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A NONLINEAR RENEWAL THEORY WITH APPLICATIONS TO
SEQUENTIAL ANALYSIS I

By T. L. Lar' AND D. SIEGMUND?
Columbia University and Stanford University

This paper continues earlier work of the authors. An analogue of Black-
well’s renewal theorem is obtained for processes Z, = S, + £,, where S, is the
nth partial sum of a sequence X;, X5, - - - of independent identically distrib-
uted random variables with finite positive mean and £, is independent of
X, 415 X,42 + - - and has sample paths which are slowly changing in a sense
made precise below. As a.consequence, asymptotic expansions up to terms
tending to O are obtained for the expected value of certain first passage times.
Applications to sequential analysis are given.

1. Introduction. Let X;, X,, - - - be independent identically distributed ran-
dom variables with positive mean p and finite variance o’ Let S, = X,
+-+-+4+X, and Z, = S, + £, where for each n, £ is independent of
X,.1» X,42 - - - . This paper continues the program begun by Lai and Siegmund
(1977) of developing a renewal theory for Z, under conditions which guarantee that
the sample paths of the £, process are slowly changing in a suitable sense made
precise below. In order to facilitate comparison of these conditions for different
theorems and to provide a convenient reference, the main result of Lai and
Siegmund (1977) is stated as Theorem 1. The interested reader may find the
informal discussion contained in that paper helpful in motivating the decomposi-
tion of Z, and the conditions imposed on £,.

For b > 0 define

0)) T =T(b) =inf{n:Z, > b}
and
(2) 7 =1(b) = inf{n:S, > b}, 1, =7(0).
THEOREM 1 (Lai and Siegmund (1977)). Let 3 < a < 1 and assume that
(3) b=(T —bu~") -0

in probability. Suppose that for each n > 0 there exist n’ and p > 0 such that for all
n>n

(4) P{maxn<j<n+pn“|£j - gnl > "7} < n.
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If X, is nonlattice, then
. -1
(5 lim, ,,P{Zy — b <x} =(ES,)) [oP(S., >y}d.

The first results of this paper are an analogue of Blackwell’s renewal theorem
and a corollary.

THEOREM 2. Suppose there exists 3+ < a < 1 such that the following three condi-
tions hold:

(6) E|X\[7/* < oo,
(7) foreache >0 ZPP{|§,| > n%} < oo,

and for each m > 0 there exist n’ and p > 0 such that

(8) 2n<j<n+pn°‘P{|§i - gnl > "7} < "7 n > n/
If X, is nonlattice, then
©)] SPP{(b<Z,<b+ h}—>h/p b — .

COROLLARY. Suppose there exists 3 < < 1 such that (6), (7) and (8) hold. Let
p >0 and assume E(X;'Y*' < co. If {A,, b > by} is a family of events and
{{¢r — &-)"YLy,, b > by} is uniformly integrable, then so is {(Zy — bYL,, b >
bo}. In particular, if E(sup,(&, — §,_1)")Y < oo, then {(Z; — by, b > by} is uni-
Jormly integrable.

Theorem 2 and its corollary are proved in Section 2. Theorem 4 of Section 2 is a
somewhat different renewal theorem required by some applications (cf. Section 3).
Theorems 1 and 2 together imply the main result of this paper, Theorem 3, which
contains an asymptotic expansion for ET(b) up to terms which vanish as b — co.

In order to cover diverse applications the statement of Theorem 3 is quite
complicated. In most cases only one of the assumed conditions requires careful
checking. To understand the role of these conditions and the problems associated
with verifying them it may be helpful to consider a special case. (A more general
treatment of this example appears in Section 4.) Let x,, x,, - - -+ be independent
and identically distributed with expectation fi # 0 and variance &% s, = x,
+ -+ +x, and T = inf{n:|s,| > [n(logn + 2b)]%}. This stopping rule may be
rewritten in the form (1) with S, = (s, — 3n) and &, = — llogn + (s, —
nji)*/2n. The random variables £, may be further decomposed into a deterministic
part f(n) = — 1logn and a random part V, = (s, — nfi)’/2n (cf. equation (12)).
Conditions (13), (14) and (17) of Theorem 3 require that f(n) and V,, individually
fulfill the conditions (7) and (8) imposed on £, in Theorem 2. In our special case
(13) and (15) are obviously satisfied, and (14), (16) and (17) may be replaced by a
single moment condition on x, (see Proposition 1 below). In more general cases the
decomposition of £, given by (12) may not hold on the entire sample space, but is
required to hold on events 4, which by (11) fill out sample space very rapidly. The
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remaining condition (10) is frequently more difficult to check and often requires a
special argument.

