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A NOTE ON THE BERNOULLI TWO-ARMED
BANDIT PROBLEM*

By THomMAs A. KELLEY
University of Florida

Suppose the arms of a two-armed bandit generate i.i.d. Bernoulli ran-
dom variables with success probabilities p and 2 respectively. It is desired
to maximize the expected sum of N trials where N is fixed. If the prior dis-
tribution of (p, 2) is concentrated at two points (a, b) and (c, d) in the unit
square, a characterization of the optimal policy is given. In terms of a, b,
¢, and d, necessary and sufficient conditions are given for the optimality
of the myopic policy.

1. Introduction. Suppose there are two experiments, &, and &,, which gen-
erate independent Bernoulli random variables with expectations p and 2, respec-
tively. It is desired to maximize the expected sum of N observations where N
is fixed. The choice of which experiment to use may be sequential, i.e., it may
be allowed to depend on previous results and prior information concerning the
vector (o, ). In this paper it is assumed that (p, ) either is (a, b) or (c, d); for
this type of prior information the optimal solution is characterized. Since the
TAB has been viewed as a simplified model for the clinical trials problem of
testing two drugs with unknown cure probabilities, it is of interest to know
under what conditions the myopic procedure is optimal. Feldman [4] has shown
that (c, d) = (b, a) is a sufficient condition for this. Aside from a few obvious
exceptions, it is also necessary.

2. Bernoulli two-armed bandit (TAB) model. Suppose experiment &, generates
i.i.d. Bernoulli random variables (generically denoted by X) with mean p, and
suppose experiment &, generates i.i.d. Bernoulli random variables (generically
denoted by Y) with mean 1. Furthermore, suppose that every X is independent
of every Y. If & denotes a prior distribution for the vector (p, 1) then let §(X)
denote the posterior distribution after an observation on X, §(Y) the posterior
distribution after an observation on Y, §(X, Y) the posterior distribution after
observations on X and Y in that order, and §(Y, X) the posterior distribution
after observations on Y and X in that order. Because of the independence of X
and Y, &(X, Y) and &(Y, X) are identical.

There are a total of N trials to be sequentially allocated to &, and &, and the
objective is to maximize the expected sum of the observations. Forn = 0,1, .- -,
N let V,(§) denote the optimal expected gain for the remaining n trials when &
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is the current prior distribution for (p, 2). These functions are defined by the
following recursive formulas (cf. [2], pages 395-396).

2.1) V() =0,
and
(2.2) Vu(§) = max {E[X + V,_,(§(X))], E[Y + V,_,(§(Y))]}
for n=1,..-,N.
It follows from (2.1) and (2.2) that there exist functions F,(§) and G,(¢§) such
that V,(§) = max {F,(§),G,(§)}forn =1, ..., N.
These functions may be defined recursively. Let
(2.3) F(§)=0 and Gy(&) = 0.
Then forn =1, .--, N,
(2.4) F,(§) = E[X + max {F,_,(§(X)), G,_.(§(X)}],
and
(2.5) G.(§) = E[Y + max{F,_ ,(§(Y)), G,_(§(Y))}] -

Let D,(§) = F,(§) — G,(§), the relative advantage of &, over &,. Recursive
formulas may be developed for defining D,(§). In fact,

(2.6) D,(§) = E(p) — E(2),

and forn =2, ---, N,

(2.7) D(§) = E(p) + E[V,_(§(X))] — EQ) — E[V,_,(6(Y))],
(2.8) = Dy(§) + E[G,_.(§(X))] + E[D,_,(§(X))*]

— E[F, (&(Y))] + E[D,_(&(Y))7],

where x* denotes max {x, 0} and x~ denotes min {x, 0}. It follows that

D,(§) = Dy(§) + E[EQ|X) + E(V,_o(§(X, Y)) [ X)]
(2.9) + E[Dyy(§(X))*] — E[E(p]Y) + E(Va_o(8(Y, X)) | Y)]

+ E[D,_,(§(Y))"].

Since &(X,Y) and &(Y, X) are identical, it immediately follows that for
n=2---,N
(2.10) D, (&) = E[Dn_o(§(X)*] #+ E[D\(£(Y))7] -

These formulas have, using different notation, been developed by Berry [1],
Fabius and van Zwet [3], Quisel [5], and Zacks [6]. In terms of the functions
D, () the optimal strategy may be described as follows: whenever there are n
trials remaining and ¢ is the current prior distribution for (p, 1), then the next
trial should be allocated to &, provided D, (§) > 0 and to &, provided D,(§) < 0.
Whenever D,(§) = 0 the choice between &, and &, is arbitrary.

In this paper, only those prior distributions £ which are concentrated at two
points in the unit square will be considered. That is, it will be assumed that
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(0, ) = (a, b) or (p, ) = (¢, d) where 0 < a,b,c,d < 1. This means that all
distributions under consideration can be indexed by the real numbers in the
closed unit interval; these numbers which will be denoted by & refer to the
probability that (o, 1) = (¢, d). Of course, this means that each D,(¢) is a func-
tion of a real variable. If ¥ denotes the function 1 — x, the following formulas
for §(X) and £(Y) may be obtained.

