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A MONOTONICITY PROPERTY OF THE POWER FUNCTIONS
OF SOME INVARIANT TESTS FOR MANOVA!

By MoRrRis L. EATON AND MICHAEL D. PERLMAN

University of Minnesota

The main result of the current research describes a monotonicity prop-
erty of certain invariant tests for the multivariate analysis of variance
‘problem. Suppose X:r X p has a normal distribution, EX = © and the
rows of X are independent, each with uriknown covariance matrix X: p x p.
Let S = p x p have a Wishart distribution W(Z, p, n), S independent of X.
If K is the acceptance region of an invariant test for the null hypothesis
© =0, let px(0) denote the power function of K, where § = (61, - - -, 6¢),
t = min (r,p) and 62, ---, 5;2 are the ¢ largest characteristic roots of
0X-19’. A main result is

THEOREM. If K is a convex set (in (X, S)), then px(d) is a Schur-convex
function of §.

Standard tests to which the above theorem can be applied include the Roy
maximum root test and the Lawley-Hotelling trace test.

1. Introduction. We begin by considering a canonical form of the multi-
variate analysis of variance (MANOVA) testing problem suitable for studying
the power functions of invariant tests (see Anderson (1958), Chapter 8). Suppose
X: r X pisarandom matrix whose rows are independent normally distributed
with common covariance matrix Z: p X p, and let EX = 0. Let S: p X p be
independent of X and have the Wishart distribution—S ~ W(Z, p, n). It is as-
sumed throughout that X is positive definite and n > p. The MANOVA problem
in the form given here is to test H,: ® = 0 against the alternative H,: © + 0.

The above testing problem is invariant under all transformations of the form

(1.1 (X, S) — (T XA, ASA')

where I': r X r is an orthogonal matrix and 4: p X p is a nonsingular real
matrix. Let ¢ = min {r, p}. A maximal invariant statistic is (¢;, ---,¢,) =
(e (XS7'X"), - -+, ¢,(XS7'X")) where ¢, = ¢, = --- = ¢, =0 are the ordered
t-largest characteristic roots of XS—'X’. A maximal invariant parameter is
(71> -+ +»7.) Where y, > ... =7, = 0 are the t-largest characteristic roots of
OLX'0'. Letd, =yt i=1,---,¢t,and d = (4, ---,0,).

Denote by 5/,* the space of p X p positive definite matrices and let K &
R x &/ *. Define m (0, Z) by

(1.2) 7x(8, T) = Py (X, ) ¢ K}
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POWER OF INVARIANT TESTS FOR MANOVA 1023

so 7, is the power function of the test with acceptance region K. If K is invariant
under the transformations (1.1), then 7 (0, X) = z,(I'0A’, AZA4’) so

(1.3) 7(8, T) = 7,(A@), 1) = px(5)

where A(9): r X p satisfies A,,(0) = g, for i = 1, ..., ¢t and the remaining ele-
ments of A(9) are zero.

DerFINITION 1.1. Let % be the class of regions K £ R™ x .&,* such that

(a) Kis invariant under all the transformations (1.1),
(b) K is convex in each row of X when S and the remaining rows of X are
fixed.

Das Gupta, Anderson, and Mudholkar (1964) established the following theorem.
THEOREM 1.1. If Ke 5%, then p,(0) is increasing in each 6, i = 1, -- -, ¢.
The following well-known acceptance regions are in .557.

(i) Roy’s maximum root test:

K, = {(X,8)|c(XSX") < Kk}, k>0
(ii) Lawley—Hotelling trace test:
K, = {(X, S)|tr XS7'X" = >t¢c, < kY, k>0
(iii) Likelihood Ratio Test:
Ky ={(X, S)[1ies (1 + ¢)) = &}, k>0

(iv) Pillai’s trace test:

K, = {(X,S)|trX(X’X+ )X = %t j_ic < k} , 0<k<1.
Although Theorem 1.1 shows that Pk ,(9) is increasing in eachd,,j=1,.-..,4,
this result does not help one choose among the four tests if high power at certain
alternatives is desired. Numerical studies have been provided by Pillai and
Jayachandran (1967, 1968) when ¢ = 2, and by Fujikoshi (1970) when ¢ = 3,
which allow the study of the behavior of these power functions along certain
contours in the alternative space. It is the purpose of this paper to provide an
initial theoretical result concerning the behavior of o, (d) for j = 1,2 along
contours linear in d.