Let G, = B(Xp &)+, X E)n= 12,7+ -

THEOREM 3. Assume that for some § > 0
(10) P(T <8} =o(b7") b — co.
Assume that there exists a sequence of events A, € F, such that
(11) E"P( U ::,,/’fk) < o0 (A = complement of A),
and on A,
(12) & =f(n) + V,

where for some + < a <1 the following conditions hold:

(13) f:[()’ OO) i R satisfies Ix_"f(x)l + Supx<y<x+x"lf(y) - f(x)l - 0

as x — oo; V, is %, — measurable and satisfies

(14) S, P{sup;s,k |V, | >e} < o0 e >0;
(15) V., converges in distribution to'a random variable V;
(16) the sequence V¥ = max, ;4 n«| V)| is uniformly integrable;

and for each n > 0O there exist n’and p > 0 such that

(17) SucicntonP V= Vil 2m} <n n>n'.
Suppose X, is nonlattice and (6) holds. Then

(18) pET = b — f(u~'b) — EV + ES,2+/2ES,+ +o(1)

as b — .

In many cases the behavior of ¥, is governed by a term like the (s, — ni)?/2n of
the example given above. To the extent that this is so, the conditions (14)-(17) on
¥V, may be replaced by a single moment condition on x,. Proposition 1 is designed
to facilitate checking these conditions in such cases.

PROPOSITION 1. Let Y, Y,,+ - - be independent and identically distributed with
mean 0 and finite variance °. Let u, and w, be random variables such that for some
positive constants ¢, ¢, — 0, and
(19) lu, —c| <n™® and |w,| <c,

Assume that E|Y,|P < oo for some p > 2. Let V, = u,(Z}Y,)*/n + w,. Then V,
—s.V, where V has the distribution of c6*x3. Also V, satisfies (14) for any a > 4/
p — 1 and (16) for any 0 < a < 1. In addition, for

0 <a < min(pB/2,p/ (p +2));
given any m > O there exist n’ and p > 0 such that

(20) 2n<j<n+pn"P{maxn<i<j|I/i - an > "7} < n n
In particular (17) holds.

Vv
S
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The proofs of Theorem 3 and Proposition 1 are given in Section 3, which also
contains some information on Var(T) as b — co. Some applications are discussed
in Section 4, and Section 5 contains a comparison of the results of this paper with
those of Woodroofe (1976a, 1977).

2. Nonlinear Blackwell’s theorems.

ProoOF OF THEOREM 2. The notation below is chosen to facilitate comparisons
with the proof of Theorem 1 of Lai and Siegmund (1977), which contains similar
basic ideas although their technical implementation is different.

Let a, m, and p be as in the statement of the theorem. Set

(21) ny=pn" (b + h), ny =[ny — png /4], ny =[ng + png/4].

By Lemma 1 below for m sufficiently large and fixed, for all sufficiently large b

(22) ZcncnP{b<Z,<b+h}<n,

and also

(23) o P{(b<Z,<b+h}—>0 as b—oo.
Obviously, :

(24) Z,cmP{b<Z,<b+h}—>0 as b->co.

It remains to estimate the series of terms P{b < Z, < b + h} for n; <n <n,. For
each n; <n <n,

(25) P{b<Z,<b+h})<P{|§-¢&|>n)
+P{b -n<2Z2Z,

By (8) and (21) for all large b

(26) S cncnP (& — & >0} <m.

Furthermore,

QD) ZncacnP{b-1<Z, +(S,-8,)<b+h+n}=Egb-Z,),

+(S,—8,)<b+h+n}

where

(28) g) =2, P{t =0 <8 <(t—m)+h+2n}

It will be shown in Lemma 2 below that as a consequence of Blackwell’s theorem
(29) Eg(b— Z,)— (h+20)/p.

Then by (22), (23), (24), (25), (26) and (29)
lim sup, , . 2°P{b < Z, <b+ h} <2+ (h + 279)/p.

Letting n — 0 gives one inequality. The inequality in the other direction follows by
a similar but easier argument, which completes the proof.

LeMMA 1. Under conditions (6) and (7) for m sufficiently large and fixed, for all
large b (22) holds; also (23) holds.
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ProoF. Let 0 <& < pp/9. Note that for all large b and n > n,, if S, — nu >
— en®and §, > — en® then by (21)
S, +§& >nu—2en® > nyp — 2eng >ngp=>b+ h.

From (6) it follows that SP{|S, — nu| > n%} < co (cf. Baum and Katz (1965),
Theorem 3) and hence by (7) as b —

25 P{b<Z,<b+h} <Z,,,(P|S, - nul >en*} + P[] >en*}) >0
This proves (23), and (22) follows by a similar argument if m is chosen so large that
Zom(P{|S, — np| > en®} + P{|§,| >en®}) <n.

