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SECOND ORDER EFFICIENCY OF MINIMUM CONTRAST
ESTIMATORS IN A CURVED EXPONENTIAL FAMILY

By SHINTO EGUCHI

Osaka University

This paper presents a sufficient condition for second order efficiency of
an estimator. The condition is easily checked in the case of minimum contrast
estimators. The a*-minimum contrast estimator is defined and proved to be
second order efficient for every a, 0 < a < 1. The Fisher scoring method is also
considered in the light of second order efficiency. It is shown that a contrast
function is associated with the second order tensor and the affine connection.
This fact leads us to prove the above assertions in the differential geometric
framework due to Amari.

.

1. Introduction. We consider an n-dimensional exponential family of densities
F = {f(x|6) = PO, g € ©)

with respect to a dominating measure w on the sample space R", where (- , -) denotes the
inner product in R" and

©={ER f e ™ dw(x) < o).

A subfamily #™ of #" (m < n) is called an m-dimensional curved exponential family if
there exists a nonlinear mapping (-) of U into © with the Jacobian matrix of full rank
over U such that #™ is locally expressed as

{f(-|0w)); uE U},

where U is an open subset of R™ (c.f. Efron [3]).
Let (x1, - -+ , xn) be an i.i.d. sample with a density f,(-) = (- | 8(z)). It follows from the
non-linearity of @(-) that each of the statistics

X= (1 + - +2an)/N
and 0 = (V) "1(%) is minimal sufficient, where V = (39/86", - - . , 8/36™). Therefore we may

estimate the true value of u through & or 8. An estimator & = () is said to be Fisher-
consistent if

it0u) =u

for all u in U. The information loss in reducing from the sample to the estimator & is
defined as

AM@@, u) =N gw) — ™ (w),

where Ng(u) and §™(u) denote information matrices of the sample and the estimator &,
respectively. A Fisher-consistent estimator & = () is said to be first order efficient if

limy_, NT'AMN(d, u) = 0.
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Further the second order efficiency of a first order efficient estimator i is defined by the
property that

limpy_,[A™ (&, u) — AY(&, u)] = 0
for any first order efficient estimator &, where “A = 0” denotes nonnegative definiteness
of A.
Let us consider now the Fisher scoring method. The 2-step maximum likelihood
estimator i, = ,(#) from an initial estimator @, = il () is defined as
ﬁz(g) =8o S(ﬁo(a)),

where S(u)) = u + &7 (u)3/(xX| 6 (u)) with

30(x| 0(u)) = {% log f(xlb’(u))}

a=1,2,...,m

The following theorem will be proved in Section 3.

THEOREM 1. The 2-step maximum likelihood estimator i, = 12 (0) from an initial
estimator o = iio(0) is second order efficient if the estimator iiy is Fisher-consistent.

We next introduce a contrast function p over " X %", which is defined by the
conditions that

p(0,6)=0
for all 6; and 6 in © and that p (61, 6;) = 0 is equivalent to 6; = 6; (see e.g. Pfanzagl [7]). We
call &, = i, (9) the minimum contrast estimator based on p if
p(8, 6(d,)) = min.eup (0, 0 ().
By definition the estimator i, is Fisher-consistent. A convex function W:(0, ) — R with
W(1) = 0 generates a function
f(X]62)

pW(01, 0:) = Eol W(———f(X|01))

for all 6; and 6, in ®, which becomes a contrast function by Jensen’s inequality. We need
the following assumption (A4, 4): pw(6:, 62) is p-times and g-times differentiable in 8; and
8., respectively, under the integral sign with respect to the dominating measure w.

ProrPosITION 1. Under (Ay,1), the minimum contrast estimator i,, based on pw is
first order efficient.

THEOREM 2. Under (As,1), the minimum contrast estimator ,,, based on pw is second
order efficient if
(1.1) wW”(1)+2W”(1) =0,

where W”(.) and W” (-) denote the second and third order derivatives, respectively.

