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CONVERGENCE OF SAMPLE PATHS OF NORMALIZED
SUMS OF INDUCED ORDER STATISTICS

By P. K. BHATTACHARYA

University of Arizona and University of Minnesota

The main result in this paper concerns the limiting behavior of nor-
malized cumulative sums of induced order statistics obtained from » inde-
pendent two-dimensional random vectors, as n increases indefinitely. By

" means of a Skorokhod-type embedding of these cumulative sums on
Brownian Motion paths, it is shown that under certain conditions the sam-
ple paths of these normalized sums converge in a certain sense to a process
obtained from the Brownian Motion by a transformation of the time-axis.
This yields an invariance principle similar to Donsker’s. In particular, the
asymptotic distribution of the supremum of the absolute values of these
normalized cumulative sums is obtained from a well-known result for the
Brownian Motion. Large sample tests of a specified regression function
are obtained from these results.

1. Introduction. (X, Y)), (X,, Y,), - -- are independent two-dimensional ran-
dom vectors each distributed as (X, Y). Let X,, be the kth order statistic obtained
from X, - - -, X,,. If the marginal distribution of Xis continuous, X,, < --- < X,,
with probability 1 and we can unambiguously define induced order statistics
Yo, -+, Yoo as Y, =Y, if X,, = X;. Let m(x) denote the conditional expec-
tation and ¢%(x) the conditional variance of Y given X = x, and let ¢(f) =
{271 %(x)dF(x),0 < t < 1. The main result in this paper concerns the limiting
behavior of the sample paths of

Sy = Tk (Y,; — m(X,)s k=1,.--,n}.

By means of a conditional Skorokhod embedding (see Skorokhod (1961), page
163) of {S,,} given X,, X,, - - - on Brownian paths (Theorem 1), it is shown that
under certain conditions there are processes {£™(f), 0 < t < 1} for each n and
a Brownian Motion {£(7), + = 0} on a common probability space so that
{6™(#), 0 < ¢ < 1} has the same distribution as {S,, ,,/(n¢(1))}, 0 < ¢ < 1} and
SUPy<,<1 |E(1) — &(¢(1)/¢(1))] — O a.s. for sufficiently rapidly increasing subse-
quences {n;} (Theorem 2). This yields an invariance principle similar to Donsker’s
(1951). In particular, the asymptotic distribution of sup,c,<; [S, rual/(n¢(1))? is
the same as the distribution of sup,.,, |§(f)|. Large sample tests for a specified
regression function are obtained from these results.

2. Preliminaries. Let F denote the marginal cdf of X and G, the conditional
cdfof Y given X = x. We assume that Fand {G,} satisfy the following conditions.
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Condition 1. F is continuous.

Condition 2. p(x) = E[{Y — m(x)}*| X = x]is bounded above by some constant
B on (— oo, c0).

Condition 3. ¢*(x) = E[{Y — m(x)}?| X = x] is of bounded variation on
(— o0, ).

We define functions ¢(¢) and ¢,(¢) on [0, 1] as follows. For any cdf H, let
H7(f)y = inf{x: H{x) = 1}, 0 <+ < 1. Then

(1) P(1) = §10 0*(x) dF(x)

and

(2) (1) = §Eu'® g%(x) dF,(x) for IIn<t<1,
=0 otherwise,

where F, is the empirical cdf of X, ..., X,.
We conclude this section with two lemmas. Lemma 1 gives the conditional
distributionof Y,,,, - - -, Y, given X, . . ., X, and Lemma 2 establishes the almost

sure uniform convergence of ¢,(f) to ¢(7).

LemMMA 1. Under Condition 1, for every nand almost all (X, - -, X,), Y ., « - -,
Y, are conditionally independent given X,, . - ., X, with conditional cdf’s G
Gy, respectively.

o ..
Xy ’

Proor. For any x,, = (x;, - - -, x,) no two coordinates of which are equal, let
A(k, x,) = j if x; is the kth smallest among x,, - - -, x,. By Condition 1, Ak, X,),
k=1, ...,nare defined a.s. and X, = XX, Yoo = Y,ux,- Hence the con-
ditional joint cdfof Y,,;, - -+, Y, given X, - .., X, is the same as the conditional
joint cdf of Y}(k,X,n)’ k=1,.--,ngiven XX(k,X,n)’ k=1, ..., n, which is easily
seen to be the product [T, GXX(k,Xn) = 1%, GXM due to the independence of
Y,and X; foreveryi#j=1,...,n.