(2.11) E(X) = &c/(éc + &a)  if X =1,
(2.12) E(X) = ¢¢/(se + &a)  if X=0,
(2.13) EY)=¢&di(¢d + &b) if Y=1,
(2.14) EY)=2¢&d)(6d + éb) if Y=0.

Using these preliminary formulas and the recursive formulas for defining the
functions D,(§), the optimal strategies will now be examined.

3. Characterization of the optimal strategies. Since D,(§) = (¢ — d)¢ +
(a — b)é, it follows that D,(§) > 0if a > b and ¢ = d. Then from (2.10) it fol-
lows that D,(§) = Ofor all § and n = 1, - .., N. Thus the optimal strategy will
be to always use experiment . Likewise, if a < band ¢ < d, then D,(§) £ 0
forall £ [0, 1] and for n = 1,2, ..., N. Thus the optimal strategy will be to
always use experiment &,. So it will now be assumed that b > aand ¢ > d. It
is now appropriate to note that for each X, §(X) is a strictly increasing function
of £ and that for each Y, §(Y) is a strictly increasing function of £&. The structure
of the optimal policy will be evident if it can be shown that for each n(n =
I, ..+, N), D,(§) is a strictly increasing function of § with a root in the open
unit interval.

THEOREM 3.1. Foreachn = 1,2, ---, N the following are true:

(i) D,(§) is a strictly increasing function of §.
(ii) D, () is a continuous function of &.
(iii) D,(0) < 0 and D,(1) > 0.
(iv) There exists a unique a, € (0, 1) such that D,(a,) = 0.

Proor. Conditions (i), (ii), and (iii) are proven by induction. If they are
true, condition (iv) follows from the interrhediate value theorem. Since D,(§) =
(@a—b) + (b — a + ¢ — d)§, it follows that the theorem is true for n = 1. Now
suppose that the theorem is true for some n between 1and N — 1. Then D, (§(X))
and D,(£(Y)) must be strictly increasing functions of &£. Since x* and x~ are
non-decreasing functions of x it is certainly true that D, ,,(§) is a non-decreasing
function of €. Let

U, = sup (& E[D,(4(X))*] = 0} and
L, = inf{&: E[D,(&(Y))"] = 0} .

Then E[D,(§(X))*] is zero on [0, U,] and strictly increasing on (U,, 1] while
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E[D,(&(Y))™"] is strictly increasing on [0, L,) and zero on [L,, 1]. The only way
D, ,(§) will not be strictly increasing is to have U, > L,. However,

(3.1) U, = min {aa,/(aqa, + c&,), aa,/(aa, + ¢a&,)},
and
(3.2) L, = max {ba,/(ba, + da,), ;)an/(i)a” + da,)}.

Thus U, > L, implies that
(3.3) max {c/a, ¢/a} < min {d/b, d|b} .

And this in turn implies that ¢ < aand b < d. But this is impossible since b > a
and ¢ > d. Thus D, ,(£) is a strictly increasing function of §. The induction
hypothesis, together with the monotonicity of D, ,,(§), the continuity of x* and
x~, and the monotone convergence theorem, guarantees the continuity of D, ,(§)-
Since D, ,,(0) = D,(0) and D, ,,(1) = D,(1) condition (iii) is also proven. []

This means that the optimal strategy is determined by a unique sequence of
constants a;, a,, - - -, ay. If there are n trials remaining to be allocated, it is
optimal to allocate the next trial to experiment &, provided § > «,, and to ex-
periment &, otherwise.

4. Conditions for optimality of the myopic strategy. An appealing strategy
to use is to allocate the next trial to experiment &, whenever E(po) > E(4), and
to allocate the next trial to experiment &, otherwise. This strategy is called the
myopic strategy. It is called myopic because it allocates the next trial to &
whenever D,(§) > 0; it “behaves” as if there were always just one more trial to
be allocated. When the myopic strategy is optimal, it means that the optimal
strategy does not depend on the number of trials remaining: it is time invariant,
so to speak. It is of interest to know when the myopic strategy is optimal.

From the results of Section 3, it follows that whenever a < b and ¢ < d the
myopic strategy is optimal. Clearly, this is also true whenever a > b and
¢ = d. So now the case when b > a and ¢ > d shall be considered. Let a =
(b —a)(b—a+c—d). Then D(§) = (b — a)(§ — a)/la and D;(§) = 0 iff
§ = a. From Theorem 3.1 it follows that the myopic strategy will be optimal
ifand only if ¢, = a, = --- = a, = a where qa,, - - -, a, are those unique con-
stants determining the optimal strategy. Obviously a, = a; the next theorem
gives conditions under which a, = a.

THEOREM 4.1. Dya) =0iffa + b = ¢ + d.

Proor. We first note that

4.1) (éc + Ea)D, (57%57) — (b — a)(cEa — afa)a .

