 6)EF (%) + (& — )EF () F(8) + (1 - £3)1/3.
0

Denote this function of #, £, by g(t, t2).
When n; = 1, ny = 1, the observed k = (&1, k2) can only take on the values (0, 0), (0, 1),
(1, 0), (1, 1), with the following probabilities: .
2k =(0,0)) = &[(Q = y1) ys] = [B28s + Bs(Bs + 1)]/[(M(M + 1)],
2k =1(0,1) =&[Q - y)(»n +y)]=[B(M+ 1) + B 5:]/[M(M + 1)],
2k =(1,0) = E[y1y5] = B1Bs]/[M(M + 1)],
and
2k =(11) =8[nn +y)]=[B(B + 1) + B:B:]/[IMM + 1)],

where y, B are defined in Section 2.

We can obtain the posterior distribution of y and k from the likelihood function, and
estimate F(t1)) and F'(f;) according to the posterior distribution. For example, given
k = (0, 0), the posterior distribution of y is

where 2 denotes the Dirichlet distribution. Therefore, we can estimate F'(¢;) and F(¢2)
respectively by 81/ (M + 2) and (B1 + B2)/[(M + 2) + B2/[(M + 2)(Bz + Bs + 1)], which are
denoted by F(¢; (0, 0)) and F(¢; (0, 0)) for emphasis. Then we can proceed to compute
&(t1, t2) by computing the following quantities:

EF(t)? = Y}-o b o [F(t; (kr, k)PP (k = (b1, ko)), i=1,2,
and
EF )P () = Thio Th—o F(ts; (B, k) F(ty; (B, )2 (& = (i, k2)).

For a detailed computation, refer to Kuo (1980a).
It will be easier to maximize the function g(¢, t.) if we introduce the reparametrization

h=s+%—¢c t=s+%+ec

Let (s, ¢) = 3(M + 2)2(M + 1) g(s + %2 — ¢, s + % + ¢). It can be verified as in Kuo (1980a)
that the function A(s, ¢) reduces to the following:
h(s,c) = —(2M + 4) (s> = Ya + c®) + 2c + (M + 1)(M + 2)®
(8Mc® + 4c®)(2Mc + M + 2)
(M/2 + Mc + 1) — M*s®
4¢% — 16c3(Mc? + Mc + 2¢)
Mc? + Mc + 2¢ + M/4 — Ms*’
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Note that maximizing g(¢, #) with the restrictions 0 < t, < #, < 1 is equivalent to
maximizing A(s, ¢) with the following restrictions:

(4.2) Osc<%and —-(%—c)<s<®%-—ec.

It is shown in Kuo (1980a or b) that A(s, c) subject to these restrictions is maximized by
(0, co) where ¢ is the unique root of (4.1). Therefore g(t,, £;) is maximized by (% — co,
% + co).

Using Theorem 4.1 we can obtain the optimal design for any value of M. For example,
(1) M — 0, the optimal design — (%, 25).

(2) M = 1, the optimal design = (0.365, 0.635).
(3) M = 2, the optimal design = (0.389, 0.611).
(4) M — o, the optimal design — (%, %).

REMARK. Let us note Theorem 4.1 is proved for ¢; < t,, which includes the one dose
case. The conclusion implies that except for M — oo, it is better to test one animal each at
two distinct levels than both of them at the same level. If the number of drug levels L is
fixed at two beforehand, then the proof of Theorem 4.1 still holds with 0 < ¢ replacing 0
= cin (4.2), and the optimal design remains the same.

5. Solution to the design problem for the case W(t) = ¢, M — 0. It takes a
considerable amount of effort to find the optimal solution for the case L <2, n; =n, = 1,
and W(t) = t. It is much more difficult to compute the optimal solution for L = 3, even
with the assumption n; = 1 for all i, since &F(t,)%, £F(t;)%, --- each is an average of 27
terms. Nevertheless, for the case M — 0, we have a simple expression for &F(#)?
EF )% ... Consequently, we can obtain an optimal solution in this case.