REMARK. Lemma 1 holds much more generally. In fact if A(1), --., A(n) is
any random permutation of 1, - .., n determined by X, - - -, X,, then Yia oo s
Y are conditionally independent given X, ..., X, with conditional cdf’s

Gxpayr = *s Gxy,» Moreover, for this the condition that F is continuous is not
necessary. The only reason this condition is imposed here is to define the induced
order statistics in a simple manner and to avoid unnecessary complications.

LemMA 2. Under Condition 3, sup,,, |¢,(f) — ¢(f)] — 0 a.s.

PROOF. Since sup ¢’(x) < co and ¢*(x) is of bounded variation on (— oo, o),

the lemma is proved by integration by parts and application of the Glivenko—
Cantelli theorem.

3. Convergence of sample paths of {S,,}. Construct a probability space (<,
%, P) by adjoining an independent Brownian Motion £() to the probability
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space of (X, Y)), (X,, Y,), - -+ and let % C & denote the o-field of X, X, - - -.
We first obtain a conditional Skorokhod representation of {S,,, k =1, ---, n}
given .27, For two stochastic processes we write {X(¢)} =, {Y(#)} to indicate
that the processes have the same distribution.

THEOREM 1. If Condition 1 holds and if B(x) = E[{Y — m(x)}*| X = x] exist for
all x, then for every n, there exist stopping times T, ---,T,, of the Brownian
Motion {£(t), t = 0} such that

(a) (Snl’ ] Smt) =d (E(Tnl)’ Tt E(Tnl + -0 4+ Tnn))
() T, ..., T,, are conditionally independent given 7 a.s.
(©) E[Tp| ] = o*(X,,) as.

(d) E[T} | ] < CB(X,,) a.s., where C is a constant.

ProOF. Argue conditionally given .9 in (Q, &, P). Then by Lemma 1, the
random variables Y,, — m(X,,), k = 1, ..., n are mutually independent with
mean 0, variances ¢*(X,,,) and fourth moments 8(X,,,) for almost all sample points.
In the conditional argument the theorem thus becomes the same as the well-
known theorem of Skorokhod (1961, page 163).

By means of the above embedding theorem we now study the convergence of
normalized cumulative sums of induced order statistics. The following is the
main theorem of this section.

THEOREM 2. Under Conditions 1-3, there exist processes {£™(f), 0 < t < 1} and
a Brownian Motion {£(f), t = 0} on a common probability space such that

(a) foreach n,
{§€7(1), 0 = 1 = 1} =4 {Sutan/(ng(1))}, 0 < 1 < 1},
(b) for any sufficiently rapidly increasing subsequence {n;}
SUPogesr [€79'(1) — E(@(N/P(1))| -0 ass.,
where (1) is as defined in (1).

Proor. We shall prove the theorem in the context of the probability space
(Q, &, P). For each n, construct random stopping times T,,,, - - -, T, of &) as
in Theorem 1. Then for each n,

(Sutna (D) 0 = 1 2 1) = { s €0t o o T 05 15 1]
1}

= e (g )0

t

IA
IA

Thus the processes

{f(n)(t) — ,;:(Tn1+ n¢(1‘|)‘ Tn,[nt]>, 0<r< 1}

satisfy (a). We shall now show that these processes also satisfy (b). Arguing as
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in the proof of Theorem 13.8 of Breiman (1968) and using Lemma 2, it will
suffice to show that sup,<,<; |07 2% T, — ¢a(1)] =, 0 as n— oo, where ¢.(0)
is as defined in (2).

Now for any ¢ > O and n > 1/e,

SUPog, <1 |17 0 Toi — (0]
3) = SUPy/msts1 (t/[nt)| 5 {Tor — *(Xan)}]
< e SUPigigren (K7 Do {Thy — " (Xai)H
+ SUPruizisn K71 2 han {Tns — o* (X} -
We now apply Theorem 1(b), (c), (d) the Hajek-Rényi (1955) inequality, and
use Condition 2 to get
PISUPycozgo [k T1es Ty — (X}l > x| .71 < CBx* Tk~ aus.
and therefore,
“4) P[SUD, gyspen k7 Thoa (T — (X))l > x] = CBx7* ZEH k2,
and
PSUPLzzn K T Ty — (X)) > x].57] < CBx n{[en]}™® aus.

and therefore,

() P[SUPaysisn K71 i {Th; — (X}l > x] = CBxni[en]}™ .
From (3), (4) and (5) we have for any 6 > 0 and ¢ > 0,

lim sup, . P[SUPosi<i |17 2204 T — ¢u(1)| > 0]
< limsup, .. Ple SUPicisenr K7 L5 {Th; — 0*(X05)} > 0/2]
+ lim sup, ... P[sUPpaysisn K71 2521 {Th; — o' (X))} > 0/2]
— 1M SUP, . P[SUP, e [ Xkt {Tos — 0*(X,p))] > 0/2¢] + O
< 4CBe2o® > v k2,

which goes to 0 for any given 6 > 0 by allowing ¢ to tend to zero. This concludes
the proof.