Replacing a and ¢ by @ and ¢, by b and d, and by b and d, respectively, and
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using the fact that x* = (x 4 [x|)/2 and x~ = (x — |x|)/2 one obtains
(4.2) Dy(§) = Dy(§) + ¥(b — a)(|céa — aba| + |céa — akal|
— |déa — béa| — |déa — béal)/a .
Replacing § by @ one immediately obtains
(4.3) Dy(a) = (b — a)a(|la — c| — |b — dI).

From this, together with the assumption that (a, ) and (c, d) are on opposite
sides of the main diagonal in the unit square, the conclusion follows. [J

This theorem provides a necessary condition for optimality of the myopic
procedure. It will now be assumed thata + b = ¢ 4+ d = y. The function D,(§)
will now be specified so that the conditions under which Dy(a) = 0 may be
examined. In order to specify Dy(§) completely, the following four critical points
must be kept in mind:

4.4) §, = aaj(aa + ca), the point where §(X)=a for X=1,
4.5) §, = aaj(@a + ca), the point where §(X)=a for X =0,
(4.6) & = ba/(ba + da), the point where &§(Y)=a for Y =1,
(4.7 & =baj(ba 4+ da),  the point where &(Y)=a for Y =0.

The following facts about these four numbers may be easily verified.

(4.8) (1) max{§, &} < a < min {§,, &}

(4.9) (2 &<é  iff <1,

(4.10) (3) &<& ff <1,

(4.11) (4 & =& and & =¢ iff y=1.

From (4.2) it follows that
(4.12)  Dy§) = Dy(§) + ¥b — a)[(ca + aa)|§ — &| 4 (¢a + aa)|§ — &)
— (d& + ba)|é — &| — (da + ba)|s — &|)/a .
From (4.11) and (4.12) it follows that D,(§) = D,(€) for all £¢[0, 1] if 7 = 1.

Then, of course, D, (§) = Dy(§) for all £e¢[0,1] and n = 1,2, ..., N and the
optimal strategy is the myopic strategy. When y < 1, one obtains

Dy(§) = Dy(§) for 0566,
= D(§) + (b — a)(céa — aba)la  for § <€,
(4'13) = 7D1($) for £, ¢ = 52 s

= Dy(§) + (b — a)(déa — b)) for & <E<E,,
= D,(§) for §,<é6<1.
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When 7 > 1, one obtains

Dy(§) = Dy(§) for 0656,

= D,(§) + (b — a)(déa — béa)ja  for £ <ELE,

(4.14) = rDy(§) for §, 656,
= D,(&) + (b — a)(¢ta — dta)la for §,5¢6<¢,,

= Dy(§) for &, =6<1.

In order to compute Dy(«a), it is necessary to know D,(a(X)) for X = 1 and
Dy(a(Y))for Y = 1. Firstofall, for X = 1, a(X) = ac/(ac + aa)and for Y = 1,
a(Y) = ad/(ad 4+ ab). How do these two quantities compare with the four criti-
cal points &, §,, &;, and £,? Routine manipulation with inequalities yields the
following results:

(4.15) acl(ac + aa) < &, iff a+c=1,
(4.16) acl(ac + aa) < &, iff a+c=7.
(4.17) ad/(ad 4+ ab) < &, iff a+cz=7y,
(4.18) adf(ad + ab)y <&, iff a+c=2r—1.

This means that for a fixed value of y the value of D,(a) will depend on the
value of @ 4 ¢. Suppose y < 1, then through the use of (4.13) the following
may be obtained.

Da) = a(b — a)(c — a)(1 — ) for a+c<2y—1, r>3%,
(4.19) =ab—a)c—a)(y —a—c) for 2r—1Za+c<1,
=ab—a)(c—a)(y—1) for 1<a+c.
Now suppose y > 1; then through the use of (4.14) the following may be obtained.
Dya) = a(b — a)(c — a)(1 — ) for a+c<1,
(4.20) =ab—a)c—a)a+c—7y) for 1 <a+c<2r—1,
=alb—a)(c—a)(y — 1) for 2r—1<a+4+c, r=3%.

It is evident from (4.19) and (4.20) that as long as 7 # 1, Dya) = 0 if and
only if @ + ¢ = y. Thus we have proved the following theorem.

THEOREM 4.2. Suppose b > a, ¢ < d, anda-{-b—c-}—d—r If r #+ 1 then

Dy(a) = 0 iff (c, d) = (b, a).

Our search for conditions under which the myopic strategy is optimal has
come to an end. D. Feldman [4], in his celebrated paper, proved that if (¢, d) =
(b, a) then the optimal strategy was the myopic rule. In a sense, Theorem 4.2
guarantees the necessity of this condition. The results of this section may be
summarized in the following theorem.

THEOREM 4.3. Suppose the prior distribution on (p, 2) is concentrated at two
points (a, b) and (c, d) in the unit square and that N > 2. The myopic strategy is
optimal if and only if one of the following four conditions holds.
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(i) agbandc < d,
(ily a=bandc = d,
(iiiy a+b=c+d=1,

@iv) (c,d) = (b, a).

In all fairness it should be pointed out that even if the prior distribution is
not concentrated at two points, the myopic strategy remains optimal for obvious
reasons, as long as the prior is concentrated either on the line p + 1 =1 or on
one side of the main diagonal.
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