LEMMA 2. Under conditions (7) and (8), for g defined by (28), the limit (29) holds.
Proor. It suffices to show
(30) g(b—2,)>(h+2n)/p as. b— o

and that g is bounded, for then (29) follows by dominated convergence. Let
v(b) = n, — n,. By (7) and the strong law of large numbers Z, = pn, + o(nf) =
— pp'7%b*/4 + o(b*). Hence by (28), to prove (30) it suffices to show that for
arbitrary real numbers z(b) = pu' ~®b*/4 + o(b*)

31) S P {2(b) < S; < z(b) + h + 21} — (h + 21)/p.

Butif j > »(b) and S; > 2ju/3, then by 21) S; > pp' ~b*/3 +o(1) > z(b) + h +
27 for all large b, and it follows that .

2j>v(b)P{Sj < Z(b) + h + 277} < 2j>y(b)P{Sj < 2_][1./3} —)0

Thus (31), and with it (30), follow from Blackwell’s theorem. That g is bounded is a
consequence of

(32) g(t) < 1+ 32 P{—h—29<S, <h+2q} < co.

The series in (32) converges because the random walk {S,} is transient (cf. Feller
(1966), pages 199 ff.).

PrROOF OF COROLLARY TO THEOREM 2. Assume E(sup, (¢, — &,_))7) < o.
For x > 0 and all large b

(33) P{Z;,—b>2x} <ZX.P{Z,<b,Z,+X,,,>b+ x}
+ P{sup,(§,— &_1)* > x).
Also
(34)
X oP{Z,<b,Z,+ X,,, >b+ x}
= [[(=o0,b)]P{X, 2 b+ x — y}27_P{Z,edy}
<SP P{X,>b+ x— k}ZCP{k-1<Z,<k}
< const. (JPP{X, >y} dy + P{X, > x — 1}).
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To see the last inequality in (34), note that by Theorem 2 there exists a &, such that
forall k > ko, 27 0P{k < Z, < k + 1} < 2/p, while (6) and (7) imply ZP{Z, <
ko + 1} < oo (cf. Baum and Katz (1965), Theorem 3). The uniform integrability of
(Zr — by follows from (33) and (34). If only {((§; — &,_))")L,,} is assumed to be

uniformly integrable, (33) may be replaced by
P{Z;—b>2x}NA,) <ZFP{Z,< b, Z,+ X,,, b+ x}

+P({& — &1 > x} N A),

and the rest of the proof follows as above.

The following theorem is equivalent to one of the main results of Woodroofe
(19762) in a number of special cases, although its abstract formulation and proof
are different. (See Section 5 for a more systematic comparison of the results of this
paper with those of Woodroofe (1976a).)

THEOREM 4. Suppose there exists 3 < a < 1 such that conditions (6) and (7) hold,
and for each n > 0 there exist n’ and p > 0 such that

(35) 2,,<J<,,+',,,.,P{max,,<,<j|§,~ —-&| > n} < n>n'.
If X, is nonlattice, then for ally > 0

(36) e oP{T>n2Z,>b—y}>p '[2 P{S, >tforalln > 0}dL.

Proor. Like Theorem 2 the proof of Theorem 4 consists of reducing the
general case to the case £, = 0. This reduction is similar to the proof of Theorem 2
and is omitted. However, unlike Theorem 2, which reduces to Blackwell’s theorem
in the case £, = 0, the corresponding version of Theorem 3 does not seem to have
appeared in the literature (although under stronger assumptions it is implied by
Theorem 3.1 of Woodroofe (1976a)).

Assume then that § =0 so that Z, =S, and T =r1. Let M, =
max(0, S;, - - -, S,) and M* = min(0, S,, S,, - - - ). Then (36) becomes

(37) 2;0=0P{M" < b, Sn >b— y} _)'l"’_]f(—y,O] P{m* > t}dt.

Let o(n) denote the nth (strict) ascending ladder time, ie., 6(0) = 0 and for
n>10n=if{n:n>0on—1),8,>S,,_y} (1) =r1,). Let 7_ =inf{n :n
> 1, S, < 0}. By considering the (uniquely defined) smallest index & < n for which
S, = M, one obtains for 0 < y <b

