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FISHER INFORMATION AND SPLINE INTERPOLATION!

By PETER J. HUBER
Swiss Federal Institute of Technology, Ziirich

It is shown that among all cumulative distribution functions passing
through & = 2 given points there is a unique one with minimal Fisher in-
formation; it is obtained by a curious type of spline interpolation. This
answers some questions raised by D. G. Kendall and J. W. Tukey.

Problem. Estimate Fisher information I(F) = § (f'/f)*f dx from k = 2 given
points of the cumulative distribution function F.

This problem, which was posed by J. W. Tukey in [3], has a distinguished
“minimal” solution—the smallest possible Fisher information /(F,) for distribu-
tions passing through the given points. The minimizing distribution function
F, is obtained by a curious and rather non-trivial type of spline interpolation,
as follows. At the same time, an existence problem, mentioned in [1], page 33 f.,
is solved.

Assume that the given values are F(§;) = ¢, with —c0o < §, < &< -0 <
&, < o0, < ty, t,_; < t,. For convenience, we put§, = —o0, 1, =0, §,,, = oo,
t,+; = 1. Then the solution F, can be described as follows.

(i) Fo§) =1,i=0, -+, k+ 1
(ii) F, is two times continuously differentiable;
(iii) the density f; = F,’ is strictly positive, except that it vanishes on those
intervals [§,, &,,,] for which ¢, = 7,.;
(iv) on each interval (§;, §,,,) the function f}’/f;} is constant = 4,, i.e.

(fu(x)t = a;e* 4 be*, if 2,>0
=a,x + b,, if 2,=0
= a,; cos |A;|x + b, sin |4;]x, if 4,<0.

(v) There is one and only one F, satisfying (i) to (iv); it is the unique F,
minimizing I(F) subject to F(§;,) = ¢t,i =1, ---, k. The value of the minimum
is I(Fy) = —4 2 (tia — )4

The proof is somewhat involved, but as very similar proofs already occur in
[2] it is hardly necessary to present all the details.
Let & be the set of all monotone functions satisfying

0<FE&E -0 =FE)<t,<FE&+0<1, i=1 . k.
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Define

’ dF)2
1 I(F) = su (¢ —
() (P = sup S TF
where ¢ ranges over the continuously differentiable functions with compact
support. Note that I(F) is the L,(F)-norm of the functional ¢ — —§ ¢’ dF,
and that

2) IF) = (/' f)f dx
whenever one of the two sides of (2) is finite (the density f = F’ then must be
absolutely continuous; see [2]).

LEMMA 1. There is an Fye % which minimizes I(F).

PrOOF. As I(+) is the supremum of a family of vaguely continuous functions,
it is lower semicontinuous, and hence attains its minimum on the vaguely com-

pact set .7,
LEMMA 2. If F, minimizes I(F) and if f, > O except on the intervals [&;, §;,,]
where t, = t,,,, then F, is the unique member of & minimizing I(F).
Proor. Assume that f, > 0 for all x (the general case is treated analogously).
Let F, ¢ % be any distribution having finite Fisher information; put
F.= ({1 — ¢)F, + ¢F,, 0<eg 1.
We may assume without loss of generality that f; > 0 (otherwise replace F, by,

say, (F, + F,)/2, which has this property). As I(.) is convex (see [2]), monotone
convergence and Fatou’s lemma yield, respectively,

3) sy =s[2Lur - () w — £ |dx
and 5
) ety z 2 (B e

(primes always denote differentiation with respect to x).
If also F, minimizes Fisher information, then, by convexity, I(F,) = I(F,) for
all e [0, 1] and (4) implies
) A a.e.
fl fO

We integrate this and obtain

(6 fi=cfe
for some constant ¢ (it was overlooked in [2], that this is false unless f, > 0).
Since

I(Fy) = I(F,) = § (f'[f)frdx = § (J'[fo)’efodx = cl(F,),
we must have ¢ = 1.
Now consider the following auxiliary problems.
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Problem A. Let —oo < & < n < oo and assume that F(§), F(y), f(§), f() are
given and fixed. The problem is to minimize the convex functional