THEOREM 5.1. Assume (2.1) with Fo(f) =t, W(t) = t,0 < ¢t < 1, and n animals are
tested. Then (i) if the number of drug levels is fixed beforehand at L < n, the optimal
design converges as M — 0 to the equally spaced design, t;=i/(L + 1) fori=1,...,L,
and the allocation of animals to these drug levels can be arbitrary with Y %n, = n,
n, = 1; (ii) if the number of drug levels is not fixed beforehand, the optimal design
converges as M — 0 to the equally spaced design with one animal each at the drug
levels, ie,t;=i/(n+ 1),n;,=1,fori=1, ..., n.

ProoF. (i) Let n = (ny, ---, n.) denote an arbitrary allocation of the animals treated
at doses t = (¢, ---, t;) and let k = (%, .-, kz) denote the number of animals which
react positively at the respective doses, where 0 <t <t < ... <t <1,and Yfn,= n,
n,= 1, for every # From Theorem 2.1, we need to maximize g (t) = [§ EuF (t)? dt (note
that F depends on t). It can be verified that

(1) gu(t) =[TE1 (ti — )EMF () + DI (ties — t)EMF (t)F(tir) + 1 — £2]/3,
where to = 0, trv1 = 1.

Define, for everyj=1,--- ,L+1,k;=(0, ---,0,n;, - - - , nz), where the first j — 1 entries
are 0; i.e. all animals react negatively at levels 1 through j — 1, and positively at levels j
through L. It will be shown that all other events have negligible probabilities for small M.
We can compute from Section 2 of the probabilities of the events k;,j =1, .--, L + 1:

Ph=k)=8[[[/7]QA=y— - ="M n + -« + )™= [y} + Cy} yi+ -]
where i # j, and C is a finite constant. Thus
(5.2) Pk=k)=B"/M"+O0M)=t—t_+O0M),

where the superscript (n) is defined by a™ = a(a + 1) --- (@ + n — 1), and the terms
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O (M) are the product of M and a polynomial in t of degree = n. It follows from (5.2) that
HPk=k)—>1lasM—0.
The posterior distribution of y given k is a mixture of Dirichlet distributions which
approaches a single Dirichlet as M — 0. Given the observations, say k; for example, we
compute P k;) fori =1, -.-, L by means of the posterior distribution. It follows that

F(t; k) =0M) when 1<i</;

5.3
(6.3) =1+0M) whenj=<i=<L.

The quantities &2 F (¢;)? and &uF (£;) F (t:+1) can be computed from (5.2) and (5.3):
EuF (8)? = Y1 F(t; k)*2(Kk,) + O(M) = t; + O(M)
EuF (&) P (tis1) = Y 11 F(t; k) F (i k) 2(k;) + O(M)
=t + O(M).

.

As M — 0, gu(t) converges to
(5.4) got) = (tr + Y5 titins — Y1 t] + 1)/3.

In fact, it is not hard to show the convergence is uniform in t. Therefore, limas_.omaxgu (t)
= max.limy_,oga(t). Moreover, go(t), which is independent of n = (ni,..., n), is
maximized by ¢ = i/(L + 1) (see Kuo 1980a, b). Hence, the optimal design as M — 0 is
givenby t, =i/(L+1),i=1,...,L. .

(ii) When L is not fixed beforehand, the experimenter can choose L to be any number
from 1 to n. Given L, we have obtained the optimal design, namely, ¢; = i/(L + 1) for each
i=1, ..., L. Let this optimal solution be denoted by t?. We shall compare the Bayes
risks for each of the optimal designs for 1 < L < n.

1
limps_,or(t2) = limM_,0|:J‘ t(Mt+1)/(M + 1) dt —maxth(t)]
o

=Y% — L/[6(L +1)], from (5.4).

Therefore, since L/(L + 1) < n/(n + 1) for L < n, limy_.or(th) < limy_,or(t2). Hence
L = n, one animal each at # = i/(n + 1), is the optimal design.

REMARK. Although Theorem 5.1 is proved for Fo(t) = ¢, the uniform prior, we can
obtain optimal designs as M — 0 for any Fy(¢) by using the transformation discussed in the
beginning of Section 3. For example, let Fy(¢) = ®(¢) be the standard normal distribution
function. Then the optimal design is given by ¢; = dYi/(n+1),i=1,..., n. This
confirms Ramsey’s result (1972). While only W(t) = ¢ is treated here, it is rather
straightforward to modify (5.1) for other weight functions and find the optimal design.
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