Proofs of Proposition 1 and Theorem 2 will be given in Section 3.
Let us mention some examples of pw.
(1) Kullback-Leibler:

[X]6,)

g?(XI—b’l)} = (61 — 62, VY (61)) — $(B:) + Y(65).

pxL(y, 02) = Eo,{— lo

(2) Jeffreys:
ps(01, 02) = {pxL(01, 62) + pxr(2, 61)}/2 =2 (01 — 62, VY(6:) — Vi (0:)).
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(3) Hellinger:

B £(X16:)77) _ 0 +0:\ _ $(6:) + ¥(6e)
pa(0:, 02)_4E01{1_[f(X|01)] =4{1—exp \P( 2 - 2 .

(4) a-Chernoff (-1 <a<1):

4 f(X[62) 704"
pa(01, 02) -mEal{l [f(XIlh) ]

4 l—« l1+a l1—a« 1+«
1= I:l—exp{tp(———-—z 6: +—2 02) 3 ) }]

(5) a*-contrast 0 < a<1):

11—«
p&(0y, 0;) = P {T 0a (01, 82) + (a® — 1)pg(6:, 0, 01)} .

The minimum contrast estimator based on px:. is nothing but the maximum likelihood
estimator. Estimators based on p, and p} will be called the a-minimum and the
a*-minimum contrast estimators, respectively. The a *-minimum contrast estimator is first
proposed here and satisfies the following corollary, which will be proved in Section 3.

COROLLARY 1. The a*-minimum contrast estimator is second order efficient for every
a,0<a<l. '

2. Differential geometric framework. Amari [1] considered a parametric family
of distributions as a Riemannian manifold with the metric g whose components form the
Fisher information matrix. The differential structure is associated with all re-parameteri-
zations which are diffeomorphic to the original parameters. We adopt the framework due
to Amari [1].

The metric g, the third order tensor 7" and the a-connections I'* for a € [—1, 1] over
" have the following components:

o of 9
gij(0)=E0['a—0",3é‘;]( 30,60,\1/(0))

o o o @
(2.1) ﬂjk(0)=Eo[Www](=m\P(0)>,

o % l1—a .
2 E[ao'aofaok]}(= 2 Tﬁw))’

respectively, for i,j, k=1,2, ... , n with respect to the natural coordinate system (6°) of
F", where ¢ = log f(x|6) and g”(8) is the inverse element of g;(#). The summation
convention is used hereafter as in (2.1). The parameter n = (7;) of # " defined by

m(8) = Eaxi(= 3 ¢(0>)

T (8) = g"’w){

is called the dual coordinate. It is noted that the affine connections 11‘ and I‘ have vam:fhmg
components with respect to (6°) and (), respectlvel y. In Amari [1], the connections I and
I‘ are referred to as the Efron and the mixture connections and denoted by F and I‘
respectively (cf. Dawid [2]). We shall also use this notation in the following.
We define a symmetric tensor g’ associated with a contrast function p by the
components
850) = -

a a9
GTO{ @ p (6, 02)|01=02=0



796 SHINTO EGUCHI

with respect to (8°). It approximately holds that
p (0, 6:) = [65 — 0512 (0)[61 — 651/2

for 6; and 6, in a small neighbourhood of ¢ in ©. The tensor &' is said to be equivalent to
the metric g over # ™ if there exists a positive scalar function £(8) such that

82(0(u)) =e(8(u)g;(0(n))

for all € U. In this case we normalize the contrast function p by

1

6(01, o) = ——p (61, 6.

P( 1 2) 8(01) P( 1 2)
to let g and g be identical over # ™. By definition it holds that i, (8) = ii3(8) for any 6 in
@. The examples (1)-(5) in Section 1 are already normalized.

For a contrast function p with the tensor g equivalent to g, we define an affine
connection I'” associated with p. The components of I''” with respect to (§°) are
A . ? 9
2.2 T90) = gl0)| ——5—= —7 08, 62)|6,=0,=0 |.
(2.2) % (0) =g"(0) 0% 00 aaép(l ) |6,=6,=6
We arbitljarily fix a coordinate T = (%) of #" with the coordinate transformation ¢:7 —
6. Let (B% (1)) be the Jacobian matrix of the inverse transformation ¢ at T It follows from
the identity of g with g that the components of I'® with respect to (°) are
2

ar¥or{

T (1) = g"(r)| — 2 o(@(r), 6(r2) |nimrims
i p)

(2.3)
= Bi (1)) {%Bi (@ (r) + TR (¢(r))B} ($(r)) Bk (¢ (T))} )

where {B? (¢(r))} and g (r) are the inverses of {B%(r)} and
(& (1) = Bl (1)gij(¢ (1)) B (1)},

respectively, with 7, = ¢ '(6,) for p = 1, 2.
Therefore I'® satisfies the transformation rule of affine connections (c.f. Kobayashi
and Nomizu [6]).