P{M,<bS,>b—y} =3} _ofs-, nP{S <SVi<k, S, € dx,

S, <SVk<j<nS, -8 >b-y-—x}.
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Summing these terms forn =0, - - - , and reversing thé Srder of summation yields
(38) 2y oP{M,<b,S,>b—y)}
= 223 kfo -y Pl <SVi <k, S, € dx)
XP{r,>n—kS,_i>b—y - x)
= JionZn=oP {1+ >n, :S',, >x = Y}2f=0
P{S, < S\Ni <k, S, €b—dx).
Now
(39)
T=oP{S; <8V, <k, S, €b~- dx} =3P o2 oP{a(n) = k, S, € b — dx}
= 5% P(S,m € b — dx}.
Since P{r, >n S, >x —y}=P{S, — S, <OVO £ t<nS>x—y}
follows that
(40) %%;OP{T+ >n, S, >x—y}=37,P{S > S,,‘é(O i<n S, >x-y,
S; > S,V >n}/P{'r_ = 0}
~E¢+P{M*>x—‘“y} 0<x<y.
The last equality uses the well—\khbwn fact that E1-+ f 1 JP{r_ = oo} (cf. Feller
(1966), page 379). Since P { M* > t} is decreasing in ¢, applying Blackwell’s renewal

theorem to the right-hand dide of (39) and taking into account (38), (39) and (40)
ylelds

3% P{M,<b,S,>b =5} Er,fio,,P{M*>x - y}dx/ES,,

= ].L—lf (=»,0] P{m* > t}dt.
REMARK. The condition that 62 = VarX, < oo was ot lised in the preceding
proof for the Special case £, = 0.

3. Expansiotis of ET(b) and Var T(b). Intuitively the random variables Z, and
T(b) are the Saftle variables in Theorem 3 as in Theorems 1 and 2. For {echmcal
reasons; ifi th& proof that follows new random variables Z/ and T(6) Will be
defme(i in terms of the original Z, and T(b), and Theorems 1 and 2 will be dpplied
to these new variables.

PROOF OF THEOREM 3. LEt té,l} be a sequence of positive numbers tending to 0
to be further specified beloW: Sinte f(x) = o(x®), for appropriately chosen {e,}
there exists an integer ng such that |f(x)| <e,n® for all x >n > ny Let L; =
sup{n : A, occurs}, L, = supfh | Vil > e,n*}, Ly = sup{n:|S, — nu| > g;n"}, and
L=1+ max(no, L, L,, L,). By (ll) EL, < o0. By (6) (cf. Baum and Katz (1965),
Theorem 3) and (14) for appropriately chosen {e,} EL, < co and EL, < 0.
Hence; EL < .
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Let & = 0 for n < ny and for g > ny set & = &§,1, (v <oney. Let Z,/= S, + &,
T'(b) = inf{n: Z, > b}, and B = B, = {L < min(7, T")}. Note that |£,] < 2¢,n*
for all n. For all ¢ > 0 and for sufficiently large b on B
@) T,=T;, Zp=2, and bp~'=eb® <T <bp™'+eb™
The two equalities in (41) are obvious. The inequality in (41) follows from

b< Zp < uT +3¢7(T)
and the corresponding inequality for 7" — 1, which hold on B. Hence by Wald’s
lemma
(42)  ET — [3S;dP = [5SdP = bP(B) + [4(Z}. — b)dP — [s¢rdP.
It will be shown in Lemma 3 below that

(43) bP(B) -0
and in Lemma 4 that
(44) [5S7dP 0

as b — oo. It is easy to see that condition (3) is satisfied for the random variables T’
and hence with the help of (13), (15), (16), (41) and (43)

(45) /€7 dP = f(b/u) + EV + o(1).
Finally, it will be shawn in Lemma 5 as an application of Theorems 1 and 2 that
(46) /3(Z; — b)dP — ES? /2ES, .
Relations (42)—(46) yield the theorem. |
LEMMA 3. Under the conditions (6), (11) and (14) the relation (43) hojds.

Proor. The conditions of the lemma imply that EL < oo, where L js defined
as in the proof of Theorem 3. To prove (43) it suffices to show that

(47) bP{T <L} 0
and
(48) bP{T' <L} 0.

Now for arbitrary§ > 0
P{T <L} <P{L>8b}+ P(T <)
(88) ' f(L>as)LdP + P{T < 8b}.

N

Hence (47) follows from (10) and the finiteness of EL. Since by definition
€.l < 2e,n°, it may be shown that bP{T" < 6b} — 0, and then (48) follows from a

similar argument.

LEMMA 4. Under the conditions (6), (11) and (14) the relation (44) holds.
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PrOOF. By the Schwarz inequality and Wald’s lemma for squared sums
|/5S7dP| = |[5(Sy — pT)dP + pf3T dP|

< {E(S} - ,uT)zP(ﬁ)}% + pf5T dP

< (PETP(B))* + pf(reryL dP + uf(rep <1y T dP.
It is easy to see that ET = 0(b) and hence by Lemma 3
E(T)P(B) >0 b — 0.
The conditions of the lemma imply EL < oo and hence
J(r<ryLdP —0.