2. The main theorem. The discussion in this section is concerned with the
following subclass of 7.
DEFINITION 2.1. Let %, be the class of regions K — R? x &+ such that

(a) K is invariant under all the transformations (1.1),
(b’) K is a convex set.

Clearly, 57, < %,. It will be shown (Theorem 4.1) that K, K, € %, but it is
easy to verify that K, K, ¢ .57.
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Let 2 = (4,, - - -, 4,) and define A(2) to be the r X p real matrix with A, (2) =
A, i=1,...,1, and the other elements of A(1) are zero. Then extend p, by

px(2) = 7x(A(2), 1) .
Let G, be the group of permutations and sign changes of coordinates acting on
R*. 1Tt is easy to verify that p, (1) = p(g94) for g € G,. For 4,¢ R’, the G -orbit

of 4, is defined by
(&) = {94, g € G} .

Also, let C(4,) be the convex hull of £7(2,)). The following result is our main
theorem.

THEOREM 2.1. If Ke 57, and A, e R?, then

Px(2) = 0x(40)
for all e C(4,).

The proof of this theorem is given in the next section. The following diagram
illustrates and compares Theorems 1.1 and 2.1 when ¢ = 2.

T / y
N
[/ /) [/ /]
/*//////
/
Y,

7

Theorem 1.1 shows that if K € %7, then p, (1) < p,(4,) for 2in the shaded region
R. Our Theorem 2.1 shows that if Ke 57, then p, (1) < pg(4,) for all 1¢T.
Note that the vertices of the octagon T are the points in the G-orbit of 4,, and “
T = C(4).

Let GP, be the permutation subgroup of G,, @(2,) = {g4,| g € GP;} and C(1,)
be the convex hull of <7(,). It follows from Theorem 2.1 that

ox(2) < px(4) » ie C‘(Zo) .

(In Figure 1, @ (%) = {4, 4} and C(4,) is the line segment [4,, 4,].) But, 2e C(2,)
if and only if 2 = Q2, for some doubly stochastic matrix Q, i.e., 4, majorizes 2
(Berge (1963), Chapter 8), so

(2.1) 0x(Q4) = px(4)
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for all doubly stochastic matrics Q. However, (2.1) is the definition of Schur-
convexity (Berge (1963), page 219). Thus, we have proved

CoroLLARY 2.1. If Ke 57, then py(R) is a Schur-convex function of A.

3. Proof of Theorem 2.1. The proof of Theorem 2.1 is based on the follow-
ing result, due to Mudholkar (1966). Let G be a group of Lebesgue measure
preserving linear transformations on R™. If xe R™, let &7(x) = {gx|g € G} be
the orbit of x and let C(x) be the convex hull of Z7(x).

THEOREM 3.1. Let f be a probability density on R™ such that f(x) = f(gx) for all
xeR™and ge G, and assume f is unimodal, i.e., {x|f(x) = c} is convex for all
¢ > 0. Further, let E be a convex set in R™ such that E = gE for g € G. Then

§ef(x +y)dx = 5 f(x + yo) dx
forall y e C(y,).

To apply Theorem 3.1 to the MANOVA problem, let G be the group of trans-
formations (I';, I';) acting on points (X, S) € R"? x Ri»»+) — R™ by

(3.1) T, Ty)x, 8) = T, xry,I',ST,)

where I';: r X r, I';: p X p are orthogonal. Points in R¥*®+1) are represented
as real symmetric p X p matrices S. Theorem 2.1 is a consequence of the fol-
lowing lemma.

LEMMA. Suppose K € ¢,. Then
m(Ay T) < mg(Ag, 1)
for all A such that (A, 0) € C(A,, 0), where (A, 0) € R™ x R}»@+D),
Proor. We will apply Theorem 3.1 with
fX, S) = c|S|i=7=Y exp[ —} tr (X'X + S)]K(S)

where I(S) is the indicator function of the set of positive definite matrices in
Rit»@+1)  Clearly f is invariant under the transformations (3.1) and K is convex
and invariant by assumption. The unimodality of f is verified by noting that
log f(X, S) is a concave function of (X, §). Thus, by Theorem 3.1,

§x (X, S) = (A, 0))dXdS = §, (X, S) — (A,, 0) dXdS
for (A, 0) e C(A,, 0). But,
1 — 7e(A, 1) = §x f((X, S) — (A, 0))dX dS,
and the result follows.