The above geometric quantities g, 7, T, g and I'” on #" can be induced to ™. The
tangent space Ty, of " at fy in # " is decomposed into the direct sum

T;= T+ T#
at every f in #™, where Ty and T} are thg tangent and the normal spaces of Fm,
respectively. The connecting tensor B: Tf— Ty at f = f, has the components
) Bi(u) = 8.0'w), a=1,---,m

with respect to (6°) and (u®) where 8, = 8/du®. We approp~riately choose components
Bi(u),A\=m+ 1, - .., n, of the connecting tensor B*:Ty— T}, i.e.,

(2.4) Bj(u)g:;(0 (w)Bl(u) =0

fora =1, ..., m. For example, the metric g has induced components
(2.5) £as(u) = Bl (u)gi;(0 (W) B (),

and

(2.6) &u(u) = Bi(u)g,;(6(u))B (u)

on T x Ty and T+ x T} with respect to the local coordinate (1), respectively, where

f=fu-
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& o .
The induced connection I" of T" to # ™ has components

@7) "5 (1) = B (u) (3BL(u) + Tin (0 () Bs (w)),
where
Bj(w) = £(u)Bi(u)gi; (0 (v)).
The second fundamental form H of ™ on T, x Ty x T+ with respect to I" has components

Hun (u) = 3.B%(u) B (u)g:; (0 () + T (0 ()8 (0 ()

(2.8) . .
X Ba(u)B (u)BX (v)

1
with respect to (u°). In Amari [1], H is referred to as the Efron curvature tensor, which
will be denoted by H. _
For an estimator & = & () the set

A=A®G, u)={f(-]10); 2(0) = u)

is called the ancillary subspace of i at f,. Henceforth we assume that the Jacobian matrix
of & at @ is of full rank for each 6 in ©. Then A (4, u) is a submanifold of codimension m
and transverse to # ™ at f = f, (c.f. Hattori [5]). In other words it holds for every f = f, that

=T+ THA),

where T¢(A) denotes the tangent space of A = A (&, u) at f. This property of i is the Fisher
consistency of &. For the estimator & = i#(f), a C*-curve C: (—¢, ¢) —> A (i, u) passing
through f, at ¢t = 0 is called a searching curve of & (passing through f,). Amari [1] proved
in Theorem 6 that the first order efficiency of # means the orthogonality of A (&, u) to
Fmatf=f,ie,

(2.9) THA) = T#.

Let (©% v"g=1,...mr=m+1,...,» be a local coordinate system of # " around £, such that the
coordmates (o, v) and (u, vo) represent A (&, uo) and & ™ for fixed uo and Vo, respectlvely
Existence of such a coordinate is guaranteed by the transversality of A (&, u) to &% ™. In the
case of (2.9), the second fundamental form of A at f = f, on Tr(A) X Ty(A) X T#(A), i.e.,
T# x T+ x T; with respect to T is defined as

2.10) Hoaw) = Bi(u)gy (0(w)) {8, Bi(u, vo) + ['ix(0 ) B* @) B (w)},

where
2

nBi(u, v) = 6'(u, v)

vrav*
with the coordinate transformation 6 (u, v) of (i, v) into 6.

3. Theorems and proofs. We investigate asymptotic properties of the minimum
contrast estimator based on p in terms of the geometry associated with p.

PROPOSITION 2. A minimum contrast estimator @, = u,,(0) based on p is first order
efficient if the tensor g is equivalent to the metric g over #™.

PrOOF. Suppose that g‘”' is equivalent to g over ZF™. Since 6(u) gives a local minimum
of the contrast function p from 8[¢] to the model #™, every searching curve C of i, satisfies
the system of equations

9o (618, 6(w) = 0

(3.1) u°
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for a = 1, 2, ..., m, where C is expressed as the mapping ¢ — 6[¢] with 6[0] = 8 (u).
Differentiating (3.1) with respect to ¢, we have

3.2) 9'7¢1C; (6121, 0 (w)Bi(w) = 0,

where ¢¢] = (d/d¢t)8[¢t] and

(3.9) Cy(61, ) = 5z =2 0(61, ).