To complete the proof it remains to show
f(T'<L<T)TdP—)O’
If T>L, then |Sy_; — (T — 1)| <ep_,T* and |¢7_,| < 2&,_,T% s0 b > S;_,
+ &y > (T — 1) — 3¢, T* Thus for all large b {T > L} C {T < 2b/p} and it
follows that
f(r<L<ryTdP < 2b/pP{T" < L} -0

by Lemma 3. This completes the proof.
LEMMA 5. Under the conditions of Theorem 3 the relation (46) holds.

PrOOF. Lemma 3 and (41) show that condition (3) holds for the stopping times
T'. Also the conditions of the corollary to Theorem 2 are satisfied with the events
A of the corollary being the events B defined in the proof of Theorem 4 (recall
especially (13), (16) and (41)). It follows from Theorem 1 that Z;. — b converges in
distribution and from the corollary to Theorem 2 that the (Zr — b)I, are
uniformly integrable. The lemma now follows by simple computation.

PrOOF OF PropOsITION 1. The convergence in law of ¥, is immediate from the
central limit theorem. That (14) is satisfied provided p > 4/(1 + «) follows from
Theorem 3 of Baum and Katz (1965).

Let U, = 37Y,. The calculations given below prove (16) and (20). Several
applications are made of Kolmogorov’s inequality for submartingales (cf. Chow,
Robbins and Siegmund (1971), page 24) and the inequality

(50) E|U,|p < Cn?/?

(cf. Doob (1954), page 225). Here and in what follows C denotes constants which
may differ from one appearance to the next. The proof of (16) is an immediate
consequence of the inequalities

U?/j| > x} < P{max, ;c,neU? > nx}

P{max, ;4o

< (nx)_”/2E|U[,,+,,a]|" < Cx~?/2,
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To prove (20) note that for i > n
wU?/i — u,U?/n = n""UX(u, — u,)
+u{i7N(U; = U, + 2i7'U(U; - U,) = (ni)™'(i = n)U2).
Hence (20) is a consequence of the following inequalities.
ijﬁ”T{maxn<i<ji_'(l], -U)> 11} < E}:ﬁ”?{maxn<i<j|(]i - U* > nn}
< () PPEIEME|U - U
< Clam) 225287 (j =
< Cnn) =P/ (pn=)e/d+1,
2327 P {max, ¢, '|U(U, ~ U,)| >}
< Z720E[ P{max,, |U, — U, >m/|U,||U,}]

J=n

j=n
Srtenp{max,; (1 — n/j)U?/n > 1} < pn°P{n~'U? > mm'~%/p}
< Cp(p/n)‘”/zn_(”/2)+"('+’/2).
2P {n~'Ukmax, ;o lu, — u,| >0} < pn°P{n~'UX2n"F) > n}
< Cpn —P/2pa—FBp/2

The preceding results show that to a first order approximation the behavior of
{Z,} and T is asymptotically the same as that of {S,} and r, although differences
appear with higher order asymptotic expansions. According to Chow, Robbins and
Siegmund (1971, page 31) Var(r) ~ 6% /p> as b — o0; it should come as no
surprise that under conditions similar to those of Theorem 3, one may show that
VarT ~ 0% /p? also. Indeed, such a result has been proved by a different method
and applied by Woodroofe (1976a, 1977) in several special cases. The details of
such an analysis seem sufficiently similar to the proof of Theorem 3 that they have
been omitted.

It would be more in the spirit of the present paper to obtain an expansion for
VarT up to terms which vanish as b — c0. Unfortunately, the authors have been
unable to produce such a result even in the simplest special (nonlinear) cases. For
the linear case, in which £, = 0, Z,=S,, and 7 =T, it is possible to obtain an
expansion of VarT = Var 7 up to terms which vanish as b — co as an application

of Theorem 4. This result seems to be new except under the further assumption
that X, > 0—see Smith (1959).

< () PEIEE[|U,P|U;, — U,JP] < Cp=Pn=/2(pn)®/>+1,

THEOREM 5. Assume that E(x;')® < co and x, is strongly nonlattice in the sense
of Stone (1965). Then as b — o

(51) Varr = p %% + p~ %K + o(1),
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where K is given by
3

(52) K= o’ES?/2uES, +7{ES]. JES, } - %Es,{ / ES,,
~ (ES2 /ES,,)E{min,5oS,} = 2/¢E { Sy — x} P{min, S, < = x} dx.
ProoF. It is well known (and is the linear case of Theorem 3) that as b —
(53) pEr = b + ES2 /2ES, +o(1).
Similarly, for i = 1 or 2
(54) E(S, — b) > (ES,) "o =X'P{S,, > x}dx.