ReMARK. Theorem 2 implies weak convergence in the uniform topology (see
e.g. Breiman (1968), Theorem 13.12). In particular, the asymptotic distribution
Of SUPy< 21 |Sn ner| (n( 1)) is the same as the distribution of sup,,, [§(¢(?)/¢(1))] =
SUP,<,.<, |§(1)], the last equality being a consequence of the fact that by Condition
1, ¢(1)/¢(1) increases continuously from O to 1 as ¢ increases from 0 to 1.

4. Testing a specified regression function. Using the results of the last section,
we can construct tests for a specified regression function. We want to test the
null hypothesis that the regression function m(x) of ¥ on X in a bivariate dis-
tribution is equal to a specified function my(x). Let (X, Y}), -« -, (X,, Y,) be
independent samples from this distribution. We then compute the order statistics
X, -+, X,, of the X-observations and the induced order statistics ¥,,;, - - -, ¥,
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of the Y observations, and let

Spe = D= {Ya; — mo(X,5)}
Then under the null hypothesis, in view of the Remark following Theorem 2,
(6)  Plmax,_, ... [Sul/(ng()) = 2] = Xio_o (—1)* §6E2] (2m)te" dx .
However, ¢(1) = {=, ¢’(x) dF(x) is unknown, but
Gu(1) = 07 Tr_ (Y, — my(X, )P = n7t D1 {Y; — my(X)P

is a consistent estimator of ¢(1) and (6) holds with ¢(1) replaced by ¢,(1). We
can now use the large sample level a test:

Test 1. Reject the null hypothesis if and only if
maX,_,,....n !Snkl/(n{b\n(l))k = 20:
where Yy__., (—1)* (Dl 2n)"te=*?dx = 1 — a.
The invariance principle also applies to the asymptotic distribution of
{"Sl’(l)}‘* Stll Sn,[nt] dr.
Thus under the null hypothesis, {n¢(1)}~* (i S, [, dt converges in distribution
to §3 E(¢(1)/¢(1)) dt where &(f) is a Brownian Motion. It is easily seen that

§1E(¢@()/¢(1))dr is a normal random variable with mean 0 and variance
{¢(1)}* §4 §3 ¢(min (s, 1)) dsdt. Hence under the null hypothesis,

§3S, taey dt/[n §5 §3 ¢(min (s, 1)) ds dt]t
is asymptotically normally distributed with mean 0 and variance 1. The function
¢(t) can be estimated from the sample by

Gu(t) = n TP (Y — my(X)F -
To see that ¢,(¢) is a uniformly consistent estimate of ¢(¢), note that

SUPo<i<1 ,an(t) — 9| = SUPo<i<1 Iﬂﬁn(’) — (O] + SUPogi<t |Pa(2) — &(0)]

where ¢,(1) is as defined in (2). By Lemma 2, sup,,, |¢.(f) — ¢(t)] — 0 a.s.,
and it can be shown in a way analogous to the proof of Theorem 2, that

SUPy<<t |Pn(t) — Pa(t)] —, 0. Hence,
{2 §2 @a(min (s, 1)) ds dt —, §3 §3 ¢(min (s, 1)) ds dr ,
and consequently,
W, = §58, (e dt/[n § §4 §,(min (s,1)) ds dt]?

is also asymptotically normally distributed with mean 0 and variance 1 under
the null hypothesis. We can now use the following large sample level « tests:

Test 2a. Reject the null hypothesis if and only if

W, = 01 — a),
or
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Test 2b. Reject the null hypothesis if and only if
Wn _S__ (I)'l(a/) ’

where @ is the cdf of a normal random variable with mean 0 and variance 1.
By a little algebraic simplification, we have

W, = 55— R)Y; — m(X)H[ X550 (0 — RH{Y; — my(XpF]
where R, ; is the rank of X; among X, - --, X,. In this form, W, is computed
easily.

Test 1 would guard against all possible alternatives, whereas Tests 2a and 2b
would guard against alternatives m(x) > my(x) and m(x) < m(x) respectively.
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