It follows from the equivalence of g’ to g over #™ that

(3.4) 67018, (6 (w)Bi(w) = 0

by substituting ¢ = 0 in (3.2). The relation (3.4) for every searching curve means the
orthogonality of A(&,, u) to #™ at f = f,, i.e., the first order efficiency of the estimator i,
from Theorem 6 of Amari [1]. The proof is completed.

This result leads to the proof of Proposition 1 in Section 1. Henceforth we write
C:r = 1[¢t] if a curve C of #" is expressed as the mapping ¢ — 7[£] with respect to the
coordinate system (7°) of Z#™.

PROOF OF PROPOSITION 1. It follows from the assumption (4;,) that
&r(0) = W”(1)gy(6)

with respect to (6°). This relation means the equivalence of g**) to the metric g, which
completes the proof from Proposition 2.

Let T" be an affine connection on & ", A first order efficient estimator # = #(6) is said to
be I'-transversal to the model #™ if for every searching curve C: 8 = 0[t] of i,

(3.5) Bi(u)gy (0 () {67[0] + T'x(8 (1))6*[016'[0]) = 0

fora=1,2, ..., m, where 6[0] = 6(x) and {I‘{k(e)} denote the components of T" with
respect to (6°). Let 7 = (r%) be local coordinates of %", obtained from 6 through the
transformation ¢ ~*. Then the relation (3.5) can be expressed as

(3:6) Bi(w)giy(r(w) {#'[0] + Tk (r(w))7* [0} [0]} = 0,

with respect to (r7), where {BJ (1)}, {g((w))}, and {T'}.(7(u))} are components of B,
g and T, respectively, with respect to (7). In particular we have for T' = T over %™ that

3.7) B.i(u)g"(0 w));[0] = 0
with respect to the dual coordinate (7;) on account of the vanishing of ﬁ, where {B.i(u)}

are the components of B with respect to ().

PROPOSITION 3. A minimum contrast estimator ii, based on p is I'”-transversal to
the model #™ if the tensor g'? is equivalent to the metric g over ™.

ProoF. By a similar argument as in the proof of Proposition 2, it holds for every
searching curve C: 8 = 0[¢] of &,, with 8[0] = 6 () that

(38) aiw’fW“’[‘]’ 8(u)) =0
fora=1,2, ..., m. Twice differentiating (3.8) in ¢, we have
(3.9 Bi(u){Ci(0[t], 0 ())6'[t] + Dyi(0[¢), 0 (w))é’[£16*[R]} = O,

where we put
2

ad a
Dyi(8:, 0) = 36%301 3% p(61, 62),
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whereas {Ci(6., 62)} are defined in (3.3). Then the system of equations (3.9) reduces to the
relations

Bi(u)gi(0(w){67[¢] + T15”(6 ())§*[0)¢'[0]} = 0
at ¢ = 0 from the equivalence of g to g, where {I'{/ ()} are defined in (2.2). Hence the

proof is completed.

THEOREM 3. A first order efficient estimator i = #(0) is second order efficient if the
estimator i is I -transversal to the model ™.

PROOF. Suppose that the estimator # is I'-transversal to Z#™. It holds for each
searching curve C:n = n[t] with n[0] = n(u) that
3.10) Bai(@)g"(0(w) {n[t] — m;(w)} = Bai(w)g? (@ () {(n;[0]¢ + %1i;[0]£} + O ()
= —Yat*Bai(u)g (0 @))T'}(n () x[0}i:[0] + O(£)

because of the relation (3.6) and the orthogonality of A(, u) to #™ at f,, where {T'*(n)}
are components of I with respect to (;).