Also Et2 < oo, so by Wald’s lemma for second moments (cf. Chow, Robbins and
Siegmund (1971), page 23) and elementary algebra

yVar 7 = E(pr — S, + S, — pEr)’

= E(S, — pr)* + E(S, — pEr)’ = 2E[(S, — pr)(S, — pEr)]

(55) = o%Er + E(S, — b + b — uEr)’
—2E[(S, - b+ b— pr)(S, — b+ b— pEr)]

= 2B — (uEr — by — E(S, — by’ + 2E{(pr — b)(S, — b))}
Hence by (53) and (54)
(56) y2Var 7 = o®b/p + o*ES? J2uES,, +4{ES2 /ES, }’

— ES? /3ES,_ +o(1) + 2uE{(r — Er)(S, = b)}.

It remains to evaluate the last term on the right-hand side of (56). By an easy
renewal argument

(57  E{(r — Er)(S, = b)} = Z37-of16, ) { E(Syxy = %)

- E(Sf(b) - b)}P{T >n, S,, eb— dX}
It follows from standard fluctuation identities (especially Feller (1966), page 570,
equation (3.6)) that S, has a distribution which is strongly nonlattice in the sense
of Stone (1965). Also E(X;*)* < co implies ES;’ < co. Hence by Theorem 3 of
Stone (1965) applied to the renewal process determined by S, , equation (54) for
i = 1 may be sharpened to read

(58) E(Syp — b) = ES,2+/2ES,+ —H(b) + O(b‘:"logb),
where
(59) H(b) = [£[2P{S, >y}d

is integrable at + co. Hence by (58)
|E(Srx) = x) — ESTZ+/2EST+|
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is a directly Riemann integrable function of x. It follows from (53), (57), (58) and
Theorem 4 that ‘

(60) E{(r-— ET)(S, — b)} - li_lf[o, oo){E(Sf(x) - x) - ESTZ+/2EST+}
P{min,,S, > —x}dx.
Since Z(x) = E(S,,, — x) satisfies the renewal equation Z = z + F * Z with

F(y) = P{S,, <y}, it may be shown by taking Laplace transforms and making a
Taylor series expansion that '

61)  Jio.m{ E(Syiry — %) — ES2 /2ES, }dx =4{ES2 /ES, )’ —4ES} /ES, .
and obviously .

(62) J10, )P {min, oS, < —x}dx = — E{min(0, S, Sp, - * )}

The theorem follows by substituting (60)—(62) into (56).

Remark. Even in those cases where the moments of S, can be computed, the
authors know of no general way to compute the integral appearing in (52).
However, for numerical purposes the last two terms in (52) are “almost equal” and
opposite in sign and can probably be neglected. To see that they are “almost
equal” observe that E{S,,, — x} = ES,Z+ /2ES,, as x— o, and if this were
actually an equality rather than just a limit relation, the two terms would be equal.

4. Applications to sequential analysis. Theorem 4 may be applied to yield
asymptotic expansions for the expected sample size of a variety of sequential tests,
including the classical sequential x2 t, and F tests. Many of these applications are
conceptually similar, and for brevity only two have been included here. The first
example was studied by Pollak and Siegmund (1975), who ignored the problem of
the excess over the boundary in their analysis but otherwise provided a concrete
model from which Theorem 3 has been abstracted.

For 6 in some open interval J containing 0 assume that exp(fx — Y(@)) is a
probability density function with respect to a probability distribution H and that
¥(0) = ¢/(0) = 0 and ¢”/(9) > O for all §. Let F be a probability on J and define

f(x, t) = [,exp(yx — ty(y))dF (»)-

Assume that x;, x,, - - - are independent, identically distributed random variables
such that for some § € J — {0}

Ex, = y/(0),

and that F” exists in some neighborhood of # where it is continuous and positive.
Let s, = 3x, and Z, = logf(s,, n). Take 0 <y, <7y, <3 and 4, = (s, — m}(9)|
< ni *n). A straightforward modification of the proof of Theorem 1 of Pollak and
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Siegmund (1975) shows that on 4,
(63)  Z, =05, — m(8) + log[,exp[(y — 8)s, — n(y(y) — ¥(9))]dF(»)
= S, —logn + 3log[27(F'(8))*/y"(6)]
+ u,(s, — my/(0))’/[297(0)n] + w,

Here S, = 0s, — ny(8) and u, and w, are random variables for which |u, — 1| <
n~ 2% and ]w | < ¢, with ¢, nonrandom and converging to 0. Now assume that
for some p > 4

(64) E|x\|F < co.