(™) I (F) = e (f'1f)f dx..
If this problem has a solution F,, then (3) implies that
d ’ , , ’r\2
e e R (O IRl L
for all F, with finite 7, (F,) and satisfying the side conditions. Conversely, if

(8) holds for all these F,, then F; minimizes (7).
If f, > 0 on [£, 7], then (8) can be integrated by parts to give

©) L] == () () -y
=4t (e,

Provided f, > 0 on [§, 7], it follows that F, minimizes (7) iff f, satisfies the dif-
ferential equation
1Y

(10) S _ 2 = const.on [£, ].

ft
It is fairly easy to see that the side conditions can always be met with a solution
of (10) which is strictly positive in (&, ). If f(§) = f(y) = 0, this is trivial to
show. Assume therefore that f(£) and f(») are not both 0. For 2 > 0, the solu-
tion of (10) is

(11) (fux)) = ae™ + b=

with a, b not both being negative. If ab = 0, then fi(x) > 0 for all x; if ab < 0,
then f(x) is monotone and hence > 0in (¢, ). For each value of 2 in the range
(—=/(n — &), oo) there is a unique positive solution to (10) which takes the
given values of f, at £ and 7, and as 2 decreases from oo to —x/(y — &), this
solution increases from 0 to co, hence it is also possible to obtain the given value
of Fi(y) — Fi(8).

Alternatively, one can also show that a solution of (10) which has an isolated
zero in (&, n) cannot correspond to a minimum of (7); see below (end of Prob-
lem B).

Problem B. Let —oco < £ < 7 < { < oo and assume that F(¢), F(y), F({),
f(€) and f({) are given and fixed. The problem is to minimize I ,(+). It is evi-
dent from (2) that f, must be continuous at », and it must satisfy (10) in each
of the intervals (&, 7), (y, {). Iassert now that f,’ must be continous at .

ProoF. Assume first that fi(y) > 0. Then a discontinuity in f;’ corresponds
to a Dirac d in f}’/f} at 5, and it is easy to verify that by choosing f; such that
Jf1 — fois symmetric around 5 and nonzero at y it is possible to achieve a strictly
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negative value for (9). If fi(y) = 0, then a glance at the solutions of (10) shows
that f,/(y) = 0 and f is trivially continuous.

Furthermore, f(y) = 0 can happen only when either F(§) = F(y) or F(y) =
F(€). The proof is based on the following idea: if fy(y) = 0 and f, satisfies (10),
then f,/(x)/fy(x) ~ 2/(x — 7) near 7, and the integral (8) diverges to —oco if £, is
smooth and nonzero at 5. This allows to show that F; then does not correspond
to a minimum.

Problem C. Minimization of I_, . (). The unbounded intervals (—oo, &)
and (&,, o) need a special treatment; it suffices to consider one of them. To
exclude trivialities, assume 0 < #, < t, (here k = 2 is essential!). If fi(§) = 0,
then F, does not correspond to a minimum (see the preceding paragraph); if
fo(é) > 0, the density must be of the form

(12) fi() = ae
on (—o0, &), with 2 > 0. Hence (9) reads
(13) [Ti_ Lug(F)|_ = —4155 (i = ) dx.

In order that (13) is always > 0, we must make the total mass Fy(§;) — Fo(— o)
as large as possible, that is F(—oo) = 0, and similarly Fy(+o0) = 1; hence F,
is a genuine probability distribution.

We are now ready to collect and put together these many pieces of evidence.
Take a distribution F, minimizing I(.); its existence is asserted in Lemma 1.
The auxiliary problems A, B, C show that F, satisfies (10) in each of the inter-
vals (£, &,,,) and that it satisfies the assumptions of Lemma 2; hence F, is the
unique distribution minimizing /(). Moreover, it satisfies (i) to (iv). On the
other hand, any F, satisfying (i) to (iv) has the property that

d 3
(G| = —as - pde=o0;
hence I(+) is stationary at F; since I(+) is convex, F, corresponds to a minimum.
This terminates the proof of the main assertion of this paper.

When the grid (&, - - -, &) is refined, then I(F,) converges to the true value
I(F). This follows at once from the remark that /(.) is lower semicontinuous
and that F, converges weakly to F, thus lim inf I(F,) = I(F), but I(F,) = I(F).
I have not yet been able to find the rate of convergence.
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