We can take a local coordinate (#% v*)a=1, .-, mA=m+1, --.,n of " around
f = f. which specifies #™ and A(, u) by fixing (vd) and (&), respectively. Let 5 (x, v) be
the transformation of (x%, v*) into 7. It follows from the orthogonality of A (i, u) to ™ at
f. that

3.11) 2 () = B ()ga6@)

for A=m + 1, ..., n. Then the curve C is expressed as
nil£] = mi(u, v[])

by the coordinate (z% v*). We have from (3.10) that

(3.12) 7:[0]¢ = Bix (u)v?,

neglecting the second order terms or more, where B;, (©) = g;; (6(u))B4 (u) and v* = v [t].
Substitution of (3.12) into (3.10) yields that

Bi(u) (ndu, v) — 1)} = —%H cra(@) (0" — v (0 — vd) + O(|v — w ),
where
H o) = BL@)TH(8 () Bix () Bi(w).

The statistic X can be expressed as (&, §) in the coordinate (z° v*) for a large sample size
N because of the almost-sure convergence of & to 1(z). Then the score function

~ a _
Sa = 5oz log f(£]0(u)

is represented as
Bi(w) (milu, v) — 1)} = Za()@® + YT apelw) i
= Hapw)@*5* — H or )8 + O((@, 0)F),

where & = i — u, U = 0 — vy and quantities {l"‘” abe(t)} and {;Iabn(u)} are defined in (2.7) and
(2.8), respectively. The limiting distribution of (&, v) follows the n-variate Gaussian law
with mean 0 and covariance matrix

5ab
(g (u) 0 )a,h=1,2,...m,

0 gﬂ"(u) K,A=m+1,...,n,
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F1G. 1. We consider the case of (n, m) = (3, 1). In the dual coordinate system (1, n2, 13), both the
velocity vector (n;[0]) and~ the acceleration vector (ii[0]) of every searching curve C:v, = y,[t] are
orthogonal to the model #™.

.

where {£°(u)} and {£**(u)} are the inverses of {Zs.(1)} and {&\.(x)}, respectively. Set
Sa = YHz (W5 + Hlp B0 .
Then it follows that
lim, A% (@, u) = lim B cov[Sa, S i = u]
by replacing S, with S,. Hence the limiting information loss by # is decomposed into the

sum of non-negative definite terms

Hoodt) Hoar 0E )G W) + Fhp o) Flov ()@ ()3 (),

which depend only on %™ and A(#, u), respectively. If the connection I' coincides with

T, the terms {H,xq(u)} vanishes over U. Therefore theI-transversality of & to #™ implies
the second order efficiency of &, which completes the proof.

Theorem 3 gives a sufficient condition for second order efficiency of estimators, which
is an adaptation of Theorem 7 in Amari [1] to I'-transversal estimators. Theorem 3 enables

us to calculate limiting information losses of various estimators. " -transversality of esti-
mators leads us to perceive the following dynamical interpretation (see Figure 1).
If the conditions

(3.13) Bai(u)g¥(6 (w))4,;{0] = 0,
and
(3.14) Bai(u)g¥(0(u))i;[0] = 0

hold for every searching curve C:n = g[t] of a Fisher consistent estimator # with
« n[0] = n(u), then the estimator # is second order efficient.
We now prove the statements in Section 1 by using Theorem 3. First the following
lemma is well-known but necessary to prove Theorem 1. We denote by #{%} an estimator
expressed in terms of .

LEMMA 1. The 1-step maximum likelihood estimator i, = S(do) from any Fisher
consistent estimator iy = iio{x} is first order efficient.

Proor. By the definition of &; it holds for each searching curve C:n = y[¢] of & with
n[0] = n(x) that

(3.15) S(n[t], do{n[e]}) = u®
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for any ¢, —e < t < ¢, with a small £ > 0, where
S%(m, u) = u® + B w)[n: — n:(w)]
with B %(u) = §°°(u)Bi(u). Differentiating (3.15) in ¢, we have
(3.16) 1 [£1D8" (n[£1)95B* (o[ £]) (mil £] — m:(w)) + B*(@o[¢D:[¢] = 0
because of the identity
B%(u)Byi(u) = 8% (Kronecker delta),

where we put
) 3 .
D) = — d3{n)
an;
and #o[t] = @io{n[£]}. It follows from the Fisher-consistency of i, that
(3.17) B“(u)if0] = 0 ‘

for a =1, ..., m by substituting ¢ = 0 in (3.15). The relation (3.17) implies (3.13), which
completes the proof through a similar argument as in the proof of Proposition 2.
From Lemma 1, the Jacobian matrix of &;{n} satisfies

(3.18) D¥(y(w)) = B*(w)

for any u € U.