Choose v, + 2y, <3 and set @ =2+ y, and B =1 —7v,, s0 a < min(2p, 2). Let
V, = u,s, — my/(8))*/[2¢"'(8)n] + w, on A, and 0 elsewhere. It follows from (64)
and Theorem 3 of Baum and Katz (1965) that (11) holds, and by Proposition 1 that
(14), (16) and (17) are satisfied. It is easy to see that (10) need not hold without
further assumptions, but it does hold if either exp(fx — y(8)) is the true density
function of x,, i.e., ‘

(65) P{x, € dx} = exp(fx — ¥(0))dH(x),
or (64) holds for some p > 4 and for some 6% > 0
(66) v'(0) > o forall 4 €J.

That (65) implies (10) follows from Lemma 3 of Pollak and Siegmund (1975). A
simple application of the Héjek-Rényi-Chow inequality to modify the proof of their
Lemma 7 shows that (64) with p > 4 and (66) imply (10). Hence by Theorem 3 as
b—

(67)

I(0)E(T) = b + 5 [log(b/l(ﬂ)) — log{27[ F/(6)*/4"(8)} — 6*/¥"(9)]
+ES} /2ES, +o(1),

where 1(6) = 6y'(8) — y(#) and 6* = Varx,. .

The approximation (67) without the term involving S, was given by Pollak and
Siegmund (1975). Classical random walk theory leads to an evaluation of
ES? /2ES, in terms of

(68) 2~ (s,<0S,4P,

which in general is very difficult to compute. For the special case in which the x;
are N(6, 1),

(69) ES,2+/2ES,+ =2+ 0%/2 —26B(0)2),
where

B(8) = =7 {n~2¢(0n%) — 69(—6n7)}.
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A brief table of values for B is given by Siegmund (1975). A simple useful
approximation is given by

ES? /2ES, = §(.583 + 0/8) + o(6?) 0.

For the numerical values considered in Tables 1 and 2 of Pollak and Siegmund
(1975), use of the term ES,Z+ /2ES, reduces an error of about 10% by a factor of
roughly one-half. Except for special cases, computation of this term is quite
difficult and perhaps not worth the necessary effort. This is in marked contrast to
the approximation of error probabilities, where analyzing the excess over the
boundary can lead to dramatic improvement in the accuracy of the approximation
(cf. Siegmund (1975), or part I of this paper).

The second example involves a stopping rule suggested by Siegmund (1977) for
testing whether a normal mean is 0 when the variance is unknown. Let x|, x,, * -
be independent and normally distributed with mean fi and variance 6°. Put
S, =x; 4 +x, X, =n"l,5*=(s, — ni)/6, 07 =n"'S(x, — )% tF=
2M(x, — @)*/6* — n,and 8 = [i/G. Let Z, = n/2 log{1 + x2/v?}, and for m > 3
define T'= T(b) = inf{n : n > m, Z, > b}. Obviously Z, = n/2g(x,, n~'Zixp),
where g(x,y) = — log(1 — x*/y). Expanding g in a Taylor series about (i, 6> +
fi?) and collecting terms yields

Z, = Zlog(1 + 07) + 01 + 67) s — 2 0%(1 + 075y
(U 02721+ 09522/ n + 2(1+ 09 720%(07 + 2)3%/m

—2(1 + %) 6s*t* /n + w,,
where |w,| < W(n~?s*] + n~?|t*?) for some function W which equals 0 at 0 and
is continuous there.
Let A, = {n7?|s¥] <e, n?|t*]> <e,}, where ¢, — 0 sufficiently slowly that (11)
holds. Let S, = n/2 log(l + 8% + (1 + 6% 9s* — 11 + 67 '9%*, VvV =
5¥2/n, VP = t*2/n, and V> = s*t* /n. Also let

Vv, = %(1 +0) (1 + 09V + 0202+ )V - 20V} + w,

on A, and 0 elsewhere. With the aid of the identity 2V,® = (s* + ¢t*)?/n — VU —
V,® and Proposition 1 it is easy to check that ¥? for i = 1, 2, and 3 and hence V,
satisfy (14)—(17).

As in the preceding example (10) requires a special argument. Let P, denote the
probability under which the x’s have expectation fi = 0. From the trivial inequality
Po{T < n} < 2%_,,Po{Z, > b} and an analysis of the tail of the z-distribution, it
may be shown for x > 0 that

(70) P{T <bx} = o(b%exp[—b(l - %)])

as b — co. By Lemma 3 of Pollak and Siegmund (1975), for arbitrary 8 # 0 and
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y>0
(71) P{T <n} < 1—®(y)+ exp(87n/2 + yon?)Po(T < n}.