Proor or THEOREM 2.1. We give the proof for r < p so = r, as the case
p > rissimilar. It is easy to show that the group G, is the set of all » X r ma-
trices of the form D, P where D, : r X r is a diagonal matrix with diagonal entries
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+1and P: r X ris a permutation matrix. The relations
(3.2) A(D,2) = D A(2)
(3.3) A(P2) = PARYG; 12,

are easily verified.
Suppose 4 € C(4;)—i.e., 4 is in the convex hull of the G,-orbit of 4, Thus 2

has the form
A= aiDs,iPilO

where 0 < a; < 1and Y] a, = 1. Using (3.2), (3.3), and the linearity of A(.),
A(l) = A(Z aiDsz i 0) - Z «Q; De 1,P A(ZO)(O Ip

Since D, ;P;: r X rand (i ;’ ): p X pare orthogonal, this shows that (A(2), 0)
is in the convex hull of the G-orbit of (A(4,), 0). Applying the lemma, p, (1) =
T (A(R), I) < mx(A(4), I) = px(4,). This completes the proof.

4. Applications of Theorem 2.1 to specific tests. In this section, we give a
sufficient condition for an invariant acceptance region to be in 57

DerINITION 4.1. Let R,! ={weR'|w, = 0,i=1, ..., ¢} and let 2# be the
class of regions W C R, * satisfying

(i) W is closed and convex
(ii) W is invariant under permutation of coordinates
(iii)y W is monotone: if we Wandif0 < v, <w,,i=1,...,¢ thenve W.

Let K, = {(X, S)|(¢;, - -+, ¢;) € W} where ¢, ---, ¢, are the t-largest ordered
characteristic roots of XS~1X".

THEOREM 4.1. If We 27, then K, € 5%,

ProoOF. K, is clearly invariant under the transformations (1.1). We outline
the proof of the convexity of K, (see Schwartz (1967) for details). Since We %,
W can be represented as an intersection of sets of the form

{(X 9)| Zia bici(XSTX) = 1} = K,

where b, > b, > --- 2 b, 20. Let D, = diag{w,, ---,w}. Since }] b;¢c, =
tr D, D, = supy tr D, WXS~'X"¥’" where ¥: ¢ X rranges over all row orthogonal
matrices, it is clear that (X, S) e X, iff

tr D, TXSXY’ < 1 forall ¥.
From the Cauchy-Schwarz inequality we have for F: t X pand H: t X p

SUPpopg ot — =tr H'HS™'.

Setting H = D,}¥ X, we see that (X, S) e K, iff
(tr FX'U'D,})? < tr FSF’ forall ¥, F+0.
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Thus

Ky, = Ne Nz {(X, S) | (tr FX'¥'D})? — tr FSF' < 0} .
But, (tr FX'¥'D,t)* — tr FSF' is a convex function of (X, S) so K, is the inter-
section of convex sets. This completes the proof.

The following corollary is now immediate.

o

COROLLARY 4.1. The regions K, and K, are in .

Let o = (1,0,-.-,0),0® =(4,4,0,---,0),.-.,0% = (1/t, ..., 1]f). Since
6+ js in the convex hull of the GPy-orbit of 6'”, we have from Corollary 2.1,

P(849) < 0, (8), Ke o,.

When 6 = §‘?, the rank of © is j. Thus we conclude that for }}¢_, §, = con-
stant, the power of tests in ..¥, increases as the rank of © decreases from ¢ to
1. This result confirms speculation based on the numerical results of Pillai and
Jayachandran (1967, 1968) and Fujikoshi (1970). (These authors studied the
power functions for }] ;> = constant.)

These numerical studies suggest the conjecture that the power functions of
the tests K, and K, decrease as the rank of ® decreases from ¢ to 1. However,
the methods of the present paper cannot be applied, as neither the acceptance
nor rejection regions of the tests based on K; and K, are convex sets in (X, S).

One possible application of Corollary 2.1 is to derive upper and lower bounds
for the power functions p,(d) when Ke .¢,. Since o* = (29,0, ---,0)
majorizes 6 and 0 majorizes 0, = (™ 2] 0, + -+, 171 31 0,),

Px(04) = 0k(0) < px(0%) .
This provides an upper and lower envelope for p.(d) in terms of }] d,.

ReEMARK. Our main result, Theorem 2.1, can be derived from a recent inter-
esting result of Prekopa (1973) rather than Mudholkar’s Theorem 3.1. Prekopa
proves that the convolution of two log-concave functions on R™ is log-concave.
This result can be applied to conclude that 1 — p,(2) is log-concave in 2. The
invariance of p,(4) under G, then yields Theorem 2.1.
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