ProoF oF THEOREM 1. Every searching curve C:n = q[¢] of &, with #[0] = ()
satisfies

(3.19) Se(nlt], ta{nlt]}) = u®

fora=1, ... m and any ¢ in (—¢, ¢). Twice differentiating (3.19) in ¢, we have
d_. i aira
[zﬁ{m[t]D{"(n [t])o.B (ul[t])}][m[t] —n: ()]

(3.20)
+ 20 ¢]i; (61D} [£D)3 B*(@ul£]) + B* (@ultDniil¢] = 0

for a = 1, ---, m. The equations (3.20) lead to the relation (3.14) at ¢ = 0 by reason of
(3.18). This shows the f:-transversality of ié;, which completes the proof by Theorem 3.

PrROOF OF THEOREM 2. Under the assumption (As;) the affine connection I'®"
associated with p has the components

W) + W)

W”(l) T;k(o)

F_]( Z w)i ( 0) =
with respect to the 8*-coordinate, where { T%:(8)} are defined in (2.1). By the transformation

rule (2.3) of affine connections, the components of I'*¥? are calculated as

W) +2wr(Q)
W”(l)

I\Epw)jk(n) = T{k(o{"l})

with respect to the n;-coordinate, where

Ti*0) = "' (0) 8" (0) Tj+ (8) &+:(6)
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with the inverse elements {g(8)} of g;i(8). Therefore the condition (1.1) implies the

coincidence~of Tw) with f‘ Then by Proposition 3, the estimator i,,, is f‘ -transversal to
the model #™. This completes the proof by Theorem 3.

PRrROOF OF COROLLARY 1. By definition the a*-minimum contrast estimator is gener-
ated by the function

WH(t) = 1 {L

2
1 — pa+ar2 4(a? — Y 1 — -2
p": 1_._0[( t ) +4(@ -1 —¢ )+—1_a( ¢ )ts

which satisfies the condition (1.1) for every a, 0 < a < 1. The contrast function generated
by W is easily seen to satisfy (As,1) for every a, 0 < a < 1. The proof is completed by
Theorem 2.

By ’Hospital’s theorem we have that

lim, o WZ(t) = % t'*(log ¢t — 2)* = 8t'/* + 6,

which also generates a second order efficient estimator.
Let pw be a non-symmetric contrast function. For any 8, 0 < 8 < 1, a new contrast
function is defined by

0218, 62) = (1 — B)ow(6y, 62) + Bow (62, 61).

Then we obtain the following corollary of Theorem 3.

COROLLARY 2. The minimum contrast estimator based on p % is second order
efficient for
_ AW + W)

(3.21) BO - 3W”(1) + 2W///(1)’

lf0<Bo<]..

Proor. Let {T'}7)(6)} be components of I' /) associated with p ') with respect to 9
coordinate. It follows from a straightforward calculation that

B-HW"1) + 2B -1 W™Q)

W”(l) Tllk(o)

P[ﬁ]i(g) -

Wik

where {T%:(6)} are defined in (2.1). Therefore I' [#°! for the case (3.21) is equal to I'. This
completes the proof by Theorem 3.

We note that I' /% is the same as the metric connection T' for a = 0 for any pw (e.g. the
Jeffreys contrast function in Section 1).

ExamMpLE. We mention a 1-parameter curved exponential family of multinomial
distributions with 4 cells, which have probabilities

24+ul—-ul—uu
4 7 4 4 4

for u, 0 < u < 1 (cf. Chapter IV in Fisher [4]). The model is curved (non-flat) in the natural
coordinate. We adopt the observed frequencies 125, 18, 20, 34 shown in Chapter 5 of Rao
[8]. We note that the a-Chernoff contrast function is well defined for all « € R if the
common support of #" is finite. Then some estimators in Section 1 are computed as in
Table 1, which shows the slight differences between the first order and the second order
efficient estimators.
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TABLE 1

method a estimated value of u

maximum likelihood 6268215

6268217
6268215
6268215
6268214
.6268212

6264057
6266366
6266574
.6266781
.6266988
6267193
6264057

w

a*-minimum contrast

a-minimum contrast
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