Putting y = b% in (71) and appealing to (70) yields (10) for any & < 26 ~%(1 —
2/m). Hence by Theorem 3, for § # 0 and m > 3

(72)  [log(1 + 6)]ET =2(b — 1) - 26*/ (1 + 6% + ES2 /ES, +o(1),
as b — 0.

5. Comparison with Woodroofe’s results. The purpose of this section is to
discuss briefly the relation of the results of this paper to similar results obtained
recently by Woodroofe (1976a, 1977) by completely different methods. In general
terms the methods of this paper and its companion develop renewal theory for
nonlinear functions of a random walk S, by expanding the function and applying
classical renewal theory to the dominant linear term. In contrast Woodroofe
considers the first passage of a random walk S, to a nonlinear boundary which he
analyzes by expanding the boundary around an appropriate point. One con-
sequence of this difference in formulation'is that in this paper and its companion a
fairly small number of theorems provide a unified theory, whereas Woodroofe is
required to reapply his method with its fairly elaborate computations to deal with
different stopping rules. A technical difference is that Woodroofe requires a
blanket smoothness condition on the distribution of his random variables, which
has no counterpart in the present development. Other technical differences are
described below.

Let x, x,, - - - be independent identically distributed random variables with
positive expectation i and finite variance 6% Let s, = x, + - - - + x,. Woodroofe
(1976a) studies the behavior of the stopping rule
(73) T, =inf{n:s, >cn"} c>0,0<y<1

as ¢ — 0. (Actually for some results a slightly more general class of stopping rules
is considered, but since Woodroofe gives no application for these more general
rules, and since their introduction would complicate this discussion, they have been
omitted.) Statistical applications of the stopping rule (73) have been described by
Woodroofe (1976b) and -Siegmund (1977). Under the additional restriction

(74) P{x, <0} =0.
Woodroofe (1977) studies the behavior of
(75) T,=inf{n:n >m,s, <cnL(n)}

c>0y>1l,m=12,---

as ¢ — 0, where L(n) = 1 + const./n + o(n~") as n — . Both (73) and (75) may
be written in the form

(76) T= inf{n cn>m (n+8+8,)g(n"s,) > b},
where g(x) = (x*)/0=" b = g(c), and §, »0. Suppose more generally that
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g : (— o0, 00) — [0, o0) is three times continuously differentiable in a neighborhood
of fi and that g’(ji) > 0. Let &, -0 and A4, = {n~?|s, — nji|’ <¢,}. By Taylor’s
theorem, on A4,

ng(n's) = ng() + s, — g () + B gy 4w,

where |w,| < W(n~?|s, — nji]’) for some function W which vanishes at 0 and is
continuous there. Let S, = ng(fi) + (s, — ni)g’(fi) and V, = (s, — nji)*/2n + (8
+ 8,)g(n"'s,) on A, and 0 otherwise. It may be shown as in the second example of
Section 4 with the aid of Proposition 1 that for suitable ¢, (11) and (14)-(17) are
satisfied with « =%, provided E|x,|* < oo. Thus Theorem 3 applies to give an
asymptotic expansion for E(T) provided that (10) holds, and as always a special
argument is required here.

For the stopping rules (73) and (75) proofs of (10) under appropriate conditions
follow from Woodroofe (1976a, Lemma 7.1 and 1977, Lemma 2.3). Use of the
Hajek-Rényi-Chow inequality (cf. Chow, Robbins and Siegmund (1971), page 25)
together with (50) would simplify these arguments.

Hence Woodroofe’s expansions of ET, and ET, follow from Theorem 3. In
Woodroofe’s work’a central role is played by results resembling Theorem 4, which
form the basis for subsequent calculations. One example is Theorem 3.1 of
Woodroofe (1976a), which says that if E|x,|* < o and Woodroofe’s blanket
smoothness condition is satisfied, then for T defined by (71)

(77)  EPP{T, >n,s,>cn? —y} —>[(1 - y)ﬁ]_l
X [, P{s, > nyi —xforalln > 1}dx.

Deriving (77) from Theorem 4 requires the slightly stronger moment condition
E|x,|? < oo for some p > 1 + 52. With (73) rewritten in the form of (76) (with
8 =28, =0) the inequality s, >cn? —y becomes Z, = ng(n~'s,) > (b'77 —
yn~")/0=1_ As in the proof of Theorem 2, it is easily shown that only the terms
with n; < n < n,, where n, and n, are defined in (21), are nonnegligible in
evaluating the limit of the left-hand side of (77). For these values of », which are
~ b/, a simple expansion gives (b' =Y — yn VU = p — u% /(1 — y) + o(1).
Now Theorem 4 and a simple change of variable yield (77). A similar argument
applies to the stopping rule 7, of (75).
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